Electronic Supplementary Information

Visible-light-mediated β-acylative divergent alkene difunctionalization with Katritzky salt/CO₂

Shantanu Nandi,^{*a,b*} Pritha Das,^{*a,b*} Subhodeep Das,^{*a*} Shuvam Mondal,^{*a*} and Ranjan Jana^{**a*}

*^a*Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India

^bauthors contributed equally

*Email: rjana@iicb.res.in

Electronic Supplementary Information

Table of contents

1.	General information	S 3
2.	Preparation of starting materials	S 3
3.	Optimization details	S 4
4.	General experimental procedures	S 9
5.	Crystal data	S11
6.	Spectral data	S14
7.	Product derivatization	S42
8.	Control experiments	S42
9.	References	S47
10.	Copies of ¹ H, ¹³ C NMR spectra	S47

1. General information

Melting points were determined in open end-capillary tubes and are uncorrected. TLC was performed on silica gel plates (Merck silica gel 60, f254), and the spots were visualized with UV light (254 and 365 nm) and KMnO₄ stain. X-ray of crystals was recorded in Bruker D8 Venture with a Photon-III detector instrument. ¹H NMR was recorded at 400 MHz (JEOL-JNM-ECZ400S/L1) frequency and 600 MHz (Bruker-Avance) frequency; ¹³C NMR spectra were recorded at 100 MHz (JEOL-JNM-ECZ400S/L1) frequency and 150 MHz (Bruker-Avance) frequency in CDCl₃, DMSO-D₆ and (DMSO-D₆ + 1 drop CDCl₃) solvent using TMS as the internal standard. Chemical shifts were measured in parts per million (ppm) referenced to 0.0 ppm for tetramethylsilane. The following abbreviations were used to explain multiplicities: s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet. Coupling constants, *J* were reported in Hertz unit (Hz). HRMS (m/z) were measured using ESI (Q-TOF, positive ion) technique. Unless otherwise stated, all commercial reagents were used without additional purification.

2. Preparation of starting materials

2.1. General procedure for preparation of substituted olefins (1)

Slightly modifying a literature protocol¹, these were prepared by Wittig reaction as follows.

An oven-dried round-bottom flask was charged with CH₃PPh₃Br (1.5 equiv.) and THF (carbonyl substrate concentration = 0.2 M). NaH (1.5 equiv.) was added in portion to the suspension at 0 °C. The resulting mixture was allowed to warm up to room temperature and stirred for 1 h. The yellow suspension was cooled to 0 °C again followed by addition of the carbonyl substrate (1 equiv.). Subsequently, the mixture was further stirred at room temperature for 1-12 hours. After the completion of the reaction, the solvent was removed by evaporation, the resulting reaction mixture was extracted with ethyl acetate (40 mL), water (20 mL × 2), washed with brine (20 mL), and the combined organic layer was dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude product was purified via column chromatography (eluting with petroleum ether/ethyl acetate) to afford the substituted olefin substrates **1**.

2.2. Synthesis of α-oxocarboxylic acid

The α -oxocarboxylic acids were prepared from oxidation of corresponding methyl ketones by SeO₂ according to the reported procedure.²

2.3. Synthesis of Katritzky salts

The α -oxocarboxylic acids were prepared from according to the reported procedure.³

3. Optimization details

3.1. Procedure for optimization of the carbobenzylation reaction

1-benzyl-2,4,6-triphenylpyridin-1-ium tetrafluoroborate **3a** (0.4 mmol, 2.0 equiv., 194 mg), 2-(4-methoxyphenyl)-2-oxoacetic acid **2a** (0.4 mmol, 2.0 equiv., 72 mg), photocatalyst and base were taken in a 7 mL screw-capped vial. Solvent was added to the mixture. The whole mixture was de-gassed and re-filled with inert gas by two consecutive freeze-pump-thaw cycles followed by the addition of 1,1-diphenylethylene **1a** (0.2 mmol, 1.0 equiv., 35 μ L). The reaction mixture was then stirred under 5W blue LED irradiation for 2 hours. After that, the solvent was evaporated under reduced pressure and the reaction mixture was extracted with ethyl acetate (30 mL), water (10 mL × 2), washed with brine (10 mL), dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (SiO₂, eluting with hexane/ethyl acetate) to afford the desired product.

Table S1. Screening of solvents for carbobenzylation

6	DMSO	23
7	PhCH ₃	9

^aAll solvents are anhydrous.

Table S2. Screening of photocatalysts for carbobenzylation

Entry	Photocatalyst	Yield of 4a (%)
1	Ru(bpy)3Cl2.6H2O	82
2	<i>fac</i> -Ir(ppy) ₃	12
5	Eosin Y	trace
6	Ir(ppy) ₂ (dtbpy)PF ₆	66
7	$Ir[dF(CF_3)(ppy)]_2(dtbpy)PF_6$	74
8	4-CzIPN	43
9	Ru(bpy) ₃ (PF ₆) ₂	76

Table S3. Screening of bases for carbobenzylation

Ph Ph + $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$				
Entry	Base	Yield of 4a (%)		
1	Cs2CO3	82		
2	CsF	71		
3	CsOAc	77		
4	NaOAC	41		

5	K_2CO_3	31
6	LiOH	18

Table S4. Control experiments for carbobenzylation

Entry	Variation from "Condition A"	Yield of 4a (%)
1	no variation	82
2	no PC	0
3	no light	0
4	Ir(ppy) ₂ (dtbpy)PF ₆ instead of Ru(bpy) ₃ Cl ₂ .6H ₂ O	66
5	4CzIPN instead of Ru(bpy) ₃ Cl ₂ . 6H ₂ O	43
6	$Ir(ppy)_3$ instead of $Ru(bpy)_3Cl_2$. 6H ₂ O	12
7	without Cs ₂ CO ₃	0
8	K ₂ CO ₃ instead of Cs ₂ CO ₃	31
9	CsF instead of Cs ₂ CO ₃	71
10	Addition of 20 mol % Cu(OTf) ₂	9
11	Addition of 10 mol % In(OTf) ₂	66

3.2. Procedure for optimization of the carbocarboxylation reaction

The oven-dried Schlenk tube (10 mL) containing a stirring bar was charged with **2a** (43.2 mg, 0.24 mmol, 1.2 equiv), photocatalyst and transferred to glovebox to add base. The tube was then evacuated and back-filled with CO₂ for 3 times. Therefore, under continuous CO₂ flow, solvent and **1a** (35 μ L, 1.0 equiv., 0.2 mmol) were added with syringe and subsequently

the tube was sealed. The reaction was stirred with irradiating with a 30 W blue LED lamp (3 cm away, with cooling fan to keep the reaction temperature at 25~30 °C) for 12 hours. After 12 hours, the light was switched off, the Schlenk tube was opened and to the mixture, methyl iodide (24.9 μ L, 0.4 mmol, 2.0 equiv.) was added. The mixture was stirred for additional 4 hours at room temperature. After that, the reaction mixture was extracted with ethyl acetate (30 mL), water (10 mL × 2), washed with brine (10 mL), dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (SiO₂, eluting with hexane/ethyl acetate 93:7) to afford the desired product **5a**.

^aAll solvents are anhydrous.

Table S6. Screening of photocatalysts for carbocarboxylation

	O COOH i) Photocatalyst (1.0 mol %)	
Ph +	+ CO ₂ DMSO (2 mL)	Ph
1a	OMe ii) Mel (2.0 equiv.) 2a	5a
Entry	Photocatalyst	Yield of 5a (%)
1	Ru(bpy) ₃ Cl ₂ .6H ₂ O	37
2	<i>fac</i> -Ir(ppy) ₃	43
3	<i>p</i> -terphenyl	ND
4	Xanthone	ND
5	Rose bengal	trace
6	Ir(ppy) ₂ (dtbpy)PF ₆	70
7	$Ir[dF(CF_3)(ppy)]_2(dtbpy)PF_6$	67
8	4-CzIPN	81
9	$Ru(bpy)_3(PF_6)_2$	32
10	4-DPAIPN	44

Table S7. Screening of bases for carbocarboxylation

Ph Ph + 1a	O COOH i) 4-CzIPN (1.0 mol %) Base (2 equiv.) Base (2 equiv.) + CO2 DMSO (2 mL) (1 atm) r.t., blue LED OMe ii) Mel (2.0 equiv.)	MeOOC Ph O Ph PMP 5a
Entry	Base	Yield of 5a (%)
1	Cs ₂ CO ₃	81
2	CsF	51
3	K ₂ CO ₃	67
4	KO'Bu	41

5	Na ₂ CO ₃	33
6	Li ₂ CO ₃	30
7	LiCl	74
8	Et ₃ N	trace
9	^{<i>i</i>} Pr ₂ NEt	trace
10	CsOAc	35
11 ^a	Cs ₂ CO ₃	78

^a3 equiv. of Cs₂CO₃.

Table S8. Control experiments for carbocarboxylation

Ph Ph + 1a	COOH + CO ₂ (1 atm) Condition B i) 4-CzIPN (1.0 mol %) Cs ₂ CO ₃ (2.0 equiv.) DMSO (2 mL) r.t., blue LED ii) Mel (2.0 equiv.)	NeOOC Ph O Ph PMP 5a
Entry	Variation from "Condition B"	Yield of 5a (%)
1	None	81
2	Without Cs ₂ CO ₃	trace
3	Without 4-CzIPN	nd
4	Without blue LEDs	nd
5	Without 4-CzIPN, without blue LEDs	nd
6	Ar instead of CO ₂	30
7	O ₂ instead of CO ₂	nd
8	Ar instead of CO_2 and 6 equiv. of $2a$	58
9	3 equiv. of 2a	75

4. General experimental procedures

4.1. General procedure for carbobenzylation (Table 2).

The Katritzky salt **3** (0.4 mmol, 2.0 equiv.), α -oxocarboxylic acid **2** (0.4 mmol, 2.0 equiv.), tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate (0.002 mmol, 1 mol %, 2.9 mg) and caesium carbonate (0.4 mmol, 2.0 equiv., 130 mg) were taken in a 7 mL screw-capped vial. 2 mL distilled acetonitrile solvent was added to the mixture. The whole mixture was de-gassed and re-filled with inert gas by two consecutive freeze-pump-thaw cycles followed by the addition of alkene **1** (0.2 mmol, 1.0 equiv.). The reaction mixture was then stirred under 5W blue LED irradiation for 2-6 hours. After completion, the solvent was evaporated under reduced pressure and the reaction mixture was extracted with ethyl acetate (30 mL), water (10 mL × 2), washed with brine (10 mL), dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (SiO₂, eluting with hexane/ethylacetate) to afford the desired product.

4.2. General procedure for carbocarboxylation under blue LED irradiation (Table 3).

The oven-dried Schlenk tube (10 mL) containing a stirring bar was charged with **1** (0.2 mmol, 1.0 equiv, if solid), 4-CzIPN (1.5 mg, 0.002 mmol, 1.0 mol %), **2** (0.24 mmol, 1.2 equiv) and transferred to glovebox to add Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv). The tube was then evacuated and back-filled with CO₂ for 3 times. Therefore, under continuous CO₂ flow, anhydrous DMSO (3.0 mL) and **1** (if liquid) were added with syringe and subsequently the tube was sealed. The reaction was stirred with irradiating with a 30 W blue LED lamp (3 cm away, with cooling fan to keep the reaction temperature at 25~30 °C) for 12 hours. After 12 hours, the light was switched off, the shlenk tube was opened and to the mixture, methyl iodide (24.9 μ L, 0.4 mmol, 2.0 equiv.) was added. The mixture was stirred for additional 4 hours at room temperature. After that, the reaction mixture was extracted with ethyl acetate (30 mL), water (10 mL × 2), washed with brine (10 mL), dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (SiO₂, eluting with hexane/ethylacetate) to afford the desired product.

4.3. General procedure for carbocarboxylation under sunlight irradiation (Table 3).

The oven-dried Schlenk tube (10 mL) containing a stirring bar was charged with **1** (0.2 mmol, 1.0 equiv, if solid), 4-CzIPN (1.5 mg, 0.002 mmol, 1.0 mol %), **2** (0.24 mmol, 1.2 equiv) and transferred to glovebox to add Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv). The tube was then evacuated and back-filled with CO₂ for 3 times. Therefore, under continuous CO₂ flow,

anhydrous DMSO (3.0 mL) and **1** (if liquid) were added with syringe and subsequently the tube was sealed. The reaction was stirred under direct sunlight (at Kolkata, 22.57⁰ N, 88.36⁰ E from 1100 hrs in December) for 5 hours. After 5 hours, the reaction was replaced from sunlight to indoor environment, the shlenk tube was opened and to the mixture, methyl iodide (24.9 μ L, 0.4 mmol, 2.0 equiv.) was added. The mixture was stirred for additional 4 hours at room temperature. After that, the reaction mixture was extracted with ethyl acetate (30 mL), water (10 mL × 2), washed with brine (10 mL), dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (SiO₂, eluting with hexane/ethylacetate) to afford the desired product.

