Supporting Information

Photocatalyzed Hydroxyalkylation of *N*-Heteroaromatics with Aldehydes in Aqueous Phase

Jun Xu,^a Li Liu,^a Zhao-Cheng Yan,^a Yang Liu,^a Long Qin,^a Ning Deng^{*a} and Hua-Jian Xu^{*a}

^a School of Food and Biological Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China

E-mail: hjxu@hfut.edu.cn (H.-J. Xu); ndeng@hfut.edu.cn (N. Deng)

Table of Contents

1	Gei	neral considerations	S1			
2	Exp	Experimental section				
	2.1	Procedures for synthesis of starting materials	S2			
	2.2	Optimization of reaction conditions	S3			
	2.3	Procedure for the photochemical reactions	S4			
	2.4	Preparation of deuterated formyl C-H bonds	S6			
3 Characterization of products and Unsuccessful substrates						
	3.1	Characterization of products	S7			
	3.2	Unsuccessful substrates	S18			
4. Synthetic applications		nthetic applications	\$19			
	4.1	Synthesis of 3 in gram scale	S19			
	4.2	Synthesis of antihistaminic 50	S19			
5. Mechanism investigation		S20				
	5.1	Radical trap experiment	S20			
	5.2	Experiments of H/D exchange	S24			
	5.3	Intermediate experiment	S26			
6.	Ref	ferences	S29			
7.	7. NMR Spectra of products S30					

1 General considerations

Unless otherwise noted, all reagents were used as received from the commercial suppliers. The tungstate-based complex tetrabutylammonium decatungstate,¹ substituted 2-(methylsulfonyl)benzo[d]thiazoles 6-Br, 6-OMe),^{2,3} (6-F, 5-Cl, 2-(methylsulfonyl)naphtho[1,2-d]thiazole, 2-(methylsulfonyl)thiazole^{2,3} and 1-methyl-2-(methylsulfonyl)-1H-benzo[d]imidazole⁴ are synthesized according to the reported literature. Reactions were monitored using thin-layer chromatography (TLC). TLC plates were visualized with UV light (254 nm) or KMnO4 stain. GC-MS measurements were conducted on Thermo Fisher. HPLC measurements were conducted on Agilent 1260. Light irradiation was performed with a 10 W LED lamp at $\lambda ir = 380 \pm 10$ nm for photocatalytic reactions. Flash chromatography was carried out silica gel (200-300 mesh). ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker 400 MHz or Keysight 600 MHz spectrometer, and are internally referenced to the residual proto-solvent signals (note: CDCl₃ : δ H = 7.26 ppm, δ C = 77.16 ppm; CD₃CN : δ H = 1.94 ppm, δ C = 1.32 ppm and 118.26 ppm). Data for ¹H are reported as: chemical shift (δ ppm), integration, multiplicity (s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, dd: doublet of doublets, br: broad peak), coupling constant (Hz) and assignment. HRMS ESI-mass data were acquired on Thermo LTQ Orbitrap XL instrument. All measurements were carried out at room temperature unless otherwise stated.

2 Experimental section

2.1 Procedures for synthesis of starting materials

Preparation of 2-(Methylsulfonyl)benzothiazoles 1a-1g

According to the reported literature,^{2,3} under N₂ atmosphere, a solution of **1-SH** (18.9 mmol) in THF (60 mL) was cooled to 0 °C and NaH (0.811 g, 20.2 mmol) was added within 10 min. The resulting solution was stirred at 0 °C for 30 min, then methyl iodide (1.6 mL, 26.5 mmol) was added dropwise. The formed mixture was stirred at room temperature for overnight. Saturated aqueous NH₄Cl (30 mL) was added and resulting layers were separated. The aqueous layer was extracted with EtOAc (3 x 50 mL) and the combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, filtered and the solvents were removed under reduced pressure. The residue was purified by flash column chromatography (PE) yielding the desired sulfide **(1-SMe)**. Then, to a 100 mL glass tube, sulfide **(1-SMe)** (10 mmol), oxone (9.221 g, 15 mmol), water (50 mL) were added and the mixture was stirred at 60 °C for 12 h. The mixture was then cooled to room temperature and extracted by ethyl acetate (100 mL × 4). The combined organic phase was washed successively with saturated NaHCO₃ solution and NaCl solution, and then dried over anhydrous Na₂SO₄. After the solution was filtered and the solvent was evaporated under vacuum, the residue was subjected to silica gel column chromatography using a mixture of ethyl acetate and petroleum ether (1:5, v/v) as eluent to give the desired product.

Preparation of 1-methyl-2-(methylsulfonyl)-1H-benzo[d]imidazole 1h

According to the reported literature,⁴ to a solution of 1-*i*-propyl-2-methylthiobenzimidazole **(1h-SMe)** (0.430 g, 2.0 mmol) in MeOH (10 mL) was added an aqueous solution (10 mL) of oxone (4.099 g, 6.0 mmol). After the mixture was stirred at room temperature for 5 h, the mixture was filtered by using H₂O (10 mL) and AcOEt (20 mL). The aqueous layer of the filtrate was extracted

with AcOEt (10 mL x 7) and the combined extracts were washed with brine (10 mL), dried (MgSO₄), filtered and concentrated under reduced pressure. The crude residue was subjected to flash column chromatography on silica gel eluting with ethyl acetate/petroleum ether (1:5, v/v) to give the product **1h**.

2.2 Optimization of reaction conditions

S O N O N O	+ H ₂ O, 24 h, RT 380 nm, air	N N N
Entry	Deviation from standard conditions	Yield (%) ^b
1	None	62
2	365 nm	58
3	395 nm	50
4	405 nm	37
5	415 nm	42
6	MeCN	53
7	$MeCN/H_2O = 4:1$	59
8	$MeCN/H_2O = 2:3$	60
9	DCM	41
10	Acetone	20
11	2.0 mL H ₂ O	55
12	2 eq Cyclohexanecarbaldehyde	17
13	5 eq Cyclohexanecarbaldehyde	51
14	8 eq Cyclohexanecarbaldehyde	57
15	20 eq Cyclohexanecarbaldehyde	64
16	1 mol% TBADT	56
17	2 mol% TBADT	60
18	5 mol% TBADT	63
19	10 mol% TBADT	65
20	6 h	20
21	12 h	37
22	20 h	58
23	36 h	65
24	60 °C	31
25	N ₂	65
26	no TBADT	N.D.
27	no light	N.D.

 Table S1. Photocatalyzed hydroxyalkylation of *N*-heteroaromatics with aldehydes

^{*a*} Reaction conditions: benzothiazole (0.2 mmol), cyclohexanecarbaldehyde (10 equiv), TBADT (3 mol %), in H_2O (1.0 mL) under open air, irradiated with 10 W LEDs at 25 °C for 24 h. ^{*b*} Yields were determined by HPLC using 2-(methylthio)-benzo[d]thiazole as an internal standard. N.D.= Not Detected.

