Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2023

Supplementary Information for:

Biological conversion of cyclic ketones from catalytic fast pyrolysis with Pseudomonas putida KT2440

Andrew J. Borchert,¹ A. Nolan Wilson,¹ William E. Michener,¹ Joseph Roback,^{1,2} William R. Henson,^{1,3} Kelsey J. Ramirez,¹ Gregg T. Beckham^{1*}

¹Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden CO, United States ²Current Address: Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder CO, United States ³Current Address: Battelle, Columbus OH, United States

*Corresponding author: gregg.beckham@nrel.gov

Supplementary Figure 1. Tolerance of AJB137 Against Different Cyclic Ketones. AJB137 was grown in M9 medium containing 10 mM D-glucose and supplemented with varying concentrations of cyclopentanone (CP), 2-methylcyclopentanone (2mCP), 3-methylcyclopentanone (3mCP), 2-cyclopenten-1-one (2CP), 2-methyl-2-cyclopenten-1-one (2m-2CP), and 3-methyl-2-cyclopenten-1-one (3m-2CP). AJB137 cultures were inoculated to an initial absorbance at 600 nm (OD600) of ~ 0.15 and growth was assessed by measuring the OD600 after 24 h. Data represent the mean from three biological replicates and error bars denote the standard error of the mean.

Supplementary Figure 2. Consumption of methanol by *P. putida* RH300. RH300 was grown in M9 medium containing 10 mM Dglucose and supplemented with the reduced and methanol-depleted cyclic ketone rich CFP fraction to an approximate initial cyclopentanone concentration of ~ 10 mM at 30 °C for 72 h. Methanol (blue squares) concentration was tracked for biological samples (filled shapes) as well as an abiotic control (empty shapes). Growth of RH300 was measured using absorbance at 600 nm (OD₆₀₀, pink circles). Data represent the mean from three biological replicates and error bars denote the standard error of the mean.

Supplementary Figure 3. Loss of the *paaZ* operon does not alter glutaric acid production in the AJB137 background. AJB137 and AJB217 (AJB137 ΔPP_3270 -PP_3273) were grown in M9 medium containing 10 mM D-glucose and supplemented with 8 mM CP at 30 °C for 48 h. CP and glutaric acid concentrations were tracked for biological samples and an abiotic control. The data represent the mean from three biological replicates (triplicate abiotic controls) and error bars denote the standard error of the mean.