4.4. General procedure for carbobenzylation scale-up reaction under sunlight (Scheme 2).

4,4'-(ethene-1,1-diyl)bis(methoxybenzene) (3.16 mmol, 1 equiv), 1-benzyl-2,4,6triphenylpyridin-1-ium tetrafluoroborate **2a** (6.32 mmol, 2.0 equiv., 3.06 g), 2-phenyl-2oxoacetic acid **3a** (6.32 mmol, 2.0 equiv., 948 mg), tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate (0.0316 mmol, 1 mol %, 23.6 mg) and cesium carbonate (6.32 mmol, 2.0 equiv., 2.05 g) were taken in a 50 mL round-bottomed flask connected to a nitrogen balloon *via* an adapter. 20 mL distilled acetonitrile solvent was added to the mixture. The whole mixture was de-gassed and re-filled with the inert gas by two consecutive freeze-pump-thaw cycles. Then the adapter was closed and balloon was removed. The reaction mixture was then stirred under direct sunlight for 2 hours. After that, the solvent was evaporated under reduced pressure and the reaction mixture was extracted with ethyl acetate (40 mL), water (15 mL × 2), washed with brine (15 mL), dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (SiO₂, eluting with hexane/ethylacetate) to afford the desired product.

5. Crystal data

5.1. Crystal data of 4d.

The crystal of compound **4d** were grown in acetone-hexane solvent system by slow evaporation procedure. The crystal data was collected in X-ray spectroscopy (Bruker D8 Venture with a Photon-III detector instrument), and the data was analyzed using OLEX2 software. The structure is given below. The corresponding cif file is uploaded separately as supporting information.

Thermal ellipsoid of **4d**. Ellipsoids are represented with 50% probability.

Table S9. Crystal data and structure refinement for 4d.

Identification code	4d
Empirical formula	$C_{30}H_{28}O_3$
Formula weight	436.52
Temperature/K	100.0
Crystal system	triclinic
Space group	P-1
a/Å	9.7371(9)
b/Å	10.1536(10)
c/Å	12.7652(12)
$\alpha/^{\circ}$	102.012(3)
β/°	94.177(2)
γ/°	110.290(2)
Volume/Å ³	1143.27(19)
Z	2
$\rho_{calc}g/cm^3$	1.268
μ/mm^{-1}	0.635
F(000)	464.0
Crystal size/mm ³	$0.45 \times 0.34 \times 0.15$

Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	7.17 to 129.932
Index ranges	$-11 \le h \le 11, -11 \le k \le 11, -14 \le l \le 14$
Reflections collected	28980
Independent reflections	3779 [R_{int} = 0.0657, R_{sigma} = 0.0442]
Data/restraints/parameters	3779/0/300
Goodness-of-fit on F ²	1.045
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0676$, $wR_2 = 0.1901$
Final R indexes [all data]	$R_1 = 0.0689, wR_2 = 0.1918$
Largest diff. peak/hole / e Å ⁻³	0.61/-0.29

5.2. Crystal data of 5b'.

The crystal of compound **5b'** were grown in chloroform-hexane solvent system by slow evaporation procedure. The crystal data was collected in X-ray spectroscopy (Bruker D8 Venture with a Photon-III detector instrument), and the data was analyzed using OLEX2 software. The structure is given below. The corresponding cif file is uploaded separately as supporting information.

Thermal ellipsoid of **5b**'. Ellipsoids are represented with 50% probability.

Table S10. Crystal data and structure refinement for 5b'.

Identification code	5b'
Empirical formula	$C_{44}H_{36}O_{6}$
Formula weight	660.73
Temperature/K	298.0
Crystal system	triclinic

Space group	P-1	
a/Å	8.9980(2)	
b/Å	11.5521(2)	
c/Å	18.5351(4)	
a/°	79.7640(10)	
β/°	84.2930(10)	
$\gamma/^{\circ}$	67.4670(10)	
Volume/Å ³	1750.20(6)	
Z	2	
$\rho_{calc}g/cm^3$	1.254	
μ/mm^{-1}	0.663	
F(000)	696.0	
Crystal size/mm ³	0.2 imes 0.2 imes 0.2	
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)	
20 range for data collection/° 4.848 to 136.656		
Index ranges	$-10 \le h \le 10, -13 \le k \le 13, -22 \le l \le 22$	
Reflections collected	59503	
Independent reflections	6396 [$R_{int} = 0.0782$, $R_{sigma} = 0.0395$]	
Data/restraints/parameters	6396/0/453	
Goodness-of-fit on F ²	1.098	
Final R indexes [I>= 2σ (I)]	$R_1=0.0684,wR_2=0.1755$	
Final R indexes [all data]	$R_1=0.0788,wR_2=0.1871$	
Largest diff. peak/hole / e Å ⁻³ 0.27/-0.38		

6. Spectral data

1-(4-methoxyphenyl)-3,3,4-triphenylbutan-1-one (4a)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (71.4 mg, 82%). ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, *J* = 9.2 Hz, 2H), 7.22-7.06 (m, 11H), 7.01 (t, *J* = 8.0 Hz, 2H), 6.80 (d, *J* = 8.8 Hz, 2H), 6.61-6.59 (m, 2H), 3.86 (s, 2H), 3.81 (s, 3H), 3.62 (s, 2H); δ ¹³C NMR (100 MHz, CDCl₃): δ 197.4, 163.2, 148.0, 138.1, 131.4, 130.9, 130.2, 128.2, 127.8, 127.5, 126.1, 126.0, 113.4, 55.5, 49.7, 43.8, 42; HRMS (ESI, m/z) calcd. For C₂₉H₂₆O₂Na [M+Na]⁺: 429.1830; found: 429.1830.

1-(4-methoxyphenyl)-3,4-diphenyl-3-(p-tolyl)butan-1-one (4b)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (48.7 mg, 58%). ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 8.8 Hz, 2H), 7.22-6.99 (m, 12H), 6.80 (d, *J* = 8.8 Hz, 2H), 6.60 (d, *J* = 7.2 Hz, 2H), 3.88-3.84 (m, 2H), 3.81 (s, 3H), 3.61 (s, 2H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.4, 163.1, 148.3, 145.1, 138.3, 135.3, 131.5, 130.9, 130.2, 128.6, 128.1, 128.0, 127.8, 127.5, 126.1, 125.9, 113.4, 55.5, 49.4, 43.8, 42.9, 21.0; HRMS (ESI, m/z) calcd. For C₃₀H₂₈O₂Na [M+Na]⁺: 443.1987; found: 443.2007.

3-(4-methoxyphenyl)-1,3,4-triphenylbutan-1-one (4c)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (58.4 mg, 72%). ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 7.6 Hz, 2H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.33 (t, *J* = 8.0 Hz, 2H), 7.23-7.07 (m, 8H), 7.03 (t, *J* = 7.6 Hz, 2H), 6.75 (d, *J* = 8.8Hz, 2H), 6.61 (d, *J* = 7.2 Hz, 2H), 3.83 (s, 2H), 3.76 (s, 3H), 3.64 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 199.1, 157.7, 148.1, 140.0, 138.5, 138.1, 132.6, 130.9, 129.2, 128.3, 128.1, 127.9, 127.8, 127.5, 126.1, 126.0, 113.2, 55.3, 49.1, 43.9, 43.6 HRMS (ESI, m/z) calcd. For C₂₉H₂₆O₂Na [M+Na]⁺: 429.1830; found: 429.1837.

3,3-bis(4-methoxyphenyl)-1,4-diphenylbutan-1-one (4d)

Column chromatography (SiO₂, eluting with 95:5 hexane/ethyl acetate) afforded the desired product as a white solid (61.0 mg, 70%). ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 7.2 Hz, 2H), 7.45 (t, *J* = 7.2 Hz, 1H), 7.33 (t, *J* = 9.2 Hz, 2H), 7.10-7.02 (m, 7H), 6.75 (d, *J* = 8.8 Hz, 4H), 6.63 (d, *J* = 7.2 Hz, 2H), 3.79 (s, 2H), 3.76 (s, 3H), 3.60 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 199.3, 157.6, 140.2, 138.5, 138.3, 132.6, 131.0, 129.1, 128.3, 127.8, 127.5, 126.1, 113.2, 55.2, 48.6, 44.1, 43.7 HRMS (ESI, m/z) calcd. For C₃₀H₂₈O₃Na [M+Na]⁺: 459.1936; found: 459.1952.

3-(4-(benzyloxy)phenyl)-1,3,4-triphenylbutan-1-one (4e)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (75.2 mg, 78%). ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, *J* = 8.4 Hz, 2H), 7.48-7.32 (m, 8H), 7.22-7.08 (m, 8H), 7.05-7.02 (m, 2H), 6.83 (d, *J* = 8.8 Hz, 2H), 6.62 (d, *J* = 7.2 Hz, 2H), 5.02 (s, 2H), 3.84 (s, 2H), 3.65 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 199.1, 157.0, 148.1, 140.3, 138.5, 138.1, 137.2, 132.6, 130.9, 129.2, 128.6, 128.4, 128.1, 128.0, 127.9, 127.8, 127.6, 127.5, 126.2, 126.1, 114.2, 70.1, 49.2, 43.9, 43.5.

1,3,4-triphenyl-3-(4-(prop-2-yn-1-yloxy)phenyl)butan-1-one (4f)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (56.7 mg, 66%). ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 8.8 Hz, 2H), 7.23-7.08 (m, 8H), 7.04-7.00 (m, 2H), 6.82 (dd, *J*₁ = 8.8 Hz, *J*₂ = 6 Hz, 4H), 6.62 (d, *J* =

7.2 Hz, 2H), 4.63 (d, J = 2.4 Hz, 2H), 3.82 (d, J = 1.6 Hz, 2H), 3.81 (s, 3H), 3.59 (s, 2H), 2.50 (t, J = 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 197.5, 163.2, 155.7, 148.1, 141.1, 138.2, 131.5, 131.0, 130.2, 129.2, 128.1, 127.8, 127.5, 126.1, 126.0, 114.2, 113.5, 78.8, 75.5, 55.9, 55.5, 49.3, 43.9, 42.9; HRMS (ESI, m/z) calcd. For C₃₂H₂₈O₃Na [M+Na]⁺: 483.1936; found: 483.1948.

3-([1,1'-biphenyl]-4-yl)-4-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-phenylbutan-1-one (4g)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (72.2 mg, 70%). ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 8.8 Hz, 2H), 7.77 (d, *J* = 8.4 Hz, 2H), 7.46-7.39 (m, 4H), 7.32 (t, *J* = 7.2 Hz, 2H), 7.26-7.15 (m, 7H), 7.00 (d, *J* = 8.8 Hz, 2H), 6.79 (d, *J* = 8.8 Hz, 2H), 6.59 (d, *J* = 8.8 Hz, 2H), 3.91-3.80 (m, 2H), 3.79 (s, 3H), 3.66-3.56 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 163.3, 147.5, 146.8, 140.7, 138.8, 136.6, 132.3, 132.1, 131.4, 130.2, 128.8, 128.6, 128.2, 128.0, 127.7, 127.3, 127.0, 126.6, 126.3, 113.5, 55.5, 49.7, 43.1, 42.7; HRMS (ESI, m/z) calcd. For C₃₅H₃₀O₂Cl [M+H]⁺: 517.1934; found: 517.1945.

methyl 4-(4-oxo-1,2,4-triphenylbutan-2-yl)benzoate (4h)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (31.2 mg, 36%). ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 8.8 Hz, 2H), 7.74 (d, *J* = 9.2 Hz, 2H), 7.26 (d, *J* = 8.8 Hz, 2H), 7.23-7.06 (m, 6H), 7.00 (t, *J* = 7.2 Hz, 2H), 6.81 (d, *J* = 9.2 Hz, 2H), 6.55 (d, *J* = 8.4 Hz, 2H), 3.91-3.86 (m, 5H), 3.81 (s, 3H), 3.65 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 196.8, 167.1, 163.3, 153.7, 147.3, 137.6, 131.2, 130.8,

130.1, 129.2, 128.2, 128.1, 128.0, 127.8, 127.6, 126.3, 126.3, 113.6, 55.5, 52.1, 49.9, 43.7, 42.8; HRMS (ESI, m/z) calcd. For C₃₁H₂₉O₄ [M+H]⁺: 465.2066; found: 465.2067.