Table S2. Photocatalyzed alkylation of N-heteroaromatics with alkanes

$$\begin{array}{c|c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Entry	Deviation from standard conditions	Yield (%) ^b
1	None	67
2	365 nm	40
3	395 nm	49
4	405 nm	51
5	415 nm	47
6	MeCN	65
7	$MeCN/H_2O = 2:1$	50
8	$MeCN/H_2O = 2:3$	37
9	DCM	23
10	Acetone	32
11	H ₂ O	trace
12	2 eq Cyclohexane	15
13	5 eq Cyclohexane	44
14	8 eq Cyclohexane	63
15	20 eq Cyclohexane	71
16	1 mol% TBADT	50
17	2 mol% TBADT	56
18	5 mol% TBADT	69
19	10 mol% TBADT	72
20	6 h	23
21	12 h	41
22	20 h	61
23	36 h	69
24	air	15
25	60 °C	42
26	no TBADT	N.D.
27	no light	N.D.

^{*a*} Reaction conditions: benzothiazole (0.2 mmol), cyclohexane (10 equiv), TBADT (3 mol%), in CH₃CN (0.4 mL) and H₂O (0.1 mL) under a nitrogen atmosphere, irradiated with 10 W 380 nm LEDs at 25 °C for 24 h. ^{*b*} Yields were determined by HPLC using 2-(methylthio)benzo[d]thiazole as an internal standard. N.D.=Not Detecte.

2.3 Procedure for the photochemical reactions

General procedure A:

To a flame-dried 8-mL vial equipped with a magnetic stir bar was charged with the heteroarene (0.2 mmol, 1.0 equiv), TBADT (0.006 mmol, 3 mol%), deionized water (1 mL) and aldehydes (2 mmol, 10.0 equiv). Then, the reaction mixture was irradiated under 380 LED strips (10W) for 24 h

at room temperature with stirring. After the reaction was complete, the reaction was quenched with saturated sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was subjected to flash column chromatography on silica gel eluting with ethyl acetate/petroleum ether to give the target product.

General procedure B:

To a flame-dried 8-mL vial equipped with a magnetic stir bar was charged with the heteroarene (0.2 mmol, 1.0 equiv), TBADT (0.006 mmol, 3 mol%), acetonitrile (0.4 mL), deionized water (0.1 mL) and aldehydes (2 mmol, 10.0 equiv). Then, the reaction mixture was irradiated under 380 LED strips (10W) for 24 h at room temperature with stirring. After the reaction was complete, the reaction was quenched with saturated sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was subjected to flash column chromatography on silica gel eluting with ethyl acetate/petroleum ether to give the target product.

General procedure C:

To an flame-dried 8-mL vial equipped with a magnetic stir bar was charged with the heteroarene (0.2 mmol, 1.0 equiv), TBADT (0.006 mmol, 3 mol%), sodium dodecyl sulfate (0.06 mmol, 30 mol%), deionized water (1 mL) and aldehydes (2 mmol, 10.0 equiv). Then, the reaction mixture was irradiated under 380 LED strips (10W) for 24 h at room temperature with stirring. After the reaction was complete, the reaction was quenched with saturated sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The crude residue was subjected to flash column chromatography on silica gel eluting with ethyl acetate/petroleum ether to give the target product.

General procedure D:

To a flame-dried 8-mL vial equipped with a magnetic stir bar was charged with the heteroarene (0.2 mmol, 1.0 equiv), TBADT (0.006 mmol, 3 mol%). Acetonitrile (0.4 mL), deionized water (0.1 mL) and alkanes (2 mmol, 10.0 equiv) are added via a syringe under N₂ atmosphere. Then, the reaction mixture was irradiated under 380 LED strips (10W) for 24 h at room temperature with stirring. After the reaction was complete, the reaction was quenched with saturated sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was subjected to flash column chromatography on silica gel eluting with ethyl acetate/petroleum ether to give the target product.

General procedure E:

To a flame-dried 8-mL vial equipped with a magnetic stir bar was charged with the heteroarene (0.2 mmol, 1.0 equiv), TBADT (0.006 mmol, 3 mol%). Acetonitrile (0.8 mL), deionized water (0.2 mL) and alkanes (2 mmol, 10.0 equiv) are added via a syringe under N₂ atmosphere. Then, the reaction mixture was irradiated under 380 LED strips (10W) for 24 h at room temperature with stirring. After the reaction was complete, the reaction was quenched with saturated sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was subjected to flash column chromatography on silica gel eluting with ethyl

acetate/petroleum ether to give the target product.

General procedure F:

To a flame-dried 8-mL vial equipped with a magnetic stir bar was charged with the heteroarene (0.2 mmol, 1.0 equiv), TBADT (0.006 mmol, 3 mol%). Acetonitrile (0.8 mL), deionized water (0.2 mL) and alkanes (2 mmol, 5.0 equiv) are added via a syringe under N_2 atmosphere. Then, the reaction mixture was irradiated under 380 LED strips (10W) for 24 h at room temperature with stirring. After the reaction was complete, the reaction was quenched with saturated sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure. The crude residue was subjected to flash column chromatography on silica gel eluting with ethyl acetate/petroleum ether to give the target product.

Figure S1. Photoreactor of standard reaction

2.4 Preparation of deuterated formyl C-H bonds

According to the reported literature,⁵ 3-phenylpropanal (3 mmol), TBADT (199.2 mg, 2 mol%), 4-methylbenzenethiol (37.2 mg, 10 mol%), D₂O (2.7 mL, 50.0 equiv) and CH₃CN (3 mL, 1.0 M) were added to a 25 mL high borosilicate glass tube equipped with a stir bar. The reaction mixture was degassed via vacuum evacuation and backfilled with nitrogen for three times, irradiated with 390 nm lamp for 20 h. The deuterium incorporation was determined by the analysis of the ¹H NMR spectra. The reaction was quenched with water and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was subjected to flash column chromatography on silica gel eluting with ethyl acetate/petroleum ether to give the target product (70% D, 55% yield).

3 Characterization of products and Unsuccessful substrates

3.1 Characterization of products

Benzo[d]thiazol-2-yl(cyclohexyl)methanol (3)⁶

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure A), the product was purified by column chromatography (PE/EA = 5:1) as a yellow solid (30.6 mg, 62% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.95 (d, *J* = 8.1 Hz, 1H), 7.85 (d, *J* = 7.9 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 4.85 (d, *J* = 5.3 Hz, 1H), 3.48 (br, 1H), 1.89 (s, 1H), 1.77 – 1.59 (m, 5H), 1.28 – 1.09 (m, 5H). ¹³C

NMR (101 MHz, CDCl₃): δ 176.2, 152.6, 134.9, 126.1, 125.1, 122.9, 121.9, 76.6, 45.1, 29.5, 27.2, 26.3, 26.2, 26.0.