Supplementary Table 1. Strains and Plasmids Used in This Study

Strains	Genotype	Description
Strains	Pseudomonas putida KT2440	Marcineou Marcineou
EM42	Δprophage1 Δprophage4 Δprophage3 Δprophage2 ΔTn7 ΔendA-1 ΔendA-2 ΔhsdRMS Δflagellum ΔTn4652	Construction of this strain is described in Martinez-Garcia E, Nikel PI, Aparicio T, de Lorenzo V. <i>Pseudomonas</i> 2.0: genetic upgrading of <i>P. putida</i> KT2440 as an enhanced host for heterologous gene expression. Microb Cell Fact 13, 159 (2014).
RH300	EM42 PP_5042:P _{tac} :mekAB:cpnDE	Pseudomonas veronii MK700 mekAB and Comamonas sp. NCIMB 9872 cpnDE were expressed in the P. putida chromosome using the P _{tac} promoter downstream o the PP_5042 locus in the EM42 strain background. This construct was made using pRH83 via a selection (<i>nptII</i> , kanamycin)/counterselection (<i>sacB</i> , sucrose) approach. Colony PCR using 2x MyTaq (Bioline) with oRH328/oRH329 was used to confirm correct insertion of the synthetic operon (9000 bp band). oRH328/oRH329, oRH293-oRH295, and oRH322-oRH327 were used for sequence verification by Sanger sequencing (Genewiz).
AJB87-AJB91	Parental- EM42 PP_5042:P _{tac} :mekAB:cpnDE	RH300 isolates following growth in M9 + 10 mM CP
AJB137	EM42 PP_5042:P _{tac} :mekAB:cpnDE ΔgcdH:gcoT ΔcsiD	The native <i>csiD</i> gene was eliminated from the RH300 backgroud using pAJB04via a selection (<i>nptII</i> , kanamycin)/counterselection (<i>sacB</i> , sucrose) approach. Colony PCR using 2x MyTaq (Bioline) with oAJB071/oAJB072 was used to confirm correct deletion of the <i>csiD</i> gene (1125 bp band). Then the native gcdH:gcoT operon was eliminated from the this backgroud using pAJB010 via a selection (<i>nptII</i> , kanamycin)/counterselection (<i>sacB</i> , sucrose) approach. Colony PCR using 2x MyTaq (Bioline) with oAJB069/oAJB096 was used to confirm correct deletion of the <i>gcdH</i> :gcoT genes (544 bp band). Then the native gcdH:gcoT deletion of the <i>gcdH</i> :gcoT genes (544 bp band). The inability for the <i>dgcdH</i> :gcoT double mutant to grow on glutaric acid as the sole carbon source was confirmed by screening for no growth on M9+30 mM glutaric acid plates.
AJB171-172, 175-176, 179-180	Parental- EM42 PP_5042:P _{tac} :mekAB :cpnDE ΔgcdH:gcoT ΔcsiD	AJB137 TALE isolates tolerated to 2-cyclopenten-1-one via serial passages in M9 + 10 mM D-glucose, 2.5 mM 2CP up to M9 + 10 mM D-glucose, 5.5 mM 2CP (0.5 mM increased 2CP between passages for 7 passages)
AJB185	EM42 PP_5042:P _{tac} :mekAB :cpnDE ΔpaaYX	The native <i>paaYX</i> operon was eliminated from the RH300 backgroud using pAJB26 via a selection (<i>nptII</i> , kanamycin/counterselection (<i>sacB</i> , sucrose) approach. Colony PCR using 2x MyTaq (Bioline) with oAJB195/oAJB196 was used to confirm correct deletion of the <i>paaYX</i> operon (131 bp band).
AJB186	EM42 ΔgcdH:gcoT ΔcsiD PP_5042:P _{tac} :mekAB:cpnDE ΔpaaYX	The native <i>paaYX</i> operon was eliminated from the AJB137 backgroud using pAJB26via a selection (<i>nptII</i> , kanamycin)/counterselection (<i>sacB</i> , sucrose) approach. Colony PCR using 2xMyTaq (Bioline) with oAJB195/oAJB196 was used to confirm correct deletion of the <i>paaYX</i> operon (131 bp band).
AJB195	EM42 ΔgcdH:gcoT ΔcsiD PP_5042:P _{tac} :mekAB:cpnDE ΔnemA	The native <i>nemA</i> gene was eliminated from the AJB137 backgroud using pAJB32 via a selection (<i>nptII</i> , kanamycin)/counterselection (<i>sacB</i> , sucrose) approach. Colony PCR using 2x MyTaq (Bioline) with oAJB226/oAJB227 was used to confirm correct deletion of the <i>nemA</i> gene (626 bp band).