3-(4-chlorophenyl)-1-(4-methoxyphenyl)-3,4-diphenylbutan-1-one (4i)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (54.5 mg, 62%). ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 9.2 Hz, 2H), 7.24-7.08 (m, 10H), 7.03 (t, *J* = 7.2 Hz, 2H), 6.82 (d, *J* = 9.2 Hz, 2H), 6.59 (d, *J* = 7.2 Hz, 2H), 3.88-3.78 (m, 5H), 3.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.0, 163.3, 147.5, 146.7, 137.7, 131.8, 131.3, 130.9, 130.2, 129.6, 128.1, 128.0, 127.6, 126.3, 113.6, 55.5, 49.4, 43.8, 42.8; HRMS (ESI, m/z) calcd. For C₂₉H₂₆O₂Cl [M+H]⁺: 441.1621; found: 441.1626.

tert-butyl (4-(4-(4-methoxyphenyl)-4-oxo-1,2-diphenylbutan-2-yl)phenyl)carbamate (4j)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (50.0 mg, 48%). ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 8.8 Hz, 2H), 7.21-6.99 (m, 3H), 6.80 (d, *J* = 9.2 Hz, 2H), 6.61 (d, *J* = 6.8 Hz, 2H), 6.47 (br. S, 1H), 3.83-3.81 (m, 5H), 3.58 (s, 2H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 197.4, 163.2, 152.8, 148.0, 142.7, 138.1, 136.3, 131.4, 131.0, 130.1, 128.7, 128.1, 127.8, 127.5, 126.1, 126.0, 117.9, 113.5, 55.4, 49.3, 43.8, 42.9, 29.7, 28.4; HRMS (ESI, m/z) calcd. For C₃₄H₃₅O₄NaN [M+Na]⁺: 544.2464; found: 544.2470.

4-(1-(4-(tert-butyl)phenyl)-4-oxo-2,4-diphenylbutan-2-yl)phenyl (1s,3s)-adamantane-1carboxylate (4k)

Column chromatography (SiO₂, eluting with 95:5 hexane/ethyl acetate) afforded the desired product as a white solid (81.7 mg, 67%). ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 7.2 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.21-7.16 (m, 7H), 7.05 (d, *J* = 8.4 Hz, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 6.52 (d, *J* = 8.4 Hz, 2H), 3.89-3.78 (m, 2H), 3.73-3.63 (m, 4H), 2.08-2.04 (m, 9H), 1.77 (s, 6H), 1.24 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 198.7, 176.2, 149.2, 148.9, 147.8, 145.3, 138.4, 134.6, 132.6, 130.5, 129.1, 128.4, 128.2, 127.9, 127.8, 126.1, 124.5, 120.8, 49.4, 43.7, 43.5, 41.1, 38.8, 36.6, 34.4, 31.4, 28.0.

4-(4-fluorophenyl)-1-(4-methoxyphenyl)-3-phenylbutan-1-one (4l)

Column chromatography (SiO₂, eluting with 95:5 hexane/ethyl acetate) afforded the desired product as a white solid (36.2 mg, 52%). ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 9.2 Hz, 2H), 7.24-7.21 (m, 2H), 7.16-7.12 (m, 3H), 6.98-6.95 (m, 2H), 6.89-6.83 (m, 4H), 3.84 (s, 3H), 3.64-3.56 (m, 1H), 3.31-3.19 (m, 2H), 3.03-2.97 (m, 1H), 2.89-2.84 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 197.4, 163.5, 161.4 (d, *J* = 241.8 Hz), 143.9, 135.6 (d, *J* = 3.3 Hz), 130.6 (d, *J* = 7.8 Hz), 130.3, 130.3, 128.4, 127.7, 126.5, 114.9 (d, *J* = 21.0 Hz), 113.7, 55.5, 43.9, 43.3, 42.1; HRMS (ESI, m/z) calcd. For C₂₃H₂₂O₂F [M+H]⁺: 349.1604; found: 349.1602.

3-(4-(tert-butyl)phenyl)-1-(4-methoxyphenyl)-4-phenylbutan-1-one (4m)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (44.0 mg, 57%). ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, *J* = 8.8 Hz,

2H), 7.26-7.08 (m, 9H), 6.86 (d, J = 9.2 Hz, 2H), 3.83 (s, 3H), 3.63-3.59 (m, 1H), 3.28-3.15 (s, 2H), 2.96 (d, J = 7.2 Hz, 2H), 1.27 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 197.7, 163.4, 149.1, 141.3, 140.2, 130.4, 130.3, 129.4, 128.2, 127.3, 126.1, 125.3, 113.7, 55.5, 43.8, 43.0, 42.6, 34.4, 31.5; HRMS (ESI, m/z) calcd. For C₂₇H₃₁O₂ [M+H]⁺: 387.2324; found: 387.2328.

1,3-bis(4-methoxyphenyl)-4-phenylbutan-1-one (4n)

Column chromatography (SiO₂, eluting with 95:5 hexane/ethyl acetate) afforded the desired product as a white solid (38.1 mg, 53%). ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, *J* = 9.2 Hz, 2H), 7.22-7.17 (m, 2H), 7.15-7.11 (m, 1H), 7.09-7.05 (m, 4H), 6.87 (d, *J* = 9.2 Hz, 2H), 6.76 (d, *J* = 8.8 Hz, 2H), 3.83 (s, 3H), 3.74 (s, 3H), 3.63-3.56 (s, 1H), 3.26-3.15 (m, 2H), 3.00-2.87 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 197.7, 163.4, 158.1, 140.1, 136.3, 130.4, 129.4, 128.6, 128.2, 126.1, 113.8, 113.7, 55.5, 55.2, 44.1, 43.2, 42.5; HRMS (ESI, m/z) calcd. For C₂₄H₂₅O₃ [M+H]⁺: 361.1804; found: 361.1818.

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (71.8 mg, 73%). ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, *J* = 8.0 Hz, 2H), 7.11-7.02 (m, 9H), 6.75 (d, *J* = 8.8 Hz, 4H), 6.65 (d, *J* = 6.8 Hz, 2H), 3.80 (s, 2H), 3.76 (s, 6H), 3.59 (s, 2H), 2.48 (d, *J* = 7.2 Hz, 2H), 1.86 (m, 1H), 0.89 (s, 3H), 0.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 198.9, 157.6, 146.9, 140.3, 138.3, 136.3, 131.1, 129.1, 129.0, 127.9, 127.5, 126.1, 113.1, 55.2, 48.6, 45.4, 44.1, 43.5, 30.2, 22.4; HRMS (ESI, m/z) calcd. For C₃₄H₃₆O₃Na [M+Na]⁺: 515.2562; found: 515.2566

1-([1,1'-biphenyl]-4-yl)-3-(4-methoxyphenyl)-3,4-diphenylbutan-1-one (4p)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (65.5 mg, 68%). ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, *J* = 8.4 Hz, 2H), 7.60-7.56 (m, 4H), 7.47-7.44 (m, 2H), 7.39 (t, *J* = 7.2 Hz, 1H), 7.26-7.11 (s, 3H), 7.06 (d, *J* = 8.0 Hz, 2H), 6.77 (d, *J* = 8.8 Hz, 2H), 6.66 (d, *J* = 7.2Hz, 2H), 3.91-3.83 (m, 2H), 3.76 (s, 3H), 3.69 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 198.7, 157.7, 148.2, 145.3, 140.1, 140.0, 138.2, 137.1, 131.0, 129.2, 129.0, 128.5, 128.3, 128.2, 127.9, 127.6, 127.3, 127.0, 126.2, 126.1, 113.3, 55.3, 49.2, 44.0, 43.6; HRMS (ESI, m/z) calcd. For C₃₅H₃₀O₂Na [M+Na]⁺: 505.2143; found: 505.2153

1-(4-chlorophenyl)-3,3-bis(4-methoxyphenyl)-4-phenylbutan-1-one (4q)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (58.3 mg, 62%). ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, *J* = 8.8 Hz, 2H), 7.28 (d, *J* = 8.8 Hz, 2H), 7.11-7.02 (m, 7H), 6.73 (d, *J* = 8.8 Hz, 4H), 6.62 (d, *J* = 6.8 Hz, 2H), 3.74-3.74 (m, 8H), 3.53 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 198.3, 157.7, 139.9, 138.9, 138.1, 136.8, 131.0, 129.3, 129.1, 128.6, 127.5, 126.2, 113.2, 55.3, 48.8, 44.0, 43.7; HRMS (ESI, m/z) calcd. For C₃₀H₂₇O₃NaCl [M+Na]⁺: 493.1546; found: 493.1543.

1-(4-bromophenyl)-3,3-bis(4-methoxyphenyl)-4-phenylbutan-1-one (4r)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (47.3 mg, 46%). ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 8.8 Hz, 2H), 7.09 (t, *J* = 7.2 Hz, 1H), 7.05-7.02 (m, 6H), 6.73 (d, *J* = 8.8 Hz, 4H), 6.62-6.61 (m, 2H), 3.75 (s, 6H), 3.74 (s, 2H), 3.52 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 198.5, 157.7, 139.9, 138.1, 137.2, 131.5, 131.0, 129.4, 129.1, 127.6, 127.5, 126.2, 113.2, 55.3, 48.7, 43.9, 43.7.

1-(4-fluorophenyl)-3-(4-methoxyphenyl)-3,4-diphenylbutan-1-one (4s)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (56.8 mg, 67%). ¹H NMR (400 MHz, CDCl₃): δ 7.77-7.74 (m, 2H), 7.23-6.96 (m, 12H), 6.75 (d, *J* = 9.2 Hz, 2H), 6.63 (d, *J* = 7.2 Hz, 2H), 3.81 (s, 2H), 3.76 (s, 3H), 3.59 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 197.7, 165.4 (d, *J* = 252.9 Hz), 157.8, 147.9, 139.8, 138.0, 134.8 (d, *J* = 2.7 Hz), 131.0, 130.5 (d, *J* = 9.0 Hz), 129.2, 128.1, 127.9, 127.5, 126.2, 126.1, 115.3 (d, *J* = 21.5 Hz), 113.2, 55.3, 49.3, 43.9, 43.4; HRMS (ESI, m/z) calcd. For C₂₉H₂₅O₂NaF [M+Na]⁺: 447.1736; found: 447.1732.

1,3,3-tris(4-methoxyphenyl)-4-phenylbutan-1-one (4t)

Column chromatography (SiO₂, eluting with 95:5 hexane/ethyl acetate) afforded the desired product as a white solid (69.9 mg, 75%). ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 8.8 Hz, 2H), 7.10-7.00 (m, 7H), 6.79 (d, *J* = 8.8 Hz, 2H), 6.73 (d, *J* = 8.8 Hz, 2H), 6.62 (d, *J* = 8.0 Hz, 2H), 3.81 (s, 3H), 3.78 (s, 2H), 3.75 (s, 6H), 3.53 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 163.1, 157.6, 140.4, 138.4, 131.5, 131.0, 130.2, 129.1, 127.5, 126.0, 113.4, 113.1, 55.5, 55.3, 48.6, 44.1, 43.1; HRMS (ESI, m/z) calcd. For C₃₁H₃₀O₄Na [M+Na]⁺: 489.2042; found: 489.2040.

1-(2,4-dimethylphenyl)-3,3-bis(4-methoxyphenyl)-4-phenylbutan-1-one (4u)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (64.9 mg, 70%). ¹H NMR (400 MHz, CDCl₃): δ 7.20 (d, *J* = 8.4 Hz, 2H), 7.13-7.03 (m, 8H), 6.93-6.91 (m, 2H), 6.75 (d, *J* = 9.2 Hz, 2H), 6.68 (d, *J* = 6.8 Hz, 2H), 3.83 (s, 2H), 3.77 (s, 6H), 3.50 (s, 2H), 2.28 (s, 3H), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 203.7, 157.7, 140.8, 140.3, 138.4, 137.8, 137.2, 132.3, 131.1, 129.1, 127.5, 126.1, 125.9,

113.2, 55.3, 48.8, 46.7, 44.1, 21.3, 20.6; HRMS (ESI, m/z) calcd. For C₃₂H₃₂O₃Na [M+Na]⁺: 487.2249; found: 487.2251.

1-(2-chlorophenyl)-3,3-bis(4-methoxyphenyl)-4-phenylbutan-1-one (4v)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (62.0 mg, 66%). ¹H NMR (400 MHz, CDCl₃): δ 7.48 (dd, J_1 = 4.8 Hz, J_2 = 1.2 Hz, 1H), 7.42 (dd, J_1 = 4.0 Hz, J_2 = 1.2 Hz, 1H), 7.10-6.94 (m, 8H), 6.95 (dd, J_1 = 4.8 Hz, J_2 = 3.6 Hz, 1H), 6.74 (d, J = 8.8 Hz, 4H), 6.70 (d, J = 8.0 Hz, 2H), 3.76-3.75 (m, 8H), 3.49 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 203.3, 157.8, 141.4, 139.8, 138.0, 131.2, 130.9, 129.9, 129.9, 129.1, 128.2, 127.5, 126.6, 126.2, 113.2, 55.3, 49.3, 48.6, 43.9; HRMS (ESI, m/z) calcd. For C₃₀H₂₇O₃NaCl [M+Na]⁺: 493.1546; found: 493.1548.