Benzo[d]thiazol-2-yl(cyclopentyl)methanol (4)

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure A), the product was purified by column chromatography (PE/EA = 5:1) as a light yellow oil (35.9 mg, 77% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.8 Hz, 1H), 7.85 (d, *J* = 7.9 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.5 Hz, 1H), 4.92 (d, *J* = 6.7 Hz, 1H),

3.86 (br, 1H), 2.51 – 2.37 (m, 1H), 1.77 – 1.43 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 176.4, 152.5, 134.9, 126.1, 125.1, 122.9, 121.9, 75.4, 46.8, 29.0, 28.0, 25.9, 25.8. HRMS (ESI) Calcd for [C₁₃H₁₆NOS]⁺: 234.0947; found 234.0951.

1-(Benzo[d]thiazol-2-yl)butan-1-ol (5)⁶

5

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure A), the product was purified by column chromatography (PE/EA = 5:1) as a yellow solid (24.4 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.7 Hz, 1H), 7.87 (d, *J* = 8.5 Hz, 1H),

7.46 (t, J = 7.7 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 5.10 (dd, J = 8.0, 4.7 Hz, 1H), 3.48 (br, 1H), 2.07 – 1.81 (m, 2H), 1.64 – 1.36 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 176.5, 152.7, 134.8, 126.1, 125.0, 122.8, 121.8, 72.1, 40.2, 18.5, 13.8.

1-(Benzo[d]thiazol-2-yl)hexan-1-ol (6)⁶

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure A), the product was purified by column chromatography (PE/EA = 5:1) as a yellow solid (21.1 mg, 51% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.1 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 1H),

7.45 (t, J = 7.7 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 5.08 (dd, J = 8.0, 4.7 Hz, 1H), 3.57 (br, 1H), 2.04 – 1.89 (m, 2H), 1.55 – 1.45 (m, 2H), 1.34 – 1.28 (m, 4H), 0.89 – 0.85 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.8, 152.8, 134.9, 126.2, 125.1, 122.9, 121.9, 72.4, 38.2, 31.7, 25.0, 22.6, 14.1.

1-(Benzo[d]thiazol-2-yl)nonan-1-ol (7)

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure A), the product was purified by column chromatography (PE/EA = 5:1) as a light yellow solid (25.5 mg, 46% yield), mp: 34-36 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.1 Hz, 1H), 7.86 (d,

J = 8.0 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 5.08 (dd, *J* = 8.0, 4.7 Hz, 1H), 3.52 (br, 1H), 2.05 – 1.88 (m, 2H), 1.54 – 1.44 (m, 2H), 1.31 – 1.23 (m, 10H), 0.89 – 0.85 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.8, 152.9, 134.9, 126.2, 125.1, 122.9, 121.9, 72.5, 38.3, 32.0, 29.6, 29.5, 29.4, 25.3, 22.8, 14.2. HRMS (ESI) Calcd for [C₁₆H₂₄NOS]⁺: 278.1573; found 278.1578.

1-(Benzo[d]thiazol-2-yl)-3,3-dimethylbutan-1-ol (8)

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure A), the product was purified by column chromatography (PE/EA = 5:1) as a yellow solid (21.2 mg, 48% yield), mp: 40-42 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.1 Hz, 1H), 7.85 (d, *J* = 7.9 Hz, 1H), 7.45 (t, *J* = 7.0 Hz, 1H), 7.35 (t, *J* = 7.0 Hz, 1H), 5.22 (dd, *J* =

9.3, 2.9 Hz, 1H), 3.06 (br, 1H), 2.00 – 2.00 – 1.97 (dd, J = 14.6, 2.9 Hz, 1H), 1.84 (dd, J = 14.6, 9.3 Hz, 1H), 1.07 (s, 9H). ¹³**C** NMR (101 MHz, CDCl₃) δ 177.9, 152.9, 135.0, 126.2, 125.1, 123.0, 121.94, 70.8, 51.8, 30.9, 30.3. HRMS (ESI) Calcd for [C₁₃H₁₈NO₂S]⁺: 236.1104; found 236.1101.

1-(Benzo[d]thiazol-2-yl)-3-phenylpropan-1-ol (9)⁷

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure A), the product was purified by column chromatography (PE/EA = 5:1) as a light yellow oil (44.1 mg,

82% yield). ¹H NMR (400 MHz, CD₃Cl₃) δ 7.97 (d, J = 8.2 Hz, 1H), 7.87 (d, J = 8.4 Hz, 1H), 7.47 (t, J = 8.3 Hz, 1H), 7.37 (t, J = 7.0 Hz, 1H), 7.31 - 7.22 (m, 4H), 7.19 (t, J = 6.9 Hz, 1H), 5.10 (dd, J = 8.3, 4.3 Hz, 1H), 3.46 (br, 1H), 2.93 – 2.78 (m, 2H), 2.41 – 2.29 (m, 1H), 2.28 – 2.15 (m, 1H). ¹³C NMR (101 MHz, CD₃CN) δ 178.9, 154.5, 142.8, 135.8, 129.5, 129.4, 126.9, 126.8, 125.8, 123.5, 123.0, 71.9, 40.4, 32.0.

Methyl 4-(benzo[d]thiazol-2-yl)-4-hydroxybutanoate (10)

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure A), the product was purified by column chromatography (PE/EA = 2:1) as a light yellow oil (22.6 mg, 45% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.38 (t, J = 7.3 Hz, 1H), 5.20 (dd, J = 7.8, 4.0 Hz, 1H), 3.85 (br, 1H), 3.69 (s, 3H), 2.66 - 2.53

(m, 2H), 2.49 – 2.38 (m, 1H), 2.32 – 2.22 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 176.2, 174.8, 152.8, 134.9, 126.3, 125.2, 122.9, 122.0, 71.7, 52.1, 32.6, 30.1. HRMS (ESI) Calcd for [C₁₂H₁₄NO₃S]*: 252.0689; found 252.0691.

1-(Benzo[d]thiazol-2-yl)-3-(methylthio)propan-1-ol (11)

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure A), the product was purified by column chromatography (PE/EA = 5:1) as a brown oil (24.4 mg, 51% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.48 (t, J = 7.7 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 5.29 (dd, J = 8.4,

3.9 Hz, 1H), 3.63 (br, 1H), 2.79 - 2.70 (m, 2H), 2.44 - 2.31 (m, 1H), 2.28 - 2.18 (m, 1H), 2.14 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.0, 152.8, 134.9, 126.3, 125.2, 122.9, 122.0, 71.7, 36.5, 30.2, 15.5. **HRMS (ESI)** Calcd for [C₁₁H₁₄NOS₂]⁺: 240.0511; found 240.0517.