AJB196	EM42 PP_5042:P _{tac} :mekAB :cpnDE ΔpaaYX ΔpaaFGHIJKABCDE	The native <i>paaFGHIJKABCDE</i> operon was eliminated from the AJB186 backgroud using pAJB029 via a selection (<i>nptII</i> , kanamycin)/counterselection (<i>sacB</i> , sucrose) approach. Colony PCR using 2x MyTaq (Bioline) with oAJB211/oAJB212 was used to confirm correct deletion of the <i>paaFGHIJKABCDE</i> operon (284 bp band).
AJB197	ЕМ42 PP_5042:P _{tac} :mekAB :cpnDE ΔpaaYX ΔPP_3270:PP_3274	The native PP_3270:PP_3274 operon was eliminated from the AJB186 backgroud using pAJB030 via a selection (<i>nptII</i> , kanamycin)/counterselection (<i>sacB</i> , sucrose) approach. Colony PCR using 2x MyTaq (Bioline) with oAJB217/oAJB218 was used to confirm correct deletion of the PP_3270:PP_3274 operon (231 bp band).
AJB217	EM42 PP_5042:P _{tac} :mekAB:cpnDE ΔgcdH:gcoT ΔcsiD ΔPP_3270:PP_3274	The PP_3270:PP_3274 operon was eliminated from the AJB137 backgroud using pAJB30 via a selection (<i>nptII</i> , kanamycin)/counterselection (<i>sacB</i> , sucrose) approach Colony PCR using 2x MyTaq (Bioline) with oAJB217/oAJB218 was used to confirm correct deletion of thePP_3270:PP_3274 operon (231 bp band).
Plasmids	Genotype	Description
pRH83	pK18sB- PP_5042:P _{tac} :mekAB:cpnDE	For chromosomal heterologous expression of Pseudomonas veronii MK700 mekAB and Comamonas sp. NCIMB 9872 cpnDE in P.putida KT2440. Used Q5 Hot Start High-Fidelity 2X Master mix to amplify mekAB and the pK18sB backbone (8,081 bp) encoded as pAM032 (W.R. Henson, 2021, Metabolic Engineering) with oRH318/oRH319 and also amplify cpnDE from a cpnABCDE gene fragment synthesized by TWIST Biosciences (San Francisco) using oRH320/oRH321. Fragments were gel purified using the Zymoclean Gel DNA Recovery kit. HiFi assembly using the two fragments with 100 ng vector and a 3:1 molar ratio of the cpnDE fragment yielded a 10,720 bp plasmid that was confirmed by PCR amplification with oRH232/oRH233 and Sanger sequencing using oRH232/oRH233, oRH293-oRH295 and oRH322-oRH327 (Genewiz).
pAJB04	pK18sB-∆csiD	For deletion of <i>P. putida</i> KT2440 <i>csiD</i> (PP_2909). Used Q5 Hot Start High-Fidelity 2X Master mix to amplify 1000 bp upstream of PP_2909 (including the first 10 amino acids from <i>csiD</i>) with oAJB033/oAJB034 and 1000 bp downstream (including the <i>csiD</i> stop codon) with oAJB035/oAJB036. Fragments were gel purified using the Zymoclean Gel DNA Recovery kit. 2 µg pK188 B vector was digested using EcoRI and HindIII and a 2,993 bp band was gel purified. HiFi assembly using the three fragments with 100 ng vector and a 3:1 molar ratio of each fragment yielded a 4,993 bp plasmid that was confirmed by restriction digest and oCJ680/oCJ681 were used for PCR amplification and Sanger sequencing (Cenewiz).
pAJB10	pK18sB-∆gcdH:gcoT	For deletion of <i>P. putida</i> KT2440 gcdH:gcoT. Used Q5 Hot Start High-Fidelity 2X Master mix to amplify 587 bp upstream of the gcdH start codon with oAJB137/oAJB093 and 560 bp downstream after the gcoT stop codon with oAJB094/oAJB138. Fragments were gel purified using the Zymoclean Gel DNA Recovery kit. 2 µg pK188B was digested using EcoRI and HindIII and a 2,993 bp band was gel purified. HiFi assembly using the three fragments with 100 ng vector and a 3:1 molar ratio of each fragment yielded a 4,140 bp plasmid that was confirmed by restriction digest and oCI680/oCI681 were used for PCR amplification and Sanger sequencing (Genewiz).