3,3-bis(4-methoxyphenyl)-1-(naphthalen-2-yl)-4-phenylbutan-1-one (4w)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (65.1 mg, 67%). ¹H NMR (400 MHz, CDCl₃): δ 8.21 (s, 1H), 7.87-7.76 (m, 4H), 7.57-7.48 (m, 2H), 7.13-7.03 (m, 7H), 6.75 (d, *J* = 8.8 Hz, 4H), 6.69 (d, *J* = 7.2 Hz, 2H), 3.84 (s, 2H), 3.74 (s, 2H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.3, 157.7, 140.2, 138.3, 135.8, 135.3, 132.4, 131.1, 129.6, 129.4, 129.2, 128.3, 128.1, 127.7, 127.5, 126.7, 126.1, 123.8, 113.2, 55.2, 48.8, 44.1, 43.8; HRMS (ESI, m/z) calcd. For C₃₄H₃₀O₃Na [M+Na]⁺: 509.2093; found: 509.2111.

3,3-bis(4-methoxyphenyl)-4-phenyl-1-(thiophen-2-yl)butan-1-one (4x)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (57.4 mg, 65%). ¹H NMR (400 MHz, CDCl₃): δ 7.27-7.19 (m, 1H), 7.15-7.04 (m, 4H), 7.00 (d, *J* = 8.8 Hz, 4H), 6.73-6.68 (m, 7H), 3.76 (s, 6H), 3.74 (s, 2H), 3.58

(s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 192.2, 157.7, 145.8, 139.8, 138.1, 133.4, 131.8, 131.2, 129.2, 127.8, 127.5, 126.1, 113.2, 55.3, 49.1, 44.7, 44.1; HRMS (ESI, m/z) calcd. For C₂₈H₂₆O₃NaS [M+Na]⁺: 465.1500; found: 465.1510.

3,3-bis(4-methoxyphenyl)-N-methyl-N,4-diphenylbutanamide (4y)

Column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a white solid (55.8 mg, 60%). ¹H NMR (400 MHz, CDCl₃): δ 7.30 (t, *J* = 5.2 Hz, 2H), 7.25 (t, *J* = 4.8 Hz, 1H), 7.13-7.07 (m, 3H), 6.85-6.81 (m, 6H), 6.76-6.73 (m, 6H), 3.82-3.80 (m, 8H), 3.06 (s, 3H), 2.72 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 157.0, 143.5, 139.7, 138.0, 130.8, 128.9, 128.7, 127.0, 126.9, 126.8, 125.3, 112.4, 54.7, 48.7, 43.5, 38.5, 36.7; HRMS (ESI, m/z) calcd. For C₃₁H₃₂O₃N [M+H]⁺: 466.2382; found: 466.2384.

4,4-bis(4-methoxyphenyl)-5-phenylpentan-2-one (4z)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (41.8 mg, 56%). ¹H NMR (400 MHz, CDCl₃): δ 7.11-7.02 (m, 3H), 6.99 (d, *J* = 8.8 Hz, 4H), 6.77 (d, *J* = 8.8 Hz, 4H), 6.66 (dd, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 2H), 3.78 (s, 6H), 3.58 (s, 2H), 2.99 (s, 2H), 1.7 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 208.8, 157.8, 139.8, 138.0, 131.2, 129.1, 127.4, 126.0, 113.2, 55.3, 48.9, 48.7, 43.5, 32.8.

1-(4-methoxyphenyl)-3,3-diphenyl-4-(p-tolyl)butan-1-one (4aa)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (52.1 mg, 62%). ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 9.2 Hz, 2H), 7.23-7.06 (m, 10H), 6.84-6.79 (m, 4H), 6.48 (d, *J* = 9.2 Hz, 2H), 3.83-3.81 (m, 5H), 3.63

(s, 2H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.3, 163.1, 148.2, 135.5, 134.9, 131.5, 130.8, 130.2, 128.2, 128.2, 127.8, 125.9, 113.5, 55.5, 49.7, 43.4, 42.9, 21.1.

4-(4-(tert-butyl)phenyl)-1,3-bis(4-methoxyphenyl)-3-phenylbutan-1-one (4ab)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (52 mg, 53%). ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, *J* = 8.8 Hz, 2H), 7.23-7.13 (m, 5H), 7.09 (d, *J* = 9.2 Hz, 2H), 7.03 (d, *J* = 8.4 Hz, 2H), 6.80 (d, *J* = 8.8 Hz, 2H), 6.75 (d, *J* = 9.2 Hz, 2H), 6.53 (d, *J* = 8.4 Hz, 2H), 3.81-3.79 (m, 5H), 3.76 (s, 3H), 3.60 (s, 2H), 1.23 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 197.5, 163.1, 157.6, 148.8, 148.4, 140.4, 135.0, 131.6, 130.6, 130.2, 129.2, 128.2, 127.8, 125.9, 124.4, 113.4, 113.1, 55.4, 55.2, 49.1, 43.5, 43.1, 34.3, 31.4; HRMS (ESI, m/z) calcd. For C₃₄H₃₆O₃Na [M+Na]⁺: 515.2562; found: 515.2561.

3,4-bis(4-methoxyphenyl)-1-phenylbutan-1-one (4ac)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (41.0 mg, 57%). ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, *J* = 7.2 Hz, 2H), 7.50 (t, *J* = 7.2 Hz, 1H), 7.40 (d, *J* = 7.2 Hz, 2H), 7.06 (d, *J* = 8.4 Hz, 2H), 6.95 (d, *J* = 8.8 Hz, 2H), 6.77-6.72 (m, 4H), 3.74 (s, 6H), 3.59-3.52 (m, 1H), 3.29-3.18 (m, 2H), 2.92-2.82 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 199.2, 158.1, 157.9, 137.3, 136.3, 132.9, 132.1, 130.3, 128.6, 128.5, 128.1, 113.8, 55.3, 44.4, 42.5, 42.3.

4-(4-chlorophenyl)-3,3-bis(4-methoxyphenyl)-1-phenylbutan-1-one (4ad)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (52.6 mg, 56%). ¹H NMR (400 MHz, CDCl₃): δ 7.71 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.2 Hz, 2H), 7.44 (t, *J* = 7.2 Hz, 1H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.04 (d, *J* = 8.8 Hz, 2H), 7.00 (d, *J* = 8.4 Hz, 2H), 6.73 (t, *J* = 8.8 Hz, 4H), 6.55 (d, *J* = 8.4 Hz, 2H), 3.75 (s, 8H), 3.54 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 199.4, 157.7, 139.8, 138.3, 136.7, 132.7, 132.3, 132.0, 129.1, 128.4, 127.8, 127.6, 113.2, 55.3, 48.6, 43.4, 43.3.

4-(4-fluorophenyl)-1,3,3-tris(4-methoxyphenyl)butan-1-one (4ae)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (77.4 mg, 80%). ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 9.2 Hz, 2H), 7.04 (d, *J* = 9.2 Hz, 4H), 6.79 (d, *J* = 8.8 Hz, 2H), 6.74-6.69 (m, 6H), 6.61-6.57 (m, 2H), 3.80 (s, 3H), 3.75 (s, 8H), 3.49 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 197.8, 163.2, 161.6 (d, *J* = 242.5 Hz), 157.7, 140.1, 133.9 (d, *J* = 2.8 Hz), 132.3 (d, *J* = 7.6 Hz), 131.5, 130.2, 129.1, 114.2 (d, *J* = 20.6 Hz), 113.4, 113.2, 55.5, 55.2, 48.7, 43.2, 42.9; HRMS (ESI, m/z) calcd. For C₃₁H₂₉O₄NaF [M+Na]⁺: 507.1948; found: 507.1953.

4-(3-chlorophenyl)-1,3-bis(4-methoxyphenyl)-3-phenylbutan-1-one (4af)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (45.1 mg, 48%). ¹H NMR (400 MHz, CDCl₃): δ 7.69 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.2$ Hz, 2H), 7.43 (td, $J_1 = 7.2$ Hz, $J_2 = 1.2$ Hz, 1H), 7.31 (t, J = 8.0 Hz, 2H), 7.08-7.03 (m, 5H), 6.96 (t, J = 7.8 Hz, 1H), 6.74 (d, J = 8.8 Hz, 2H), 6.57-6.53 (m, 2H), 3.75 (s, 6H), 3.73 (s, 2H), 3.54 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 199.6, 157.8, 140.4, 139.6, 138.5, 133.2, 132.6, 131.0, 129.1, 129.0, 128.6, 128.3, 127.8, 126.3, 113.3, 55.3, 48.7, 43.7, 43.4.

1,3-bis(4-methoxyphenyl)-3-phenyl-4-(2-(trifluoromethoxy)phenyl)butan-1-one (4ag)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (42.6 mg, 41%). ¹H NMR (400 MHz, CDCl₃): δ 7.79 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 2H), 7.46 (td, $J_1 = 7.2$ Hz, $J_2 = 1.2$ Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.14-7.01 (m, 6H), 6.93-6.88 (m, 1H), 6.73 (d, J = 9.2 Hz, 2H), 6.54 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 3.84 (s, 2H), 3.75 (s, 6H), 3.67 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 157.7, 148.6, 139.7, 138.2, 133.5, 132.5, 130.6, 129.1, 128.3, 127.8, 127.6, 125.6, 121.6, 120.3 (q, J = 256.0 Hz), 119.6, 119.0, 113.1, 55.2, 48.4, 44.1, 38.4; HRMS (ESI, m/z) calcd. For C₃₁H₂₇O₄NaF₃ [M+Na]⁺: 543.1759; found: 543.1761.

1-(4-methoxyphenyl)-3,3-diphenyl-4-(pyridin-4-yl)butan-1-one (4ah)

Column chromatography (SiO₂, eluting with 80:20 hexane/ethyl acetate) afforded the desired product as a white solid (25.2 mg, 31%). ¹H NMR (400 MHz, CDCl₃): δ 8.26 (d, *J* = 3.2 Hz, 2H), 7.68 (d, *J* = 8.8 Hz, 2H), 7.23-7.18 (m, 4H), 7.16-7.11 (m, 6H), 6.77 (d, *J* = 8.8 Hz, 2H), 6.65 (d, *J* = 6.0 Hz, 2H), 3.87 (s, 2H), 3.80 (s, 3H), 3.51 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 163.4, 148.2, 146.9, 131.1, 130.3, 128.2, 127.9, 126.9, 126.6, 113.5, 55.5, 49.8, 43.2, 42.5; HRMS (ESI, m/z) calcd. For C₂₈H₂₆O₂N [M+H]⁺: 408.1964; found: 408.1965.

1-(4-methoxyphenyl)-3,3-diphenylhex-5-en-1-one (4ai)

Column chromatography (SiO₂, eluting with 96:4 hexane/ethyl acetate) afforded the desired product as a white solid (28.3 mg, 34%). ¹H NMR (600 MHz, CDCl₃): δ 7.73 (d, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 9.0Hz, 4H), 6.80 (d, *J* = 9.0 Hz, 2H), 6.77 (d, *J* = 9.0 Hz, 4H), 5.47-5.41 (m, 1H), 5.07-5.04 (m, 1H), 4.98 (dd, *J*₁ = 10.2 Hz, *J*₂ = 1.8 Hz, 1H), 3.82 (s, 3H), 3.76 (s, 6H), 3.69 (s, 2H), 3.20 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 196.7, 162.4, 157.0,

139.5, 134.5, 130.9, 129.6, 128.2, 117.9, 112.8, 112.6, 54.9, 54.7, 47.1, 43.8, 42.4; HRMS (ESI, m/z) calcd. For C₂₇H₂₈O₄Na [M+Na]⁺: 439.1885; found: 439.1888.

2,4,6-triphenylpyridine (byproduct formed from carbobenzylation reaction)

This was recovered in quantitative amount from each of the carbobenzylation reaction and purified in column chromatography (SiO₂, eluting with hexane) affording as white solid (61.5 mg, quant.). ¹H NMR (400 MHz, CDCl₃): δ 8.23-8.20 (m, 4H), 7.90 (s, 2H), 7.77-7.74 (m, 2H), 7.56-7.43 (m, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 195.02, 173.90, 163.66, 143.36, 130.37, 130.00, 128.81, 128.00, 126.87, 113.80, 57.14, 55.58, 52.51, 48.04; HRMS (ESI, m/z) calcd. For C₂₃H₁₇N [M]⁺: 307.1361; found: 307.1359.