Benzo[d]thiazol-2-yl(tetrahydro-2H-pyran-4-yl)methanol (12)

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure A), the product was purified by column chromatography (PE/EA = 5:1) as a colorless oil (32.4 mg, 65% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.96 (d, J = 8.1 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.46 (t, J = 7.7 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 4.87 (d, J = 5.7 Hz, 1H), 3.99 - 3.93 (m, 2H), 3.82 (br, 1H), 3.37 - 3.31 (m, 2H), 2.21 - 2.10 (m,

1H), 1.68 – 1.57 (m, 3H), 1.51 – 1.45 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.4, 152.6, 134.7, 126.3, 125.3, 122.9, 121.9, 75.7, 67.8, 67.7, 42.2, 29.1, 27.5. HRMS (ESI) Calcd for [C₁₃H₁₆NO₂S]⁺: 250.0896; found 250.0992.

Benzo[d]thiazol-2-yl(o-tolyl)methanol (13)⁸

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure A), the product was purified by column chromatography (PE/EA = 4:1) as a white solid (20.4 mg, 40% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, J = 8.2 Hz, 1H), 7.83 (d, J = 8.5 Hz, 1H),

7.53 (dd, J = 6.9, 2.1 Hz, 1H), 7.49 – 7.45 (m, 1H), 7.37 (t, J = 7.6 Hz, 1H), 7.30 – 7.23 (m, 2H), 7.23 – 7.18 (m, 1H), 6.34 (s, 1H), 3.92 (br, 1H), 2.43 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 175.0, 152.7, 139.1, 136.2, 135.5, 131.0, 128.8, 127.1, 126.6, 126.3, 125.3, 123.2, 121.9, 71.8, 19.6.

1-(Benzo[d]thiazol-2-yl)-3,7-dimethyloctane-1,7-diol (14)

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure C), the product was purified by column chromatography (PE/EA = 5:1) as a light yellow oil (34.4 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) $\delta \delta$ 7.96 (d, *J* = 8.1 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 5.21 – 5.14 (m, 1H),

1.98 – 1.91 (m, 1H), 1.86 – 1.71 (m, 2H), 1.48 – 1.34 (m, 5H), 1.26 (s, 3H), 1.20 (d, J = 3.4 Hz, 6H), 1.00 (dd, J = 12.4, 6.4 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 177.6, 152.7, 134.8, 126.2, 125.2, 122.9, 122.0, 71.29, 70.7, 45.7, 44.0, 38.1, 36.6, 29.3, 21.6, 20.5, 19.2. **HRMS (ESI)** Calcd for [C₁₇H₂₆NO₂S]⁺: 308.1679; found 308.1684.

1-(Benzo[d]thiazol-2-yl)-3-(4-isopropylphenyl)-2-methylpropan-1-ol (15)

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure B), the product was purified by column chromatography (PE/EA = 5:1) as a light yellow oil (40.3 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.2 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.09 (s, 4H), 4.99 (d, *J* = 4.9 Hz, 1H), 3.51 (br, 1H), 2.92 – 2.83 (m, 2H), 2.52 – 2.44 (m, 1H), 2.43 – 2.36 (m, 1H), 1.21 (d, *J* = 7.0 Hz, 6H), 0.95 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ

175.3, 152.6, 146.6, 137.6, 135.0, 129.3, 126.4, 126.2, 125.2, 123.0, 121.9, 76.2, 42.4, 37.1, 33.8, 24.2, 15.9. HRMS (ESI) Calcd for $[C_{20}H_{24}NOS]^+$: 326.1573; found 326.1579.

1-(Benzo[d]thiazol-2-yl)-3-(4-(tert-butyl)phenyl)-2-methylpropan-1-ol (16)

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure B), the product was purified by column chromatography (PE/EA = 5:1) as a light yellow oil (37.3 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.1 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.50 (t, *J* = 7.7 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.25 (d, *J* = 7.7 Hz, 2H), 7.10 (d, *J* = 6.7 Hz, 2H), 5.04 (d, *J* = 3.2 Hz, 1H), 3.32 (br, 1H), 2.88 (dd, *J* = 12.5, 3.5 Hz, 1H), 2.55 – 2.48 (m, 1H), 2.48 – 2.40 (m, 1H), 1.27 (s, 9H), 0.99 (d, *J* = 6.6 Hz,

3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 152.6, 146.6, 137.6, 135.0, 129.3, 126.4, 126.2, 125.2, 123.0, 121.9, 76.2, 42.4, 37.1, 33.8, 24.2, 15.9. HRMS (ESI) Calcd for $[C_{21}H_{26}NOS]^+$: 340.1730; found 340.1733.

(5-Chlorobenzo[d]thiazol-2-yl)(cyclohexyl)methanol (17)

Following the Synthesis of products from hydroxyl alkylation S10

reaction (General procedure A), the product was purified by column chromatography (PE/EA = 5:1) as a white solid (24.2 mg, 43% yield), mp: 126-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 1.9 Hz, 1H), 7.78 (d, *J* = 8.5 Hz, 1H), 7.35 (dd, *J* = 8.5, 2.0 Hz, 1H), 4.88 (d, *J* = 5.0 Hz, 1H), 2.87 (br, 1H), 1.96 - 1.88 (m, 1H), 1.78 - 1.64 (m, 5H), 1.29 - 1.19 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 178.0, 153.6, 133.2, 132.2, 125.6, 122.8, 122.6, 76.7, 45.0, 29.5, 26.9, 26.3, 26.2, 26.0. HRMS (ESI) Calcd for [C₁₄H₁₇CINOS]⁺: 282.0714; found 282.0713.

(6-Bromobenzo[d]thiazol-2-yl)(cyclohexyl)methanol (18)

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure A), the product was purified by column chromatography (PE/EA = 5:1) as a yellow solid (29.3 mg, 45% yield), mp: 140-142 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 1.8 Hz, 1H), 7.79 (d, *J* = 8.7 Hz, 1H), 7.54 (dd, *J* = 8.6, 1.8 Hz, 1H), 4.84 (d, *J* = 5.1

Hz, 1H), 3.60 (br, 1H), 1.93 – 1.88 (m, 1H), 1.75 – 1.63 (m, 5H), 1.26 – 1.15 (m, 5H). ¹³**C NMR** (101 MHz, CDCl₃) δ 176.8, 151.7, 136.6, 129.6, 124.4, 124.0, 118.7, 76.6, 45.0, 29.5, 27.1, 26.3, 26.2, 26.0. **HRMS (ESI)** Calcd for [C₁₄H₁₇BrNOS]⁺: 326.0209; found 326.0206.