pAJB26	pK18sB-∆paaYX	For deletion of <i>P. putida</i> KT2440 <i>paaYX</i> (PP_3285-PP_3286). Used Q5 Hot Start High-Fidelity 2X Master mix to amplify 800 bp upstream of the <i>paaY</i> start codon with oAJB191/oAJB192 and 800 bp downstream starting after the <i>paaX</i> stop codon with oAJB193/oAJB194. Fragments were gel purified using the Zymoclean Gel DNA Recovery kit. 2 µg pK18s B vector was digested using EcoRI and HindIII and a 2,993 bp band was gel purified. HiF assembly using the three fragments with 100 ng vector and a 3:1 molar ratio of each fragment yielded a 4,593 bp plasmid that was confirmed by PCR amplification with oCl680/oCl681 and these primers were also used for sequence confirmation using Sanger sequencing (Genewiz).
pAJB29	рК18sB-Δ <i>paaFGHIJKABCDE</i>	For deletion of the <i>P. putida</i> KT2440 <i>paaFGHIJKABCDE</i> operon (PP_3284-PP_3274). Used Q5 Hot Start High-Fidelity 2X Master mix to amplify 800 bp upstream of <i>paaF</i> (including the first 10 amino acids from <i>paaF</i>) with oAJB207/oAJB208 and 800 bp downstream (including the <i>paaE</i> stop codon) with oAJB209/oAJB210. Fragments were gel purified using the Zymoclean Gel DNA Recovery kit. 2 µg pK188b vector was digested using EcoRI and HindIII and a 2.993 bp band was gel purified. HiFi assembly using the three fragments with 100 ng vector and a 3:1 molar ratio of each fragment yielded a 4.993 bp plasmid that was confirmed by restriction digest and oCI680/oCI68I were used for PCR amplification and Sanger sequencing (Genewiz).
pAJB30	рК18sB-ДРР_3270:РР_3273	For deletion of the <i>P. putida</i> KT2440 PP_3273-PP_3270 operon (PP_3270 also called <i>paaZ</i> , PP_3271 also called <i>phaK</i> , PP_3272 also called <i>actP</i> -III). Used Q5 Hot Start High-Fidelity 2X Master mix to amplify 800 bp upstream of PP_3273 (including the first 10 amino acids from PP_3273) with oAJB213/oAJB214 and 800 bp downstream (including the <i>paaZ</i> stop codon) with oAJB215/oAJB216. Fragments were gel purified using the Zymoclean Gel DNA Recovery kit. 2 µg pK18sB vector was digested using EcoRI and HindIII and a 2,993 bp band was gel purified. HiFi assembly using the three fragments with 100 ng vector and a 3:1 molar ratio of each fragment yielded a 4,993 bp plasmid that was confirmed by restriction digest and oCJ680/oCJ681 were used for PCR amplification and Sanger sequencing (Genewiz).
pAJB31	pK18sB-∆mekB:cpnDE	For deletion of <i>mekB</i> and <i>cpnDE</i> from <i>P</i> . 0 RH300. Used Q5 Hot Start High-Fidelity 2X Master mix to amplify 800 bp upstream of the <i>mekB</i> start codon with oAJB219/oAJB220 and 800 bp downstream starting after the <i>cpnE</i> stop codon with oAJB221/oAJB204. Fragments were gel purified using the Zymoclean Gel DNA Recovery kit. 2 µg pK18xB vector was digested using EcoRI and HindIII and a 2,993 bp band was gel purified. Hiff assembly using the three fragments with 100 ng vector and a 3:1 molar ratio of each fragment yielded a 4,593 bp plasmid that was confirmed by PCR amplification with oCJ680/oCJ681 and these primers were also used for sequence confirmation using Sanger sequencing (Genewiz).
pAJB32	pK18sB-∆nemA	For deletion of <i>nemA</i> from <i>P</i> . <i>putida</i> KT2440. Used Q5 Hot Start High-Fidelity 2X Master mix to amplify 800 bp upstream of the <i>nemA</i> start codon with oAJB222/oAJB223 and 800 bp downstream starting after the <i>cpnE</i> stop codon with oAJB224/oAJB225. Fragments were gel purified using the Zymoclean Gel DNA Recovery kit. 2 µg pK18sB vector was digested using EcoRI and HindIII and a 2,993 bp band was gel purified. Hiff assembly using the three fragments with 100 ng vector and a 3:1 molar ratio of each fragment yielded a 4,593 bp plasmid that was confirmed by PCR amplification with oCJ680/oCJ681 and these primers were also used for sequence confirmation using Sanger sequencing (<i>Gnewi</i>)