4-(4-methoxyphenyl)-4-oxo-2,2-diphenylbutanoic acid (5a)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as white solid (61.3 mg, 82%). ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, *J* = 7 Hz, 2H), 7.32-7.19 (m, 10H), 6.89 (d, *J* = 8.8 Hz, 2H), 4.15 (s, 2H), 3.84 (s, 3H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 195.02, 173.90, 163.66, 143.36, 130.37, 130.00, 128.81, 128.00, 126.87, 113.80, 57.14, 55.58, 52.51, 48.04; HRMS (ESI, m/z) calcd. For C₂₄H₂₂O₄ [M]⁺: 374.1518; found: 374.1515.

methyl 4-oxo-2,2,4-triphenylbutanoate (5b)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as white solid (51.6 mg, 72%). ¹H NMR (400 MHz, CDCl₃): δ 7.95-7.92 (m, 2H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.43 (t, *J* = 8 Hz, 2H),

7.32-7.29 (m, 4H), 7.27-7.18 (m, 6H), 4.20 (s, 2H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.5, 173.7, 143.2, 136.9, 133.3, 128.8, 128.6, 128.0, 128.0, 126.9, 51.1, 52.5, 48.3; HRMS (ESI, m/z) calcd. For C₂₃H₂₁O₃ [M+H]⁺: 345.1491; found: 345.1494.

methyl 4-(4-isobutylphenyl)-4-oxo-2,2-diphenylbutanoate (5c)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as yellowish white solid (64.0 mg, 80%). ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 8 Hz, 2H), 7.32-7.25 (m, 7H), 7.23-7.18 (m, 5H), 4.18 (s, 1H), 3.73 (s, 3H), 2.51 (d, *J* = 7.6 Hz, 2H), 1.87 (sept., *J* = 6.8 Hz, 1H), 0.90 (s, 3H), 0.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.14, 173.85, 147.85, 143.30, 134.68, 129.38, 128.81, 128.06, 128.00, 126.88, 57.07, 52.51, 48.30, 45.46, 30.20, 22.39; HRMS (ESI, m/z) calcd. For C₂₇H₂₉O₄ [M+H]⁺: 401.2117; found: 401.2112.

methyl 4-oxo-2,2-diphenyl-4-(p-tolyl)butanoate (5d)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as white solid (55.8 mg, 78%). ¹H NMR (400 MHz, CDCl₃): δ ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8 Hz, 2H), 7.31 – 7.25 (m, 7H), 7.23 – 7.17 (m, 5H), 4.17 (s, 2H), 3.74 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.10, 173.84, 144.13, 143.29, 134.45, 129.33, 128.80, 128.20, 128.00, 126.89, 57.11, 52.52, 48.26, 21.72; HRMS (ESI, m/z) calcd. For C₂₄H₂₃O₃ [M+H]⁺: 359.1647; found: 359.1648.

methyl 4-([1,1'-biphenyl]-4-yl)-4-oxo-2,2-diphenylbutanoate (5e)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as white solid (51.2 mg, 61%). ¹H NMR (400 MHz, CDCl₃): δ 8.02-8.00 (m, 2H), 7.66-7.64 (m, 2H), 7.61-7.59 (m, 2H), 7.48-7.44 (m, 2H), 7.41-7.39 (m, 1H), 7.34-7.26 (m, 8H), 7.23-7.19 (m, 2H), 4.23 (s, 2H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.08, 173.80, 146.02, 143.22, 139.90, 135.60, 129.05, 128.81, 128.68, 128.36, 128.04, 127.35, 127.32, 126.95, 57.16, 52.56, 48.39; HRMS (ESI, m/z) calcd. For C₂₉H₂₅O₃ [M+H]⁺: 421.1804; found: 421.1799.

methyl 4-(4-fluorophenyl)-4-oxo-2,2-diphenylbutanoate (5f)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as brown solid (49.2 mg, 68%). ¹H NMR (400 MHz, CDCl₃): δ ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97-7.93 (m, 2H), 7.30-7.25 (m, 7H), 7.24-7.18 (m, 3H), 7.09 (t, *J* = 8.4 Hz, 2H), 4.15 (s, 2H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 194.98, 173.70, 165.88 (d, *J* = 254 Hz), 143.07, 133.36 (d, *J* = 3 Hz), 130.72 (d, *J* = 9 Hz), 128.76, 128.05, 126.99, 115.76 (d, *J* = 22 Hz), 57.19, 52.58, 48.21; HRMS (ESI, m/z) calcd. For C₂₄H₂₃O₃ [M+H]⁺: 359.1647; found: 359.1647.

methyl 4-(4-bromophenyl)-4-oxo-2,2-diphenylbutanoate (5g)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as yellow solid (41.4 mg, 49%). ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, *J* = 4.8 Hz, 2H), 7.36-7.34 (m, 3H), 7.28-7.22 (m, 3H), 7.16-7.12 (m, 3H), 7.02 (s, 1H), 6.65 (d, *J* = 8 Hz, 2H), 3.70 (s, 2H), 3.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.72, 173.79, 154.19, 142.85, 142.44, 141.50, 139.17, 136.33, 131.05, 129.85, 129.25, 128.63, 128.49, 128.40, 128.07, 128.02, 127.85, 127.12, 124.28, 62.04, 52.39, 44.52; HRMS (ESI, m/z) calcd. For C₂₃H₂₀BrO₃ [M+H]⁺: 423.0596; found: 423.0602.

methyl 4-(2,4-dimethylphenyl)-4-oxo-2,2-diphenylbutanoate (5h)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as white solid (54.3 mg, 73%). ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, J = 8 Hz, 2H), 7.32-7.26 (m, 6H), 7.25-7.18 (m, 4H), 7.03-7.02 (m, 2H), 4.11 (s, 2H), 3.76 (s, 3H), 2.34 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.08, 173.88, 143.29, 141.99, 138.52, 135.22, 132.87, 128.81, 128.51, 128.01, 126.89, 126.30, 57.26, 52.48, 51.06, 21.43, 21.16; HRMS (ESI, m/z) calcd. For C₂₅H₂₅O₃ [M+H]⁺: 373.1804; found: 373.1800.

methyl 4-(naphthalen-2-yl)-4-oxo-2,2-diphenylbutanoate (5i)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as yellowish white solid (51.2 mg, 65%). ¹H NMR (400 MHz, CDCl₃): δ 8.46 (s, 1H), 7.99 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.6$ Hz, 1H), 7.94 (d, J = 7.2 Hz, 1H), 7.87-7.84 (m, 2H), 7.61-7.52 (m, 2H), 7.36-7.34 (m, 4H), 7.30-7.26 (m, 4H), 7.23-7.19 (m, 2H), 4.34 (s, 2H), 3.76 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.48, 173.83, 143.24, 135.70, 134.24, 132.52, 129.68, 129.63, 128.84, 128.63, 128.55, 128.06, 127.86, 126.96, 126.93, 123.86, 57.28, 52.59, 48.44; HRMS (ESI, m/z) calcd. For C₂₇H₂₃O₃ [M+H]⁺: 395.1647; found: 395.1645.

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as white solid (70.2 mg, 78%). ¹H NMR (400 MHz, CDCl₃): δ 7.95-7.93 (m, 2H), 7.55 (t, *J* = 8 Hz, 1H), 7.46-7.26 (m, 12H), 7.23-7.21 (m, 2H), 6.89-6.86 (m, 2H), 5.02 (s, 2H), 4.19 (s, 2H), 3.74 (s, 3H); ¹³C NMR (100

MHz, CDCl₃): δ 196.59, 174.00, 157.63, 143.49, 137.07, 136.97, 135.52, 133.29, 130.04, 128.67, 128.07, 127.61, 126.93, 114.22, 70.08, 56.49, 52.54, 48.50; HRMS (ESI, m/z) calcd. For C₃₀H₂₇O₄ [M+H]⁺: 451.1909; found: 451.1911.

methyl 4-oxo-2,4-diphenyl-2-(p-tolyl)butanoate (5k)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as white solid (58.0 mg, 81%). ¹H NMR (400 MHz, CDCl₃): δ 7.95-7.93 (m, 2H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.43 (m, 2H), 7.33-7.30 (m, 2H), 7.27-7.25 (m, 1H) , 7.24-7.17 (m, 4H), 4.19 (s, 2H), 3.73 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.55, 173.92, 143.36, 140.24, 136.97, 136.60, 133.25, 128.80, 128.76, 128.66, 128.60, 128.08, 127.98, 126.86, 56.78, 52.51, 48.41, 21.01; HRMS (ESI, m/z) calcd. For C₂₄H₂₃O₃ [M+H]⁺: 359.1647; found: 359.1634.

methyl 2-(4-methoxyphenyl)-4-oxo-2,4-diphenylbutanoate (51)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as yellow gel (57.6 mg, 77%). ¹H NMR (400 MHz, CDCl₃): δ 7.95-7.92 (m, 2H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.45-7.41 (m, 2H), 7.34-7.31 (m, 2H), 7.28-7.26 (m, 2H), 7.24-7.18 (m, 3H), 6.81-6.77 (m, 2H), 4.18 (s, 2H), 3.76 (s, 3H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.58, 174.01, 158.32, 143.51, 136.97, 135.23, 133.27, 129.99, 128.68, 128.07, 128.04, 126.90, 113.33, 56.46, 55.27, 52.51, 48.49; HRMS (ESI, m/z) calcd. For C₂₄H₂₃O₄ [M+H]⁺: 375.1596; found: 375.1588.

methyl 2-(4-chlorophenyl)-4-oxo-2,4-diphenylbutanoate (5m)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as white solid (55.2 mg, 73%). ¹H NMR (400 MHz, CDCl₃): δ 7.94-7.91 (m, 2H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.30-7.25 (m, 5H), 7.24-7.19 (m, 4H), 4.17 (AB_q, *J* = 49.6 Hz, 2H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.27, 173.45, 142.89, 141.61, 136.74, 133.45, 132.81, 130.62, 128.73, 128.38, 128.33, 128.07, 127.99, 127.28, 56.64, 52.66, 48.25; HRMS (ESI, m/z) calcd. For C₂₃H₂₀ClO₃ [M+H]⁺: 379.1101; found: 379.1094.

methyl 2,2-bis(4-methoxyphenyl)-4-oxo-4-phenylbutanoate (5n)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as white solid (50.1 mg, 62%). ¹H NMR (400 MHz, CDCl₃): δ 7.94-7.91 (m, 2H), 7.53 (t, *J* = 7.8 Hz, 1H), 7.44-7.40 (m, 2H), 7.25-7.22 (m, 4H), 6.80-6.76 (m, 4H), 4.14 (s, 2H), 3.76 (s, 6H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.62, 174.19, 158.29, 137.02, 135.51, 133.22, 129.86, 128.65, 128.06, 113.32, 55.78, 55.28, 52.47, 48.59; HRMS (ESI, m/z) calcd. For C₂₅H₂₅O₅ [M+H]⁺: 405.1624; found: 405.1623.

methyl 2,2,4-tris(4-methoxyphenyl)-4-oxobutanoate (50)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as white solid (65.1 mg, 75%). ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, *J* = 8.8 Hz, 2H), 7.22 (d, *J* = 8.8 Hz, 4H), 6.89 (d, *J* = 8.8 Hz, 2H), 6.78 (d, *J* = 8.8 Hz, 4H), 4.08 (s, 2H), 3.84 (s, 3H), 3.76 (s, 6H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 195.15, 174.32, 163.61, 158.23, 135.66, 130.34, 130.10, 129.87,

113.77, 113.29, 55.81, 55.57, 55.27, 52.44, 48.26; HRMS (ESI, m/z) calcd. For C₂₆H₂₇O₆ [M+H]⁺: 435.1808; found: 435.1820.