Cyclohexyl(6-fluorobenzo[d]thiazol-2-yl)methanol (19)

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure A), the product was purified by column chromatography (PE/EA = 5:1) as a yellow oil (25.4 mg, 48% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.90 (dd, *J* = 8.9, 4.8 Hz, 1H), 7.54 (d, *J* = 5.6 Hz, 1H), 7.22 – 7.16 (m, 1H), 4.85 (d, *J* = 5.1 Hz, 1H), 3.00 (br, 1H), 1.90

(s, 1H), 1.78 - 1.63 (m, 5H), 1.30 - 1.19 (m, 5H). ¹³**C NMR** (101 MHz, CDCl₃) δ 175.6 (d, *J* = 3.0 Hz), 160.4 (d, *J* = 245.3 Hz), 149.4 (d, *J* = 1.1 Hz), 135.9 (d, *J* = 11.0 Hz), 123.9 (d, *J* = 9.5 Hz), 114.8 (d, *J* = 24.6 Hz), 108.1 (d, *J* = 26.5 Hz), 76.6, 45.0, 29.5, 27.1, 26.3, 26.2, 26.0. ¹⁹**F NMR** (564 MHz, CDCl₃) δ -116.64. **HRMS (ESI)** Calcd for [C₁₄H₁₇FNOS]⁺: 266.1009; found 266.1005.

Cyclohexyl(6-methoxybenzo[d]thiazol-2-yl)methanol (20)

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure B), the product was purified by column chromatography (PE/EA = 5:1) as a white solid (29.9 mg, 54% yield), mp: 112-114 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.9 Hz, 1H), 7.29 (d, *J* = 2.3 Hz, 1H), 7.04 (dd, *J* = 8.9, 2.4 Hz, 1H),

4.80 (d, J = 5.4 Hz, 1H), 3.86 (s, 3H), 3.46 (br, 1H), 1.79 – 1.70 (m, 3H), 1.64 (d, J = 12.5 Hz, 2H), 1.27 – 1.18 (m, 5H), 0.96 – 0.85 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 157.6, 147.1, 136.2, 123.31, 115.5, 104.4, 76.5, 55.9, 45.0, 29.4, 27.3, 26.3, 26.2, 26.0. HRMS (ESI) Calcd for [C₁₅H₂₀NO₂S]⁺: 278.1209; found 278.1204.

Cyclohexyl(thiazol-2-yl)methanol (21)⁹

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure A), the product was purified by column chromatography (PE/EA = 5:1) as a colorless oil (17.0 mg, 43% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d,

 $J = 3.2 \text{ Hz}, 1\text{H}, 7.30 \text{ (d, } J = 3.2 \text{ Hz}, 1\text{H}), 4.80 \text{ (d, } J = 5.3 \text{ Hz}, 1\text{H}), 3.53 \text{ (br, 1H)}, 1.88 - 1.77 \text{ (m, 1H)}, 1.80 - 1.69 \text{ (m, 5H)}, 1.33 - 1.02 \text{ (m, 5H)}. {}^{13}\mathbf{C} \mathbf{NMR} \text{ (101 MHz, CDCl}_3) \delta 174.8, 142.0, 118.9, 76.2, 45.2, 29.4, 29.1, 27.3, 26.2, 25.5.$

Cyclohexyl(naphtho[1,2-d]thiazol-2-yl)methanol (22)

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure B), the product was purified by column chromatography (PE/EA = 5:1) as a colorless oil (30.9 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, *J* = 8.2 Hz, 1H), 7.99 – 7.96 (m, 1H), 7.95 – 7.93 (m, 1H), 7.92 – 7.89 (m, 1H), 7.75 (t, *J* = 7.6 Hz, 1H),

7.65 (t, J = 7.5 Hz, 1H), 3.95 – 3.87 (m, 1H), 2.14 (d, J = 11.6 Hz, 2H), 1.94 – 1.88 (m, 2H), 1.83 – 1.79 (m, 1H), 1.69 – 1.48 (m, 5H), 1.37 – 1.26 (m, 2H). ¹³**C** NMR (101 MHz, CDCl₃) δ 198.4, 165.2, 150.4, 135.6, 132.2, 129.7, 128.8, 128.4, 127.7, 126.9, 123.9, 119.4, 46.1, 29.2, 26.1, 25.9. **HRMS** (ESI) Calcd for [C₁₈H₂₀NOS]⁺: 298.1260; found 298.1254.

2-Cyclopentylbenzo[d]thiazole (23)¹⁰

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 20:1) as a yellow oil (28.8 mg, 71% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, J = 8.1 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.43 (t, J = 7.1 Hz, 1H), 7.32 (t, J = 7.0

Hz, 1H), 3.58 - 3.51 (m, 1H), 2.29 - 2.21 (m, 2H), 1.98 - 1.92 (m, 2H), 1.90 - 1.83 (m, 2H), 1.77 - 1.70 (m, 2H). ¹³**C NMR** (151 MHz, CDCl₃) δ 177.3, 153.3, 134.9, 125.9, 124.6, 122.6, 121.6, 44.9, 34.2, 25.7.

2-Cyclohexylbenzo[d]thiazole (24)¹⁰

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 20:1) as a colorless oil (29.1 mg, 67% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, *J* = 8.2 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.84 (d,

1H), 7.34 (t, J = 7.6 Hz, 1H), 3.24 – 3.08 (m, 1H), 2.32 – 2.17 (m, 2H), 2.05 – 1.85 (m, 2H), 1.82 – 1.73 (m, 1H), 1.71 – 1.60 (m, 2H), 1.48 – 1.43 (m, 2H), 1.34 – 1.30 (m, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 177.9, 153.1, 134.6, 126.0, 124.7, 122.6, 121.7, 43.5, 33.6, 26.2, 25.9.

2-Cycloheptylbenzo[d]thiazole (25)¹⁰

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 20:1) as a yellow oil (24.0 mg, 52% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.44 (t, *J* = 7.7 Hz,

1H), 7.33 (t, J = 7.6 Hz, 1H), 3.32 – 3.27 (m, 1H), 2.24 – 2.18 (m, 2H), 1.90 – 1.80 (m, 4H), 1.72 – 1.64 (m, 2H), 1.64 – 1.56 (m, 4H). ¹³**C NMR** (151 MHz, CDCl₃) δ 178.9, 153.1, 134.8, 125.9, 124.6, 122.6, 121.6, 45.6, 35.5, 28.2, 26.6.

2-Cyclooctylbenzo[d]thiazole (26)¹⁰

Following the Synthesis of alkylation reaction products (General procedure E), the product was purified by column chromatography (PE/EA = 20:1) as a colorless oil (9.8 mg, 20% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.44 (t, *J* = 7.7

Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 3.43 – 3.35 (m, 1H), 2.22 – 2.09 (m, 2H), 2.03 – 1.92 (m, 2H), 1.87 – 1.77 (m, 2H), 1.71 – 1.59 (m, 8H). ¹³**C NMR** (101 MHz, CDCl₃) δ 179.4, 152.9, 134.7, 126.0, 124.7, 122.6, 121.6, 43.8, 33.0, 27.0, 26.2, 25.5.