Supplementary Table 2. Oligonucleotides Used in This Study

Primer ID	Sequence	Primer ID	Sequence
oAJB033	ACAGCTATGACATGATTACGAATTCGGCATGCTGGTTCCTGG	oAJB215	TTCTACACATCAGGCGATGCTTTCTATGCGTTCG
oAJB034	CCTGTCATTAAAGTTCGTCGATCTGCGTAAAGG	oAJB216	CGTTGTAAAACGACGGCCAGTGCCAGCTCCAGTTCGGGGG
oAJB035	CGACGAACTTTAATGACAGGGCGCGGG	oAJB217	AAGTGCCTTGAGCACC
oAJB036	TAAAACGACGGCCAGTGCCAAGCTTGCGTGGTCAGGGTCTGG	oAJB218	CTTACCTGCGAAGAGG
oAJB069	TGCTGGCGCATTACCGACAA	oAJB219	ACAGCTATGACATGATTACGAATTCGGAAGGACGGTAGCCTGG
oAJB071	GGCAGTATGGAACGCCTTGTGC	oAJB220	AGTGCTTCATGCCTCAGGCCATTTCGAAGCCC
oAJB072	CCAGTAGCGTTCCAGGCCATTG	oAJB221	GAAATGGCCTGAGGCATGAAGCACTGAACCCAC
oAJB093	GCCTGACGGCCTCCCCGCTTTTCATGAGCGAATCCTCGAAATAGGGG	oAJB222	ACAGCTATGACATGATTACGAATTCTGGGGATGGTATTCACCGGC
oAJB094	ATGAAAAGCGGGGAGGC	oAJB223	CTCTGGAGCTGCATGCAAAAACGGGCGCTCTTG
oAJB096	AAGTGGGGCGCATTATAAGGGG	oAJB224	CCCGTTTTTGCATGCAGCTCCAGAGGTGGAAAAC
oAJB137	ACAGCTATGACATGATTACGAATTCCATCGAAGGTAGTGTCGG	oAJB225	TAAAACGACGGCCAGTGCCAAGCTTGATGCCACGCTGACCC
oAJB138	TAAAACGACGGCCAGTGCCAAGCTTCAGTTCAATACTGCTTGGGT	oAJB226	GTAGCACAATGGCAAACGT
oAJB191	ACAGCTATGACATGATTACGAATTCTACCGACGGCACGTAACAG	oAJB227	GAATAACCAATGGGTCAGTTCC
oAJB192	GCGAGCACTCCCCGGCAACACTCTCGAAATGATTTGG	oCJ680	TTTGTGATGCTCGTCAGGG
oAJB193	GAGAGTGTTGCCGGGGAGTGCTCGCCTC	oCJ681	CTTCCCAACCTTACCAGAG
oAJB194	TAAAACGACGGCCAGTGCCAAGCTTAAACCCTATTCACCTGAAACCGCTG	oRH293	CTCGGTGTGCGGTTTCACGTG
oAJB195	CAACACAAGTGATACACGAT	oRH294	TCTGCTGCCGGCTATTCGTC
oAJB196	TCGACGCCGTGAATGTT	oRH295	CGGACAATTCGATGCGCATTAATCG
oAJB201	AGGAAACAGCTATGACATGATTACGAATTCTCAACCAGATCGGCAACGG	oRH318	AGTCAAAAGCCTCCGACCGG
oAJB202	AGTGCTTCATGCCTCAGTATGCCGGGCTCGA	oRH319	TCAGTATGCCGGGCTCGAG
oAJB203	CCGGCATACTGAGGCATGAAGCACTGAACCCAC	oRH320	GCCGAGCTCCTCTCGAGCCCGGCATACTGAACAACAAATAGGACAGACCAAAGACTAGG
oAJB204	TAAAACGACGGCCAGTGCCAAGCTTGCTGACGGCCATGGC	oRH321	ATGGGAGCGGTGGGTTCAGTGCTTCATGCCTCAACCTGCGCTCGTGTAGG
oAJB205	CCATCGAAGTACTGCATCAT	oRH322	TTCATGCCCACTCTGCGATTCCGG
oAJB206	TACGCCTCGAGCAGTTCA	oRH323	TGCGTGAAATGGGTCTGACCG
oAJB207	ACAGCTATGACATGATTACGAATTCGCGCACTGGGGTTTGC	oRH324	GTTCCCGGAGATGTTCTTCGATGAAC
oAJB208	TGTGCAGGCGCCCTAGACCGAGTCGGCTGCTTC	oRH325	GAAAGGCCAAGAAGGTCATAATGAACTCC
oAJB209	CGACTCGGTCTAGGGCGCCTGCACATCGATATAT	oRH326	CTGCTGACCATGGCCTGGAAGTG
oAJB210	TAAAACGACGGCCAGTGCCAAGCTTGTTTGACCTGGGCTGGCGA	oRH327	CGGTGGTGACCACCCCTAC
oAJB211	CGCATAGAGCATATACTG	oRH328	AAATCCAGCCAGTTCTCGG
oAJB212	GCGATCTCTTGGTTTTGT	oRH329	AACTGTTCGTGCCAGACGT
oAJB213	AGGAAACAGCTATGACATGATTACGTCCATGGAGAAGAGGAGGC	oRH332	GCAAACGCAGTTAAGGCTCGTCGCGGCTGA TCCGCGTTAAAATACCAGGTCAACAC
oAJB214	AGAAAGCATCGCCTGATGTGTAGAAGCCACTGGC	oRH333	ATGCCTGCAGGTCGACTCTAGAGGATCCCC GTTTCGCCGTCCTCGTTGG

Supplementary Table 3. Gene Sequences for Heterologously Expressed Genes.