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as yellowish white solid (58.5 mg, 68%). ¹H NMR (400 MHz, CDCl₃): δ 7.93-7.90 (m, 2H), 7.53-7.49 (m, 1H), 7.42-7.38 (m, 4H), 7.29-7.26 (m, 2H), 7.24-7.20 (m, 2H), 6.42 (dd, J_1 = 8.8 Hz, J_2 = 2.4 Hz, 1H), 6.35 (d, J = 2.4 Hz, 1H), 5.85-5.75 (m, 1H), 5.28-5.17 (m, 2H), 4.38-4.31 (m, 4H), 3.74 (s, 3H), 3.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.28, 174.76, 159.79, 156.72, 140.26, 137.68, 132.97, 132.84, 132.00, 128.83, 128.48, 128.04, 127.81, 126.89, 124.00, 117.46, 103.80, 100.14, 69.29, 56.02, 55.31, 52.46, 42.90; HRMS (ESI, m/z) calcd. For C₂₆H₂₅O₄ [M+H]⁺: 401.1753; found: 401.1760.

methyl 2-(4-(benzyloxy)phenyl)-4-(4-methoxyphenyl)-4-oxo-2-phenylbutanoate (5q)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as yellow gum (82.6 mg, 86%). ¹H NMR (400 MHz, CDCl₃): δ 7.94-7.91 (m, 2H), 7.42-7.19 (m, 12H), 6.92-6.85 (m, 4H), 5.01 (s, 2H), 4.14-4.13 (m, 2H), 3.85 (s, 3H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 195.11, 174.12, 163.66, 157.59, 143.66, 137.10, 135.68, 130.38, 130.06, 130.05, 128.71, 128.67, 128.04, 127.61, 126.87, 114.18, 113.81, 70.07, 56.52, 55.59, 52.50, 48.17; HRMS (ESI, m/z) calcd. For C₃₁H₂₉O₅ [M+H]⁺: 481.2015; found: 481.2022.

methyl 4-oxo-2,2-diphenyl-4-(thiophen-2-yl)butanoate (5r)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as yellow solid (58.1 mg, 83%). ¹H NMR (400 MHz, CDCl₃): δ 7.68 (dd, J_1 = 3.6 Hz, J_2 = 1.2 Hz, 1H, 7.58 (dd, J_1 = 5.2 Hz, J_2 = 1.2 Hz, 1H), 7.33-7.26 (m, 7H), 7.25-7.19 (m, 3H), 7.08-7.06 (m, 1H), 4.13 (s, 2H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 189.46, 173.60, 144.08, 142.97, 133.72, 131.85, 128.80, 128.12, 128.06, 127.02, 57.26, 52.63, 48.63; HRMS (ESI, m/z) calcd. For C₂₁H₁₉O₃S [M+H]⁺: 351.1055; found: 351.1055.

methyl 2-(4-chlorophenyl)-4-oxo-2-phenyl-4-(p-tolyl)butanoate (5s)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as colourless gum (51.7 mg, 66%). ¹H NMR (400 MHz, CDCl₃): δ 7.86-7.83 (m, 2H), 7.53 (dd, $J_1 = 5.6$ Hz, $J_2 = 2.0$ Hz, 1H), 7.39-7.35 (m, 2H), 7.31-7.25 (m, 4H), 7.23-7.16 (m, 4H), 4.48 (AB_q, J = 18.8 Hz, 2H), 3.70 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.09, 173.67, 144.03, 139.70, 134.69, 133.85, 133.12, 130.91, 129.31, 128.82, 128.51, 128.18, 128.10, 127.28, 125.92, 58.33, 52.86, 43.16, 21.70; HRMS (ESI, m/z) calcd. For C₂₄H₂₁ClO₃ [M+H]⁺: 393.1257; found: 393.1249.

methyl 4-(1-methoxy-1,4-dioxo-2-phenyl-4-(thiophen-2-yl)butan-2-yl)benzoate (5t)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as white solid (58.8 mg, 72%). ¹H NMR (400 MHz, CDCl₃): δ 7.57 (dd, $J_1 = 4$ Hz, $J_2 = 1.2$ Hz, 1H, 7.52 (dd, $J_1 = 5.2$ Hz, $J_2 = 1.2$ Hz, 1H), 7.39 (dd, $J_1 = 4.8$ Hz, $J_2 = 0.8$ Hz, 1H), 7.33-7.31 (m, 3H), 7.11 (dd, $J_1 = 4$ Hz, $J_2 = 1.2$ Hz, 1H), 7.01 (dd, $J_1 = 5.2$ Hz, $J_2 = 4$ Hz, 1H), 6.83-6.80 (m, 4H), 4.14 (s, 2H), 3.76

(s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 192.71, 189.65, 158.60, 144.88, 143.24, 133.61, 133.48, 132.56, 131.68, 130.83, 129.87, 127.99, 127.32, 113.61, 61.95, 55.28, 50.25; HRMS (ESI, m/z) calcd. For C₂₃H₂₁O₅S [M+H]⁺: 411.1266; found: 411.1269.

methyl 4-(4-methoxyphenyl)-4-oxo-2-phenyl-2-(4-(prop-2-yn-1-yloxy)phenyl)butanoate (5u)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as colourless gum (58.3 mg, 68%). ¹H NMR (400 MHz, CDCl₃): δ 7.92-7.90 (m, 2H), 7.31-7.27 (m, 3H), 7.24-7.19 (m, 4H), 6.91-6.83 (m, 4H), 4.62 (d, *J* = 7.2 Hz, 2H), 4.11 (s, 2H), 3.85 (s, 3H), 3.73 (s, 3H), 2.49 (t, *J* = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 195.03, 174.02, 163.65, 156.33, 143.54, 136.29, 130.35, 130.09, 130.01, 128.63, 128.04, 126.89, 114.16, 113.79, 78.67, 75.57, 56.51, 55.86, 55.57, 52.50, 48.13; HRMS (ESI, m/z) calcd. For C₂₇H₂₅O₅ [M+H]⁺: 429.1702; found: 429.1689.

methyl 4-oxo-2,4-diphenylbutanoate (5v)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as brown solid (44.7 mg, 75%). ¹H NMR (400 MHz, CDCl₃): δ 7.96-7.92 (m, 2H), 7.34-7.26 (m, 5H), 6.92-6.89 (m, 2H), 4.27 (dd, $J_I = 10.4$ Hz, $J_2 = 4$ Hz, 1H), 3.95-3.88 (m, 1H), 3.85 (s, 3H), 3.21 (dd, $J_I = 17.6$ Hz, $J_2 = 4$ Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 196.19, 174.05, 163.73, 138.59, 132.75, 130.45, 129.61, 128.98, 127.92, 127.59, 113.82, 55.56, 52.39, 46.51, 42.56; HRMS (ESI, m/z) calcd. For C₁₈H₁₉O₄ [M+H]⁺: 299.1283; found: 299.1287.

methyl 2-(4-(tert-butyl)phenyl)-4-oxo-4-(p-tolyl)butanoate (5w)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as colourless gum (49.3 mg, 73%). ¹H NMR (400 MHz, CDCl₃): δ 7.87-7.85 (m, 2H), 7.36-7.34 (m, 2H), 7.29-7.26 (m, 2H), 7.23 (d, *J* = 8 Hz, 2H), 4.26 (dd, *J*₁ = 10.4 Hz, *J*₂ = 4 Hz, 1H), 3.91 (dd, *J*₁ = 18 Hz, *J*₂ = 10.4 Hz, 1H), 3.69 (s, 3H), 3.23 (dd, *J*₁ = 18 Hz, *J*₂ = 4 Hz, 1H), 2.39 (s, 3H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 197.48, 174.18, 150.48, 144.17, 135.42, 134.07, 129.35, 128.30, 127.52, 125.91, 52.35, 45.97, 42.90, 34.57, 31.40, 21.74; HRMS (ESI, m/z) calcd. For C₂₂H₂₇O₃ [M+H]⁺: 339.1960; found: 339.1969.

methyl 4-oxo-4-phenyl-2-(p-tolyl)butanoate (5x)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as white crystalline solid (38.9 mg, 69%). ¹H NMR (400 MHz, CDCl₃): δ 7.97-7.95 (m, 2H), 7.55 (tt, $J_1 = 7.2$ Hz, $J_2 = 1.2$ Hz, 1H), 7.44 (t, J = 8 Hz, 2H), 7.23 (d, J = 8 Hz, 2H), 7.15 (d, J = 8 Hz, 2H), 4.26 (dd, $J_1 = 10$ Hz, $J_2 = 4$ Hz, 1H), 3.92 (dd, $J_1 = 17.2$ Hz, $J_2 = 9.6$ Hz, 1H), 3.68 (s, 3H), 3.24 (dd, $J_1 = 18$ Hz, $J_2 = 4$ Hz, 1H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.81, 174.11, 137.37, 136.52, 135.43, 133.37, 129.69, 128.68, 128.17, 127.77, 52.40, 46.02, 42.93, 21.14; HRMS (ESI, m/z) calcd. For C₁₈H₁₉O₃ [M+H]⁺: 283.1334; found: 283.1326.

methyl 2-([1,1'-biphenyl]-4-yl)-4-(3,4-dimethoxyphenyl)-4-oxobutanoate (5y)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as white solid (52.5 mg, 65%). ¹H

NMR (400 MHz, CDCl₃): δ 7.61 (dd, $J_1 = 8$ Hz, $J_2 = 2$ Hz, 1H), 7.57 (m, 4H), 7.52 (d, J = 2 Hz, 1H), 7.44-7.41 (m, 4H), 7.34 (tt, $J_1 = 7.2$ Hz, $J_2 = 2$ Hz, 1H), 6.86 (d, J = 8.4 Hz, 1H), 4.33 (dd, $J_1 = 10.0$ Hz, $J_2 = 4$ Hz, 1H), 3.95-3.88 (m, 7H), 3.72 (s, 3H), 3.29 (dd, $J_1 = 18$ Hz, $J_2 = 4.4$ Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 196.26, 174.06, 153.59, 149.12, 140.65, 137.54, 129.73, 128.88, 128.36, 127.71, 127.48, 127.13, 122.92, 110.21, 110.12, 56.16, 56.06, 52.48, 46.27, 42.44; HRMS (ESI, m/z) calcd. For C₂₅H₂₅O₅ [M+H]⁺: 405.1702; found: 405.1702.

methyl 2-(4-cyanophenyl)-4-oxo-4-phenylbutanoate (5z)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as white solid (36.9 mg, 63%). ¹H NMR (400 MHz, CDCl₃): δ 7.96-7.92 (m, 2H), 7.64-7.61 (m, 2H), 7.56 (tt, $J_1 = 8$ Hz, $J_2 = 1.2$ Hz, 1H), 7.48-7.43 (m, 4H), 4.36 (q, J = 4.4 Hz, 1H), 3.90 (q, J = 9.2 Hz, 1H), 3.69 (s, 3H), 3.30 (dd, $J_1 = 18$ Hz, $J_2 = 4.8$ Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 197.4, 163.2, 148.0, 138.1, 131.4, 130.9, 130.2, 128.2, 127.8, 127.5, 126.1, 126.0, 113.4, 55.5, 49.7, 43.8, 42; HRMS (ESI, m/z) calcd. For C₁₈H₁₆O₃ [M+H]⁺: 294.1130; found: 294.1133.

methyl 4-(4-methoxyphenyl)-2-(naphthalen-2-yl)-4-oxobutanoate (5aa)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as reddish white solid (45.9 mg, 66%). ¹H NMR (400 MHz, CDCl₃): δ 7.97-7.94 (m, 2H), 7.83-7.80 (m, 4H), 7.48-7.45 (m, 3H), 6.92-6.90 (m, 2H), 4.45 (dd, $J_I = 6$ Hz, $J_2 = 4$ Hz, 1H), 3.98 (dd, $J_I = 18$ Hz, $J_2 = 10.4$ Hz, 1H), 3.85 (s, 3H), 3.69 (s, 3H), 3.30 (dd, $J_I = 18$ Hz, $J_2 = 4$ Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 196.13, 174.06, 163.76, 135.99, 133.57, 132.78, 130.47, 129.62, 128.73, 127.89, 127.74, 126.76, 126.42, 126.10, 125.91, 113.84, 55.56, 52.45, 46.62, 42.54; HRMS (ESI, m/z) calcd. For C₂₂H₂₁O₄ [M+H]⁺: 349.1440; found: 349.1444.

methyl 2-(naphthalen-2-yl)-4-oxo-4-(p-tolyl)butanoate (5ab)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as white solid (47.2 mg, 71%). ¹H NMR (400 MHz, CDCl₃): δ 7.89-7.87 (m, 2H), 7.83-7.80 (m, 4H), 7.49-7.44 (m, 3H), 7.24-7.23 (m, 2H), 4.46 (dd, $J_I = 10.0$ Hz, $J_2 = 4.0$ Hz, 1H), 4.02 (dd, $J_I = 18.0$ Hz, $J_2 = 10.0$ Hz, 1H), 3.70 (s, 3H), 3.33 (dd, $J_I = 18.0$ Hz, $J_2 = 4.0$ Hz, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.28, 174.01, 144.26, 135.93, 134.03, 133.57, 132.79, 129.38, 128.75, 128.31, 127.90, 127.74, 126.77, 126.43, 126.12, 125.90, 52.47, 46.57, 42.76, 21.74; HRMS (ESI, m/z) calcd. For C₂₂H₂₀O₃ [M+H]⁺: 332.1412; found: 332.1413.