2-Cyclododecylbenzo[d]thiazole (27)¹⁰

Following the Synthesis of alkylation reaction products (General procedure E), the product was purified by column chromatography (PE/EA = 20:1) as a colorless oil (10.2 mg, 17% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 7.0 Hz, 1H), 7.84 (d, *J* = 7.9 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 1H), 7.33 (t, *J* = 8.2 Hz, 1H), 3.40 – 3.35 (m, 1H), 1.98 –

1.92 (m, 2H), 1.83 – 1.77 (m, 2H), 1.52 – 1.35 (m, 18H). $^{13}\mathbf{C}$ NMR (151 MHz, CDCl₃) δ 178.3, 153.1, 134.8, 125.9, 124.6, 122.7, 121.6, 40.2, 31.1, 23.9, 23.7, 23.5,22.9, 22.8.

2-((1S,2S,4R)-Bicyclo[2.2.1]heptan-2-yl)benzo[d]thiazole (28)¹¹

Following the Synthesis of alkylation reaction products (General procedure F), the product was purified by column chromatography (PE/EA = 20:1) as a colorless oil (24.3 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.1 Hz, 1H), 7.82 (d, *J* = 7.9 Hz, 1H), 7.43 (t, *J* = 7.7 Hz,

1H), 7.32 (t, J = 7.6 Hz, 1H), 3.24 – 3.15 (m, 1H), 2.64 (s, 1H), 2.43 (s, 1H), 2.17 – 2.08 (m, 1H), 1.94 – 1.83 (m, 1H), 1.71 – 1.57 (m, 3H), 1.50 – 1.40 (m, 1H), 1.34 – 1.24 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 177.8, 153.3, 135.0, 125.9, 124.6, 122.7, 121.6, 47.3, 44.5, 38.5, 36.7, 36.6, 29.9, 28.9.

2-((3r,5r,7r)-Adamantan-1-yl)benzo[d]thiazole (29)¹⁰

Following the Synthesis of alkylation reaction products (General procedure F), the product was purified by column chromatography (PE/EA = 20:1) as a yellow soild (9.7 mg, 18% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.00 (d, *J* = 8.2 Hz, 1H), 7.85 (d, *J* = 7.9 Hz, 1H), 7.45 (t, *J* = 7.7 Hz,

1H), 7.34 (t, J = 7.6 Hz, 1H), 2.17 – 2.13 (m, 9H), 1.82 (t, J = 3.0 Hz, 6H). ¹³**C NMR** (151 MHz, CDCl₃) δ 182.4, 153.3, 134.5, 125.8, 124.6, 122.8, 121.7, 43.1, 40.3, 36.7, 28.7.

2-(Tetrahydrofuran-2-yl)benzo[d]thiazole (30)¹²

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 10:1) as a colorless oil (31.4 mg, 82% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, *J* = 7.0 Hz, 1H), 7.87 (d, *J* = 7.0 Hz, 1H), 7.46 (d, *J* = 7.5 Hz, 1H), 7.36 (d, *J* = 7.3

Hz, 1H), 5.37 – 5.33 (m, 1H), 4.17 – 4.13 (m, 1H), 4.02 – 3.98 (m, 1H), 2.60 – 2.43 (m, 1H), 2.32 – 2.21 (m, 1H), 2.09 – 1.89 (m, 2H). ¹³**C NMR** (151 MHz, CDCl₃) δ 176.4, 153.8, 134.8, 126.0, 124.9, 122.9, 121.9, 78.8, 69.5, 33.4, 25.8.

2-(Tetrahydro-2H-pyran-2-yl)benzo[d]thiazole (31)¹³

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 10:1) as a light yellow oil (39.5 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.1 Hz, 1H), 7.89 (d, *J* = 7.9 Hz, 1H), 7.45 (t, *J* =

7.4 Hz, 1H), 7.36 (t, J = 7.4 Hz, 1H), 4.84 – 4.74 (m, 1H), 4.23 – 4.15 (m, 1H), 3.74 – 3.64 (m, 1H), 2.31 – 2.23 (m, 1H), 2.02 – 1.93 (m, 1H), 1.80 – 1.60 (m, 4H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.0, 153.1, 134.8, 126.0, 124.9, 123.0, 121.9, 78.0, 69.1, 32.6, 25.7, 23.1.

2-(1,4-Dioxan-2-yl)benzo[d]thiazole (32)¹²

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 10:1) as a colorless oil (32.3 mg, 73% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.00 (d, *J* = 8.2 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.50 – 7.44 (m,

1H), 7.41 – 7.35 (m, 1H), 5.05 (dd, J = 9.7, 3.1 Hz, 1H), 4.30 (dd, J = 11.6, 3.1 Hz, 1H), 4.03 – 3.95 (m, 2H), 3.85 – 3.81 (m, 1H), 3.79 – 3.73 (m, 1H), 3.70 (dd, J = 11.6, 9.7 Hz, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 169.1, 153.1, 134.7, 126.2, 125.3, 123.2, 121.9, 75.5, 70.6, 67.1, 66.5.

2-(2,2-Dimethyl-1,3-dioxolan-4-yl)benzo[d]thiazole (33)¹⁴

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 10:1) as a colorless oil (27.8 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.1 Hz, 1H), 7.89 (d, *J* = 7.9 Hz, 1H), 7.47 (t, *J*

= 7.6 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 5.53 – 5.40 (m, 1H), 4.52 (dd, J = 8.7, 6.8 Hz, 1H), 4.20 (dd, J = 8.7, 5.5 Hz, 1H), 1.61 (s, 3H), 1.50 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.4, 153.6, 134.9, 126.2, 125.2, 123.1, 121.9, 111.4, 76.0, 70.3, 26.5, 25.5.

2-(3,3-Dimethyloxetan-2-yl)benzo[d]thiazole (34)

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 10:1) as a colorless oil (20.2 mg, 46% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.1 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 1H), 7.38 (t, *J* = 7.6

Hz, 1H), 5.77 (s, 1H), 4.58 (d, J = 5.6 Hz, 1H), 4.52 (d, J = 5.6 Hz, 1H), 1.55 (s, 3H), 1.02 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.4, 154.0, 134.7, 126.2, 124.9, 123.1, 122.0, 89.7, 82.8, 41.2, 27.2, 22.2. **HRMS (ESI)** Calcd for [C₁₂H₁₄NS]⁺: 220.0791; found 220.0787.

2-(Benzo[d][1,3]dioxol-2-yl)benzo[d]thiazole (35)

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 10:1) as a colorless oil (24.5 mg, 48% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.2 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.52 (t, *J* =

7.7 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.30 (s, 1H), 6.99 – 6.87 (m, 4H). ¹³**C NMR** (101 MHz, CDCl₃) δ 166.1, 153.1, 146.7, 135.1, 126.7, 126.4, 124.3, 122.6, 122.2, 109.4, 105.8. **HRMS (ESI)** Calcd for

 $[C_{14}H_{10}NO_2S]^+$: 256.0427; found 256.0422.