Gene	Description	Sequence					
	Promoter sequence for Ptac-						
P _{tac}	controlled constructs used in this work	GAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTCACACT					
mekA	mekA from Pseudomonas veronii CF600 was codonoptimized for expression in P. putida KT2440 using OPTIMIZER (Puigbo et al., 2007). A synthetic ribosome of 8097 arbitrary units was designed using the Salis RBS Calculator (https://salis.psu.edu/software/) (Salis et al.,2009).	TTAAGGAGGTTTTTTT ATGTCCGCACAGAGCAAGCTCGCGGCCGGCAGCTGCGCTTACGGCAACGTTACCTCTTTG GACGCTATGGTTATCGGTGCCGGCGTCGCCGGCCTCTACCAGCTGTACCGCCGCGTGAAATGGGTCTGACCGTGC GCGCATACGACACCGCCAGCGGTGTCGGTGGCACCTGGTACTGGAACCGTTACCGGGCGCGCGC					
mekB	<i>mekB</i> from <i>Pseudomonas</i> <i>veronii</i> CF600 was codonoptimized for expression in <i>P. putida</i> KT2440 using OPTIMIZER (Puigbo <i>et al.</i> , 2007). The native RBS (Italics) was used.	GCCCGCCACCTAAGAAAGGCCAAGAAGGTCATAATGAACTCCTACTACACCGAAGAGAAACCACGGTCCGTTCGAGC TGATCAACATCGGCCCACTGCCACTGGAAGAGGGCCGTTGCATGCCAGAGGTGCCTGCTCGCTGGCGGCGCCACG GCGCCCTGAATGCCGACAAGTCCAACGCTATCCTGGTTCCGACCTGGTACACGGGGCACGTAGGCCATGGAAC AGATCTACATCGGCGAGGGTCGTGCCCTCGACCCATCGAAGTACTGCATCATCGTGGTCAACCAAGAGCATCGGCGACG GCCTGAGCTCTTCGACTACGGTGGCCCCGGGCTGGCCCAGGCTTCGGCGAACGTAACCAAGACGGCGCACG GCTTGAGCACACGCCCCTCGACCGGCGGTCCGGCCGGCGCGCGC					
cpnD	cpnD from Comamonas sp. NCIMB 9872 was codonoptimized for expression in P. putida KT2440 using OPTIMIZER (Puigbo et al., 2007). A synthetic ribosome of 8986 arbitrary units was designed using the Salis RBS Calculator (https://salis.psu.edu/software/) (Salis et al.,2009).	ACAACAAATAGGACAGACCAAAGACTAGGTTATC ATG AATCCGTTTCATTTCGAGACCACGCCCCGCATCATTTGTCA CAACGGTGCTAGCACGAAATTGGGGGAGGCCGCCGCAATCTGGGCATCCGGCACGCATTCTTTGTCACGGATAA AGGTGTCCACCAAGCGGGTTCGACGAGCGCAGCGC					
cpnE	cpnE from Comamonas sp. NCIMB 9872 was codonoptimized for expression in P. putida KT2440 using OPTIMIZER (Puigbo et al., 2007). A synthetic ribosome of 9994 arbitrary units was designed using the Salis RBS Calculator (https://salis.psu.edu/software/) (Salis et al.,2009).	TCGGGCGGACGGACGCACATTTAAGGAGTAATTTA TTGATG AACAGCTCCTTGCATTACAACTACGTGGGGGGGGACTGGGT CAATGGGGCGACCGAACGCCACAACTTGAATCCTTCCGACCTCTGGATTCGATCGGCATTTACGTCGGTGCCAAT GAGGCCCAAACGCAGGCCGCTATTGACGCAGCGTCGATGCACGTCGGCTTGGGCTTGTTGGACCGCCGCAAC CGTGCCGACGCTTGGACCGTATCGGCACGCCACTCCATTTTGGCGCGCGC					

Supplementary Table 4. Mutations in RH300 vs. the Predicted RH300 Sequence (from NC_002947)