methyl 2-(4-(benzyloxy)phenyl)-4-(methyl(phenyl)amino)-4-oxo-2-phenylbutanoate (5ac)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as yellow solid (71.9 mg, 83%). ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.27 (m, 8H), 7.26-7.18 (m, 4H), 6.90-6.86 (m, 2H), 5.03 (s, 2H), 3.73 (s, 3H), 3.55 (s, 3H), 3.46 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 173.65, 171.22, 157.80, 142.67, 137.01, 134.74, 129.86, 128.67, 128.54, 128.08, 127.62, 127.14, 114.26, 57.03, 52.65, 51.75, 43.88; HRMS (ESI, m/z) calcd. For C₃₁H₃₀NO₅ [M+H]⁺: 480.2175; found: 480.2169.

methyl 4-oxo-2,2,6-triphenylhexanoate (5ad)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as white gum (40.9 mg, 55%). ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.16 (m, 13H), 7.08-7.06 (m, 2H), 3.68 (s, 3H), 3.58 (s, 2H),

2.79 (t, J = 7.6 Hz, 1H), 2.62 (t, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 206.42, 173.61, 142.92, 140.91, 128.69, 128.52, 128.37, 128.04, 126.99, 126.15, 57.12, 52.51, 52.10, 44.88, 29.54; HRMS (ESI, m/z) calcd. For C₂₅H₂₄O₃ [M+H]⁺: 373.1804; found: 373.1801.

methyl 4-oxo-2,2-diphenylpentanoate (5ae)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as colourless gummy liquid (29.9 mg, 53%). ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.20 (m, 10 H), 3.71 (s, 3H), 3.64 (s, 2H), 2.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 205.02, 173.64, 142.99, 128.69, 128.04, 127.00, 57.05, 52.54, 30.72; HRMS (ESI, m/z) calcd. For C₁₈H₁₈O₃ [M+H]⁺: 283.1334; found: 283.1334.

methyl 4-oxo-2-phenyl-2-(p-tolyl)pentanoate (5af)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as colourless gummy liquid (29.6 mg, 50%). ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.19 (m, 5H), 7.13-7.11 (m, 2H), 7.07-7.05 (m, 2H), 3.70 (s, 3H), 3.61 (d, *J* = 2.4 Hz, 2H), 2.30 (s, 3H), 2.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 205.10, 173.77, 143.14, 139.99, 136.66, 128.76, 128.69, 128.51, 127.98, 126.92, 56.73, 52.71, 52.50, 30.74, 21.02; HRMS (ESI, m/z) calcd. For C₁₉H₂₀O₃ [M+H]⁺: 297.1491; found: 297.1499.

4-(1-methoxy-1,4-dioxo-2-phenyl-4-(thiophen-2-yl)butan-2-yl)phenyl (3r,5r,7r)adamantane-1-carboxylate (5ag)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as ash coloured solid (88.7 mg, 84%). ¹H NMR (400 MHz, CDCl₃): δ 7.67 (dd, $J_1 = 4.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.59 (dd, $J_1 = 4.8$ Hz, $J_2 = 0.8$ Hz, 1H), 7.32-7.26 (m, 6H), 7.24-7.21 (m, 1H), 7.09-7.07 (m, 1H), 6.96-6.93 (m, 2H), 4.15-4.05 (m, 2H), 3.73 (s, 3H), 2.06-2.01 (m, 9H), 1.78-1.71 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 189.27, 176.10, 173.44, 149.91, 143.99, 142.78, 140.10, 133.76, 131.86, 129.99, 128.70, 128.14, 127.14, 120.93, 56.80, 52.66, 48.70, 41.11, 38.81, 36.53, 27.98; HRMS (ESI, m/z) calcd. For C₃₂H₃₂O₅S [M+H]⁺: 529.2049; found: 529.2061.

methyl 2-(2-(allyloxy)-4-methoxyphenyl)-4-(2,4-dimethylphenyl)-4-oxo-2phenylbutanoate (5ah)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as yellow gel (53.1 mg, 58%). ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, *J* = 8.0 Hz, 1H), 7.44-7.42 (m, 2H), 7.33-7.27 (m, 2H), 7.23-7.17 (m, 2H), 7.00-6.96 (m, 2H), 6.40 (dd, *J*₁ = 8.8 Hz, *J*₂ = 2.8 Hz, 1H), 6.34 (d, *J* = 2.4 Hz, 1H), 5.79-5.69 (m, 1H), 5.22-5.13 (m, 2H), 4.37-4.16 (m, 4H), 3.74 (s, 3H), 3.64 (s, 3H), 2.31 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 201.22, 174.69, 159.80, 156.77, 141.35, 140.68, 138.09, 136.22, 132.96, 132.59, 131.71, 128.95, 128.82, 128.52, 127.74, 126.77, 126.50, 126.11, 124.17, 117.37, 103.82, 100.28, 69.28, 56.20, 55.34, 52.40, 45.88, 21.37, 21.10; HRMS (ESI, m/z) calcd. For C₂₉H₃₀O₅ [M+H]⁺: 459.2171; found: 459.2172.

methyl 2-(2-(allyloxy)-4-methoxyphenyl)-4-(2,4-dimethoxyphenyl)-4-oxo-2phenylbutanoate (5ai)

This was prepared following the general procedure and purified in column chromatography (SiO₂, eluting with 90:10 hexane/ethyl acetate) affording as yellow gel (66.6 mg, 68%). ¹H NMR (400 MHz, CDCl₃): δ 7.63 (dd, $J_1 = 8.4$ Hz, $J_2 = 2.0$ Hz, 1H), 7.44-7.40 (m, 3H), 7.29-7.21 (m, 4H), 6.84 (d, J = 8.4 Hz, 1H), 6.43 (dd, $J_1 = 8.4$ Hz, $J_2 = 2.4$ Hz, 1H), 6.37 (d, J = 2.8 Hz, 1H), 5.86-5.76 (m, 1H), 5.21 (qq, $J_1 = 15.6$ Hz, $J_2 = 2.0$ Hz, 2H), 4.39-4.30 (m, 4H), 3.92 (s, 3H), 3.85 (s, 3H), 3.75 (s, 3H), 3.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 195.86, 174.85, 159.76, 156.75, 153.12, 148.96, 140.37, 133.02, 132.01, 130.95, 128.85, 127.79, 126.85, 124.10, 122.52, 117.33, 110.29, 109.91, 103.80, 100.13, 69.27, 56.14, 55.99, 55.30, 52.45, 42.37; HRMS (ESI, m/z) calcd. For C₂₉H₃₀O₇ [M+H]⁺: 491.2070; found: 491.2077.

7. Product derivatization

In a clean 25 mL round bottom flask, methyl 4-oxo-2,2,4-triphenylbutanoate (**5b**) (68.8 mg, 0.2 mmol, 1 equiv.) was taken and to it 2 mL methanol was added. Then the solution was set up for stirring at. At 0 0 C, sodium borohydride (NaBH₄) (15.1 mg, 0.4 mmol, 2 equiv.) was added to the mixture and the flask was closed. Then, the reaction mixture was allowed to stir at room temperature for 5 hours. After that, 5 mL 2(N) HCl was added dropwise to the reaction mixture to quench the excess NaBH₄. Therefore, reaction mixture was extracted with ethyl acetate (40 mL), water (15 mL × 2), washed with brine (15 mL), dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (SiO₂, eluting with hexane/ethylacetate 98:2) to afford **6b** as white solid (39 mg, 61%). ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.26 (m, 15H), 5.32 (q, *J* = 5.2 Hz, 1H), 3.30 (dd, *J*₁ = 12.8 Hz, *J*₂ = 4.8 Hz, 1H), 2.94 (dd, *J*₁ = 12.8 Hz, *J*₂ = 10.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 176.96, 141.73, 139.62, 138.41, 129.18, 128.87, 128.77, 128.49, 127.97, 127.81, 127.49, 127.41, 125.76, 78.07, 58.79, 46.35; HRMS (ESI, m/z) calcd. For C₃₂H₃₂O₅S [M+H]⁺: 315.1385; found: 315.1297.

8. Control experiments

8.1. Radical inhibition experiment

8.1.1. Radical inhibition experiment for carbobenzylation (Condition A)

1-benzyl-2,4,6-triphenylpyridin-1-ium tetrafluoroborate **3a** (0.4 mmol, 2.0 equiv., 194 mg), 2-(4-methoxyphenyl)-2-oxoacetic acid **2a** (0.4 mmol, 2.0 equiv., 72 mg), tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate (0.002 mmol, 1 mol %, 2.9 mg), caesium carbonate (0.4 mmol, 2.0 equiv., 130 mg) and TEMPO (62.5 mg, 0.4 mmol, 2.0 equiv.) were taken in a 7 mL screw-capped vial. MeCN was added to the mixture. The whole mixture was de-gassed and re-filled with inert gas by two consecutive freeze-pump-thaw cycles followed by the addition of 1,1-diphenylethylene **1a** (0.2 mmol, 1.0 equiv., 35 µL). The reaction mixture was then stirred under 5W blue LED irradiation for 2 hours. After 2 hours, TLC was checked and no formation of the expected product **4a** was observed.

8.1.2. Radical inhibition experiment for carbocarboxylation (Condition B)

The oven-dried Schlenk tube (10 mL) containing a stirring bar was charged with **2a** (43.2 mg, 0.24 mmol, 1.2 equiv), 4-CzIPN (1.5 mg, 0.002 mmol, 1.0 mol %), **2** (0.24 mmol, 1.2 equiv), TEMPO (62.5 mg, 0.4 mmol, 2.0 equiv.) and transferred to glovebox to add Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv). The tube was then evacuated and back-filled with CO₂ for 3 times. Therefore, under continuous CO₂ flow, anhydrous DMSO (3 mL) and **1a** (35 μ L, 1.0 equiv., 0.2 mmol) was added with syringe and subsequently the tube is sealed. The reaction was stirred with irradiating with a 30 W blue LED lamp (3 cm away, with cooling fan to keep the reaction temperature at 25~30 °C) for 12 hours. After 12 hours, the light is switched off, the shlenk tube is opened and to the mixture, methyl iodide (24.9 μ L, 0.4 mmol, 2.0 equiv.) is added. The mixture is stirred for additional 4 hours at room temperature. After that, TLC was checked which showed no formation of expected product **5a**.

8.2. Radical-clock experiment

8.2.1. Radical-clock experiment for carbobenzylation (Condition A)

1-benzyl-2,4,6-triphenylpyridin-1-ium tetrafluoroborate **2a** (0.4 mmol, 2.0 equiv., 194 mg), 2-(4-methoxyphenyl)-2-oxoacetic acid **3a** (0.4 mmol, 2.0 equiv., 72 mg), tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate (0.002 mmol, 1 mol %, 2.9 mg), caesium carbonate (0.4 mmol, 2.0 equiv., 130 mg) were taken in a 7 mL screw-capped vial. MeCN was added to the mixture. The whole mixture was de-gassed and re-filled with inert gas by two consecutive freeze-pump-thaw cycles followed by the addition of radical-clock substrate **1aa** (0.2 mmol, 1.0 equiv., 28.8 mg). The reaction mixture was then stirred under 5W blue LED irradiation for 2 hours. After 2 hours, TLC was checked and no formation of the expected product **4a** was observed, instead ring opening product **7** was achieved with column chromatography (eluting with petroleum ether/ethyl acetate 97:3) as colourless liquid (9 mg, 26%).

8.2.2. Radical-clock experiment for carbocarboxylation (Condition B)

The oven-dried Schlenk tube (10 mL) containing a stirring bar was charged with **2a** (43.2 mg, 0.24 mmol, 1.2 equiv), 4-CzIPN (1.5 mg, 0.002 mmol, 1.0 mol %) and transferred to glovebox to add Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv). The tube was then evacuated and back-filled with CO₂ for 3 times. Therefore, under continuous CO₂ flow, anhydrous DMSO (3.0 mL) and radical-clock substrate **1aa** (0.2 mmol, 1.0 equiv., 28.8 mg) were added with syringe and subsequently the tube is sealed. The reaction was stirred with irradiating with a 30 W blue LED lamp (3 cm away, with cooling fan to keep the reaction temperature at 25~30 °C) for 12 hours. After 12 hours, the light is switched off, the shlenk tube is opened and to the mixture, methyl iodide (24.9 μ L, 0.4 mmol, 2.0 equiv.) is added. The mixture is stirred for additional 4 hours at room temperature. After that, TLC was checked which showed no formation of expected product **5a**, instead ring opening product **7** was achieved with column chromatography (eluting with petroleum ether/ethyl acetate 97:3) as colourless liquid (25.3 mg, 73%).