2-(1-Ethoxyethyl)benzo[d]thiazole (36)15

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 10:1) as a colorless oil (17.8 mg, 43% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.1 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 1H), 7.38 (t, *J* = 7.6

Hz, 1H), 4.91 – 4.82 (m, 1H), 3.66 – 3.58 (m, 2H), 1.64 (d, J = 6.6 Hz, 3H), 1.27 (t, J = 7.0 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 176.9, 153.2, 135.0, 126.1, 125.2, 123.0, 122.0, 76.2, 65.6, 22.9, 15.5.

2-(1-Butoxybutyl)benzo[d]thiazole (37)¹²

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 10:1) as a colorless oil (18.4 mg, 35% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.1 Hz, 1H), 7.89 (d, *J* = 7.9 Hz, 1H), 7.46 (t, *J* = 7.7 Hz,

1H), 7.37 (t, J = 7.6 Hz, 1H), 4.68 (dd, J = 8.0, 5.2 Hz, 1H), 3.61 – 3.46 (m, 2H), 1.98 – 1.82 (m, 2H), 1.63 – 1.37 (m, 6H), 0.98 – 0.88 (m, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 176.7, 153.2, 135.1, 126.0, 125.0, 123.0, 122.0, 80.3, 70.5, 39.5, 32.1, 19.4, 18.8, 14.0, 13.9.

N-(benzo[d]thiazol-2-ylmethyl)benzamide (38)¹⁶

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 10:1) as a colorless oil (20.4 mg, 38% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.60 (s, 1H), 7.84 (d, *J* = 7.5 Hz, 1H), 7.65 (d, *J* = 7.7 Hz, 1H), 7.50 – 7.41 (m, 2H), 7.20 – 7.08 (m, 5H), 3.22 (s, 2H). ¹³C NMR

(101 MHz, CDCl₃) δ 164.8, 155.9, 151.9, 143.9, 140.4, 129.5, 127.3, 125.7, 124.1, 122.6, 121.4, 111.6, 110.1, 110.0, 39.9.

Benzo[d]thiazol-2-ylmethanol (39)¹²

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 10:1) as a colorless oil (27.4mg, 83% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.1 Hz, 1H), 7.81 (d, *J* = 7.9 Hz, 1H), 7.42 (t, *J* = 7.9 Hz, 1H), 7.33 (t, *J* = 8.0 Hz, 1H),

5.05 (s, 2H), 4.80 (s, 1H). ^{13}C NMR (101 MHz, CDCl_3) δ 173.6, 152.7, 134.6, 126.3, 125.2, 122.7,121.9, 62.4.

1-(Benzo[d]thiazol-2-yl)ethan-1-ol (40)¹²

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 10:1) as a colorless oil (17.9mg, 50% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.1 Hz, 1H), 7.88 (d, *J* = 7.9 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H),

5.26 (q, J = 6.5 Hz, 1H), 3.51 (s, 1H), 1.71 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.1,

152.9, 135.0, 126.3, 125.2, 123.0, 122.0, 68.7, 24.2.

1-(Benzo[d]thiazol-2-yl)pentan-1-ol (41)¹²

41

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 10:1) as a colorless oil (9.3mg, 21% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.1 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.37 (t, *J* = 7.6

Hz, 1H), 5.15 - 5.03 (m, 1H), 3.38 (s, 1H), 2.06 - 1.88 (m, 2H), 1.55 - 1.42 (m, 2H), 1.41 - 1.33 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 176.7, 152.8, 134.9, 126.2, 125.1, 122.9, 122.0, 72.5, 38.0, 27.4, 22.6, 14.1.

(E)-1-(2-(benzo[d]thiazol-2-yl)benzo[d][1,3]dioxol-5-yl)-4,4-dimethylpent-1-en-3-ol (42)

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 2:1) as a white solid (52.2 mg, 71% yield), mp: 52-54 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.2 Hz, 1H), 7.91

(d, J = 8.0 Hz, 1H), 7.54 (t, J = 7.7 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.31 (s, 1H), 7.06 – 7.02 (m, 1H), 6.89 (q, J = 8.1 Hz, 2H), 6.51 (d, J = 15.8 Hz, 1H), 6.16 (dd, J = 15.8, 7.2 Hz, 1H), 3.90 (d, J = 7.2 Hz, 1H), 1.66 (s, 1H), 0.96 (s, 9H). ¹³**C** NMR (101 MHz, CDCl₃) δ 166.0, 153.1, 147.2, 146.3, 135.0, 132.4, 131.3, 128.7, 126.7, 126.4, 124.3, 122.2, 121.8, 109.0, 106.5, 106.2, 81.0, 35.5, 25.9. HRMS (ESI) Calcd for [C₂₁H₂₂NO₃S]⁺: 368.1315; found 368.1318.

5-Chloro-2-(tetrahydrofuran-2-yl)benzo[d]thiazole (43)¹⁷

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 10:1) as a light yellow oil (40.8 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 1.5 Hz, 1H), 7.78 (d, *J* = 8.5 Hz, 1H), 7.33 (dd,

J = 8.5, 1.8 Hz, 1H), 5.33 (dd, J = 7.6, 5.5 Hz, 1H), 4.15 (q, J = 7.1 Hz, 1H), 4.00 (q, J = 7.2 Hz, 1H), 2.57 – 2.47 (m, 1H), 2.30 – 2.21 (m, 1H), 2.08 – 1.99 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 178.7, 154.7, 133.2, 132.0, 125.3, 122.8, 122.6, 78.8, 69.6, 33.5, 25.8.

6-Bromo-2-(tetrahydrofuran-2-yl)benzo[d]thiazole (44)¹⁷

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 10:1) as a light yellow oil (38.1 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 1.5 Hz, 1H), 7.81 (d, *J* = 8.7 Hz, 1H), 7.60 –

7.50 (m, 1H), 5.31 (dd, J = 7.5, 5.6 Hz, 1H), 4.15 (q, J = 7.0 Hz, 1H), 4.00 (q, J = 7.3 Hz, 1H), 2.57 – 2.47 (m, 1H), 2.30 – 2.21 (m, 1H), 2.08 – 1.99 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 177.2, 152.7, 136.6, 129.5, 124.5, 124.0, 118.5, 78.7, 69.6, 33.4, 25.8.