Conomo Position	Nucleotido Chango	Locus Effected	CDS Position	Protein Effect	Polymorphism Type	Amino Agid Change	Codon Chango	Bood Coverage	Variant Fragmono	Notes	
172966	A -> G	Intergenic	-	-	SNP (transition)	-		587	97.80%	Upstream of 23S ribosomal RNA (PP_RS00830)	
172306	A -> G	Intergenic			SNP (transition)	-	- 485		98.40%	Unstream of 23S ribosomal RNA (PP RS00845)	
278745	(+) A	Intergenic	-	-	Insertion	-	-	269	95.90%	Upstream of SfnB family sulfur acquisition oxidoreductase (PP, RS01190)	
307867	(+) C	PP_RS01335	738	Frameshift	Insertion	-	-	776	99.60%	PP_RS01335 annotated as a pseudogene (phosphoenolpyruyate carboxykinase fragment)	
336126	(+) T	PP_RS01475	211	Frameshift	Insertion		-	559	99.80%	PP_RS01475 annotated as a DUF3077 domain- containing protein	
353067	A -> G	Intergenic	-	-	SNP (transition)	-	-	283	98.20%	Between the convergently encoded genes hisF and choV	
499203	A -> G	Intergenic	-	-	SNP (transition)	-	-	389	99.70%	Upstream of an ABC transporter ATP-binding protein (PP_RS02170)	
1070248	(+) GA	Intergenic	-	-	Insertion	-	-	532 -> 542	95.1% -> 95.2%	Between the convergently encoded genes PP_RS0487 and PP_RS04880	
1126648	(+) C	Intergenic	-	-	Insertion	-	-	310	98.40%	Upstream of L-serine ammonia-lyase (PP_RS05165)	
1419550	(+) C	Intergenic	-	-	Insertion	-	-	588	98.10%	Upstream of a DUF3077 domain-containing protein (PP_RS06445)	
1499480 -> 1499481	CA -> AC	Intergenic	-	-	2 SNPs (transversions)	-	-	215 -> 214	78.60% -> 94.40%	Upstream of cell division protein ZapE (PP_RS06790)	
1499498 -> 1499499	T -> CG	Intergenic	-	-	SNP (transition) and Insertion	-	-	226 -> 219	83.60% -> 93.20%	Upstream of cell division protein ZapE (PP_RS06790)	
1499509	(+) C	Intergenic	-	-	Insertion	-	-	223	94.20%	Upstream of cell division protein ZapE (PP_RS06790)	
1892582	(+) C	Intergenic	-	-	Insertion	-	-	459	99.80%	Upstream of RluA family pseudouridine synthase (PP_RS08900)	
2490804 -> 2490827	(-) GATCAACGGCAACGGC AACGGCAA	PP_RS28385	102	Deletion	Deletion	KINGNGNGN -> N	AAG,ATC,AAC,GGC, AAC,GGC,AAC,GGC, AAC -> AAC	419	99.80%	PP_RS28385 annotated as a hypothetical protein	
2546570	(-) T	Intergenic	-	-	Deletion	-	-	602	100.00%	Upstream of tRNA-His (PP_RS12000)	
3713411	(+) G	Intergenic	-	-	Insertion	-	-	315	98.70%	Upstream of hydroxymethylglutaryl-CoA lyase (PP_RS17675)	
3818865 -> 3818867	TTA -> CTT	PP_RS18130	67 -> 65	Substitution	SNP (transition) -> SNP (transversion)	IR -> KG	ATA, AGA -> AAA, GGA	220 -> 220	94.10% -> 83.20%	PP_RS18130 annotated as an ABC transporter substrate-binding protein	
4398970 -> 4398971	CT -> TC	Intergenic	-	-	2 SNPs (transitions)	-	-	356 -> 357	96.90% -> 86.00%	Between the convergently encoded genes PP_RS28355 and PP_RS21100	
4398976	(+) G	Intergenic	-	-	Insertion	-	-	362	99.40%	Between the convergently encoded genes PP_RS28355 and PP_RS21100	
4398998	(+) C	Intergenic	-	-	Insertion		-	364	94.50%	Between the convergently encoded genes PP_RS28355 and PP_RS21100	
4549137	A -> T	PP_RS21755	389	Substitution	SNP (transversion)	L -> Q	CTG -> CAG	738	89.00%	PP_RS21755 annotated as a succinate dehydrogenase iron-sulfur subunit	
4553751 -> 4553760	TATTTTTCTG -> ATTTGTCCT	Intergenic	-	-	Deletion -> SNP (transversion) -> Substitution	-	-	332 -> 295 -> 269	100.00% -> 98.30% -> 89.0%	Between the convergently encoded genes <i>gltA</i> and PP_RS21780	
4554169 -> 4554238	AACCTCCGCCAACTGCA ATTCGTGAACCAAGCA AAAGGCCCCGAAAAGG CCCTCCGCAGCCCCCCC AACC -> CAGCTTCTGCGAACTGC ATTCGTGAATCCAGCA CAGGCCCCGGACACGT CCTCCTGCAGCGCCTCG ACCT	PP_RS21780	254 -> 185	Disruption	Multiple Mutations	-	-	> 793	> 99.40%	PP_RS21780 is annotated as a START domain- containing pseudogene	
4621120 -> 4621128	(-) AAGCGCCGC	Intergenic	-	-	Deletion	-	-	307	80.10%	Between the divergently encoded genes PP_RS21985 and <i>dsbD</i> *Note, this mutation is not present in strains made from this background. Likely unique to the isolate sequenced and not the background	
5202712	(1) 000	Interconic	-	-	Insertion	-	-	405 > 421	00.1% > 00.4%	Upstream of a DUF2867 domain-containing protein (PP_PS25515)	
5412855 -> 5412856	(+) ULL (G -> GCC	Intergenic	-	-	Insertion -> SNP (transversion)	-	-	405 -> 421	99.80% -> 99.60%	Between the convergently encoded genes PP RS25985 and PP RS25990	
5419519	(+) CGGG	Intergenic	-	-	Insertion	-	-	> 291	80,70% -> 89.7%	Upstream of a hemolysin III family protein (PP RS26015)	
5757466	T-> C	Intergenic	-	-	SNP (transition)	-	-	256 99.20% PP R		Between the convergently encoded genes PP_RS27440 and PP_RS27445	