Characterization of **7** (*E* isomer): ¹H NMR (400 MHz, CDCl₃): δ 7.98-7.94 (m, 2H), 7.31-7.23 (m, 5H), 6.93-6.91 (m, 2H), 5.99 (t, *J* = 7.2 Hz, 1H), 4.13 (s, 2H), 3.85 (s, 3H), 2.18 (pent., *J* = 7.6 Hz, 2H), 1.07 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.86, 195.78, 163.56, 163.43, 143.02, 140.65, 134.39, 133.95, 132.81, 130.81, 130.58, 130.07, 128.51, 128.35, 128.17, 126.83, 126.75, 126.11, 126.10, 113.79, 113.69, 55.56, 55.51, 48.48, 40.45, 22.65, 22.62, 14.45, 14.03; HRMS (ESI, m/z) calcd. For C₃₂H₃₂O₅S [M+H]⁺: 281.1542; found: 281.1544.

8.3. Checking the possibility of Michael addition in carbobenzylation (Condition A)

1-benzyl-2,4,6-triphenylpyridin-1-ium tetrafluoroborate **3a** (0.4 mmol, 2.0 equiv., 194 mg), (*E*)-1,3-bis(4-methoxyphenyl)prop-2-en-1-one **8** (0.2 mmol, 1.0 equiv.), tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate (0.002 mmol, 1 mol %, 2.9 mg), caesium carbonate (0.4 mmol, 2.0 equiv., 130 mg) were taken in a 7 mL screw-capped vial. MeCN was added to the mixture. The whole mixture was de-gassed and re-filled with inert gas by two consecutive freeze-pump-thaw cycles. The reaction mixture was then stirred under 5W blue LED irradiation for 12 hours. After 12 hours, TLC was checked and no formation of the expected product **4n** was observed.

8.4. ¹³C-labelling experiment for carbocarboxylation (Condition B)

The oven-dried Schlenk tube (10 mL) containing a stirring bar was charged with 2vinylnaphthalene (30.8 mg, 0.20 mmol, 1.0 equiv.), **2d** (39.4 mg, 0.24 mmol, 1.2 equiv), 4-CzIPN (1.5 mg, 0.002 mmol, 1.0 mol %) and transferred to glovebox to add Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv). The tube was then evacuated and back-filled with ¹³CO₂ for 3 times. Therefore, under continuous ¹³CO₂ flow, anhydrous DMSO (3.0 mL) was added with syringe and subsequently the tube is sealed. The reaction was stirred with irradiating with a 30 W blue LED lamp (3 cm away, with cooling fan to keep the reaction temperature at 25~30 °C) for 12 hours. After 12 hours, the light is switched off, the shlenk tube is opened and to the mixture, methyl iodide (24.9 µL, 0.4 mmol, 2.0 equiv.) is added. The mixture was stirred for additional 4 hours at room temperature. After that, the reaction mixture was extracted with ethyl acetate (30 mL), water (10 mL × 2), washed with brine (10 mL), dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (SiO₂, eluting with hexane/ethylacetate 97:3) to afford the desired product [¹³C]-5ab as white solid (47.9 mg, 72% with 80% ¹³C incorporation). ¹H NMR (400 MHz, CDCl₃): δ 7.89-7.87 (m, 2H), 7.83-7.80 (m, 4H), 7.49-7.44 (m, 3H), 7.23-7.22 (m, 2H), 4.48-4.43 (m, 1H), 4.01 (qd, *J*₁ = 10.0 Hz, *J*₂ = 2.8 Hz, 1H), 3.69 (d, *J* = 4 Hz, 3H), 3.33 (dq, *J*₁ = 18.0 Hz, *J*₂ = 4.0 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.28, 174.01, 144.26, 135.93, 134.03, 133.57, 132.79, 129.38, 128.75, 128.31, 127.90, 127.74, 126.78, 126.43, 126.12, 125.89, 52.47, 46.55 (d, *J* = 57 Hz, 46.27, 42.76, 21.75; HRMS (ESI, m/z) calcd. For C₂₂H₂₀O₃ [M+H]⁺: 333.1491; found: 333.1389.

8.5. Carbocarboxylation reaction under Argon (Ar) atmosphere

The oven-dried Schlenk tube (10 mL) containing a stirring bar was charged with 2vinylnaphthalene (30.8 mg, 0.20 mmol, 1.0 equiv.), **2d** (39.4 mg, 0.24 mmol, 1.2 equiv), 4-CzIPN (1.5 mg, 0.002 mmol, 1.0 mol %) and transferred to glovebox to add Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv). The tube was then evacuated and back-filled with argon (Ar) for 3 times. Therefore, under continuous Ar flow, anhydrous DMSO (3.0 mL) was added with syringe and subsequently the tube is sealed. The reaction was stirred with irradiating with a 30 W blue LED lamp (3 cm away, with cooling fan to keep the reaction temperature at 25~30 °C) for 12 hours. After 12 hours, the light is switched off, the shlenk tube is opened and to the mixture, methyl iodide (24.9 μ L, 0.4 mmol, 2.0 equiv.) is added. The mixture was stirred for additional 4 hours at room temperature. After that, the reaction mixture was extracted with ethyl acetate (30 mL), water (10 mL × 2), washed with brine (10 mL), dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (SiO₂, eluting with hexane/ethylacetate 97:3) to afford the desired carboxylated product **5ab** as white solid (10.0 mg, 15%).

8.6. Light on-off experiment for both carbobenzylation (Condition A) and carbocarboxylation (Condition B)

In both the conditions, for carbobenzylation and carbocarboxylation, the standard reactions were set-up and stirred sequentially under light and in dark with a certain interval.

Light on-off experiment for a) carbobenzylation (Condition A) and b) carbocarboxylation (Condition B)

The corresponding increase of product and decrease of starting material concentration was monitored using 1,2,3,4,5-pentafluoro-6-methylbenzene as internal standard. The relative concentration of the substrates and the corresponding product were calculated and presented graphically.

9. References

- 1. C. Wan, R.-J. Song and J.-H. Li, Org. Lett., 2019, 21, 2800-2803.
- 2. A. Hossian, K. Manna, P. Das and R. Jana, *ChemistrySelect*, 2018, **3**, 4315-4318.
- F. J. R. Klauck, H. Yoon, M. J. James, M. Lautens and F. Glorius, ACS Catal., 2019, 9, 236-241.

10. Copies of ¹H and ¹³C Spectra

^{130 120 110 100} f1 (ppm)

 13 C spectra of **4a**

¹³C spectra of **4b**

 13 C spectra of **4**c

 13 C spectra of **4d**

¹³C spectra of **4e**

7.7.75 7.734 7.7.734 7.7.734 7.7.134 7.7.135 7.11357 7.11357 7.11357 7.11357 7.

¹³C spectra of **4f**

 13 C spectra of **4g**

130 120 110 100 90 80 f1 (ppm) -10 -20

¹³C spectra of **4h**

7,788 7,775 7,722 7,722 7,722 7,715 7,715 7,715 7,715 7,715 7,715 7,715 7,712

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

 13 C spectra of **4i**

¹³C spectra of **4j**

¹³C spectra of **4**k

7,864 7,1163 7,1163 7,1165 7,11457,1145 7,1145 7,11457,1145 7,1145 7,11457,1145 7,1

¹³C spectra of 4l

 13 C spectra of **4m**

7.835 7.219 7.229

¹³C spectra of **4n**

¹³C spectra of **40**

3.906 3.874 3.867 3.855 3.835 3.835 3.835 3.835 3.835 PMP Ph' `Ph 4p P۲ 2034 2.034 1.112 2.204 2.034 2.034 2.034 2.014 1.99 3.03 ₹ 2.05 Æ 5.0 4.5 f1 (ppm) 10.0 4.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ¹H spectra of **4p** 157.754 148.164 145.288 140.063 140.013 138.196 138.196 138.196 138.196 138.196 138.196 128.217 128.217 128.215 128.55 128.515 128.555 128.5555 128.5555 128.5555555555555555555555555 -198.711-55.273 49.237 44.005 43.619 PMP 0 Ph `Ph 4<u>p</u>

 13 C spectra of **4p**

 13 C spectra of **4**q

 13 C spectra of **4r**

PD-4-96 single_pulse

¹³C spectra of **4s**

 13 C spectra of 4t

 ^{13}C spectra of 4u

audie^{-bnjse} 7,74,412 7,4412 7,4412 7,4412 7,4412 7,4412 7,4412 7,4412 7,4412 7,4412 7,4412 7,4412 7,4412 7,4412 7,4412 7,4412 7,4412 7,4425 7,445 7,445 7,445 7,445 6,6,953 7,647 1,66,953 7,465 6,6,953 6,6,953 6,6,953 6,6,953 6,6,953 6,6,953 6,6,953 6,6,953 6,6,953 6,6,953 7,445

 ^{13}C spectra of 4v

8.217 7.820 7.830 7.837 7.831 7.832 7.832 7.781 7.751 7.7519 7.7555 7.7555 7.7555 7.7555 7.7555 7.7555 7.7555 7.7555 7.75597 7.7

 13 C spectra of **4w**

 13 C spectra of 4x

 13 C spectra of **4**y

 13 C spectra of 4z

7.775 7.775 7.775 7.775 7.715 7.7138 7.7116 7.7138 7.7136 7.7136 7.7136 7.7136 7.7136 7.7136 7.7136 7.713 7.021 6.6337 7.021 6.6337 7.021 6.632 7.023 8.6.492 8.6.492 8.6.492 8.6.47 8.6.47 8.6.

¹³C spectra of 4aa

¹³C spectra of **4ab**

¹³C spectra of **4ac**

¹³C spectra of 4ad

¹³C spectra of **4ae**

 13 C spectra of **4af**

aulie angle 6.6.923 6.

¹³C spectra of 4ag

8.274 %2.74 %2.7691 7.691 7.769 7.750 7.7158 7.7158 7.7158 7.7158 7.7158 7.7153 7.7153 7.7123 7.7123 7.7123 7.7123 7.7123 7.7123 7.7123 7.7123 7.7123 7.7123 7.7123 7.7133 7.7133 7.713

¹³C spectra of **4ah**

¹³C spectra of 4ai

¹³C spectra of **5a**

7.249 7.246 7.245 7.2545 7.2545 7.2545 7.2545 7.2545 7.2305 7.2305 7.2305 7.2305 7.2305 7.258 7.229 7.229 7.229 7.229 7.229 7.2275 7.22

¹³C spectra of **5b**

¹³C spectra of **5**c

、7.388 (7.7384 (7.3315 (7.3355) (7.3355) (7.3355) (7.3355) (7.3356) (7.2563) (7.7563) (7.7563) (7.7563) (7.7563) (7.7563) (7.7573) (7.777

¹³C spectra of **5d**

8.022 8.022 8.006 8.001 8.005 8.006 8.007 8.

¹³C spectra of **5e**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (f1 (ppm)

¹³C spectra of **5f**

¹³C spectra of **5g**

¹³C spectra of **5h**

¹³C spectra of **5i**

¹³C spectra of **5**j

¹³C spectra of **5**k

¹³C spectra of **5**l

7, 233 7, 2939 7, 2915 7, 572 7, 552 7, 553 7, 553 7, 293 7, 253 7, 293 7, 203

¹³C spectra of **5m**

¹³C spectra of **5n**

¹³C spectra of **50**

¹³C spectra of **5p**

¹³C spectra of **5**q

¹³C spectra of **5r**

SNAN-1442 — single_pulse

859 854 854 849 833 833 833 828 546 546 541 552 522 3380 3380	365 365 365 365 365 309 301 286 288 288 288 288 288 288	277 277 266 266 265 266 255 255 255 255 255 255	2209 202 202 202 197 197 197 197 178 178 178 178 499 485 499 485 485 385 385
ファファファファファファ		ファファファファファフ	LLLLLLLLLL444400

¹³C spectra of **5s**

¹³C spectra of **5t**

SNAN-1436 — single_pulse

2.482 2.

¹³C spectra of **5u**

¹³C spectra of **5v**

¹³C spectra of **5**w

¹³C spectra of **5**x

¹³C spectra of **5**y

¹³C spectra of **5z**

¹³C spectra of **5aa**

¹³C spectra of **5ab**

¹³C spectra of **5ac**

¹³C spectra of **5ad**

¹³C spectra of **5ae**

¹³C spectra of **5af**

888 84 84 84 84 84 84 84 84 84 84 84 84	667 667 992 993 993 993 993 993 993 993 993 993	661 661 775 775 603 603 603 603 603 603 603 603 603 603	337 332 332 332 333 332 333 332 46 57 46 57 36 77 32 332 332 332 332 332 332 332 332 3
044444400000	000000440000		00000000000000000000000000000000000000
レレレレレレレレレレレ	NNNN0000000000		00444444400NN

¹H spectra of **5ah**

 $\mathsf{SNAN-1444} - \mathsf{single}$ pulse decoupled gated NOE

¹³C spectra of **5ah**

SNAN-1462 — single_pulse

¹³C spectra of **5ai**

¹³C spectra of **6b**

¹³C spectra of **7**