Supplementary Table 5. Mutations in AJB137 Background vs. the RH300 Background.

	CDS Nucleotide							
Change	Position	Protein Effect	Genes Effected	Polymorphism Type	Amino Acid Change	Codon Change	Coverage	Variant Frequency
Delation	acdH > acoT	PP_RS00815 (gcdH)-PP_RS00820	PP_RS00815 (gcdH) and PP_RS00820					
Deletion	gcun ₁ -> gcon ₁₁₃₅	(gcoT) Deletion	(gcoT)	-	-	-	-	-
SNP (transition)	-	-	Reversion of the Intergenic mutation at position 178396 in RH300	G -> A (Transition)	-	-	8	100%
SNP (transition)	328 bp upstream PP_RS10035	-	Intergenic mutation upstream of PP_RS10035	C ->T (Transition)	-	-	65	100%
Deletion	csiD ₃₀ -> csiD ₉₇₈	PP_RS15090 (csiD) Deletion	PP_RS15090 (csiD)	-	-	-	-	-
SNP (transition)	PP_RS18045 ₆₁₀	A -> T Substitution	PP_RS18045	G -> A (Transition)	A -> T	GCT -> ACT	62	100%
SNP (transversion)	PP_RS21755389	Substitution	Reversion of the mutation at position 4549137 in RH300	T -> A (Transversion)	Q -> L	CAG -> CTG	50	100%
SNP (transition)	39 bp upstream PP_RS28365	-	Intergenic mutation upstream of PP_RS28365	G -> A (Transition)	-	-	41	95%

Supplementary Table 6. Percent Bio-oil Input Analysis.

Distillation_1						
fraction	weight (g)	weight_percent				
Initial	1684.04	1.000				
1	86.72	0.051				
2	15.89	0.009				
3	103.93	0.062				
4	247.76	0.147				
5	98.81	0.059				
Boiler Final	1077.25	0.640				
Losses	53.68	0.032				
Distillation_2						
fraction	weight (g)	weight_percent				
Initial	86.97	1.000				
1	9.45	0.109				
2	9.9	0.114				
3	36.88	0.424				
4	14.47	0.166				
Boiler Final	13.04	0.150				
Losses	3.23	0.037				
Distillation_3						
fraction	weight (g)	weight_percent				
Initial	35.65	1.000				
1	3.93	0.110				
2	3.48	0.098				
3	6.79	0.190				
4	8.14	0.228				
5	7.61	0.213				
Boiler Final	4.58	0.128				
Losses	1.12	0.031				