6-Fluoro-2-(tetrahydrofuran-2-yl)benzo[d]thiazole (45)¹⁸

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 10:1) as a yellow oil (37.9 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.85 (m, 1H), 7.56 – 7.51 (m, 1H), 7.21 – 7.14 (m, 1H),

5.33 – 5.27 (m, 1H), 4.13 (q, J = 6.8 Hz, 1H), 3.98 (q, J = 7.2 Hz, 1H), 2.54 – 2.45 (m, 1H), 2.28 – 2.20 (m, 1H), 2.05 – 1.98 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 176.1 (d, J = 3.2 Hz), 160.2 (d, J = 245.0 Hz), 150.3, 135.8 (d, J = 11.1 Hz), 123.7 (d, J = 9.4 Hz), 114.5 (d, J = 24.8 Hz), 107.9 (d, J = 26.6 Hz), 78.6, 69.5, 33.3, 25.7. ¹⁹**F NMR (564 MHz, CDCl₃)** δ -116.27.

6-Methoxy-2-(tetrahydrofuran-2-yl)benzo[d]thiazole (46)¹⁷

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 10:1) as a yellow oil (34.8 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.9 Hz, 1H), 7.32 (d, *J* = 2.4 Hz, 1H), 7.04

(dd, J = 8.9, 2.5 Hz, 1H), 5.29 (dd, J = 7.6, 5.5 Hz, 1H), 4.12 (q, J = 6.7 Hz, 1H), 3.97 (q, J = 7.2 Hz, 1H), 3.85 (s, 3H), 2.52 – 2.43 (m, 1H), 2.29 – 2.21 (m, 1H), 2.06 – 1.98 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 157.5, 148.1, 136.1, 123.3, 115.3, 104.4, 78.7, 69.4, 55.9, 33.4, 25.8.

2-(Tetrahydrofuran-2-yl)naphtho[2,1-d]thiazole (47)

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 10:1) as a yellow oil (27.0 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, *J* = 8.2 Hz, 1H), 7.93 (d, *J* = 8.1 Hz, 1H), 7.88 (d, *J* = 8.7 Hz, 1H), 7.67 – 7.62 (m, 1H), 7.58 – 7.53 (m, 1H), 5.47 (dd, *J* = 7.7, 5.2 Hz, 1H), 4.22 – 4.16 (m, 1H), 4.05 – 3.99 (m, 1H),

 $2.61-2.52 \text{ (m, 1H)}, 2.41-2.33 \text{ (m, 1H)}, 2.10-2.00 \text{ (m, 2H)}. {}^{13}\text{C NMR} (101 \text{ MHz, CDCl}_3) \delta 175.1, 149.9, 131.9, 131.4, 128.6, 128.1, 126.8, 125.9, 125.4, 123.7, 119.2, 79.0, 69.4, 33.6, 25.7. HRMS (ESI) Calcd for <math>[C_{15}H_{14}NS]^+$: 256.0791; found 256.0787.

2-(Tetrahydrofuran-2-yl)thiazole (48)¹⁸

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 10:1) as a colorless oil (12.4 mg, 40% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 3.1 Hz, 1H), 7.26 (d, *J* = 3.3 Hz, 1H), 5.26 (dd, *J* = 7.6, 5.5 Hz, 1H), 4.14 – 4.07 (m, 1H),

3.99 – 3.92 (m, 1H), 2.49 – 2.40 (m, 1H), 2.22 – 2.14 (m, 1H), 2.04 – 1.97 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.9, 142.8, 118.7, 78.6, 69.2, 33.4, 25.7.

1-Methyl-2-(tetrahydrofuran-2-yl)-1H-benzo[d]imidazole (49)¹⁹

Following the Synthesis of alkylation reaction products (General procedure D), the product was purified by column chromatography (PE/EA = 10:1) as a white solid (12.1 mg, 30% yield). ¹H NMR (400 MHz, CDCl₃) $\delta \delta$ 7.72 (d, *J* = 6.6 Hz, 1H), 7.32 – 7.20 (m, 3H), 5.17 (t, *J* = 6.9 Hz, 1H), 3.89 (t, *J* = 6.8 Hz, 2H), 3.82 (s, 3H), 2.78 – 2.70 (m, 1H), 2.36 – 2.28

(m, 1H), 2.18 – 2.11 (m, 1H), 2.05 – 1.97 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 153.6, 136.4, 123.1, 122.5, 119.8, 109.4, 77.3, 73.7, 69.0, 30.5, 29.6, 26.2.

Benzo[d]thiazol-2-yl(1-(4-methoxyphenethyl)piperidin-4-yl)methanol (50)

The product was purified by column chromatography (DCM/MeOH = 5:1) as a white solid (36.7 mg, 48%), mp: 146-148 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.1 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.47 (*J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 6.95 (d, *J* = 8.6 Hz, 2H), 6.73 (d, *J* = 8.7 Hz,

2H), 3.87 (dd, J = 11.3, 3.2 Hz, 1H), 3.84 – 3.74 (m, 1H), 3.73 (s, 3H), 3.50 – 3.40 (m, 1H), 3.11 (br, 1H), 2.84 – 2.81 (m, 2H), 2.79 – 2.65 (m, 2H), 2.50 – 2.36 (m, 2H), 2.36 – 2.25 (m, 2H), 2.13 – 2.03 (m, 1H), 1.82 – 1.67 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 175.7, 157.8, 152.4, 135.0, 131.7, 129.6, 125.9, 125.1, 122.9, 121.9, 113.7, 65.1, 57.9, 55.2, 51.5, 48.1, 34.5, 32.2, 29.7, 25.2. **HRMS (ESI)** Calcd for [C₂₂H₂₇N₂O₂S]⁺: 383.1788; found 383.1784.

Cyclohexyl(6-methoxybenzo[d]thiazol-2-yl)methanone (53)

Following the Synthesis of products from hydroxyl alkylation reaction (General procedure B, the reaction time is 6 hours), the product was purified by column chromatography (PE/EA = 10:1) as a white solid (37.4 mg, 68%), mp: 49.5-51 °C. ¹H NMR (600MHz, CDCl₃) δ 8.02 (d, *J* = 9.1 Hz, 1H), 7.33 (d, *J* = 2.6 Hz, 1H), 7.13 (dd, *J*

= 9.0, 2.6 Hz, 1H), 3.87 (br, 3H), 3.87 – 3.68 (m, 1H), 2.06 – 1.97 (m, 2H), 1.87 – 1.80 (m, 2H), 1.73 (d, J = 13.1 Hz, 1H), 1.56 – 1.39 (m, 4H), 1.33 – 1.24 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 198.2, 163.8, 159.6, 148.2, 139.3, 126.0, 117.4, 103.6, 55.8, 45.7, 28.9, 25.9, 25.6. **HRMS (ESI)** Calcd for [C₁₅H₁₈NO₂S]⁺: 276.1053; found 276.1055.

3.2 Unsuccessful substrates

4. Synthetic applications

4.1 Synthesis of 3 in gram scale

To a 100 mL reaction flask equipped with a magnetic stir bar was charged with cyclohexane carboxaldehyde (7 mmol, 1.0 equiv), TBADT (0.21 mmol, 3 mol%), deionized water (15 mL) and

cyclohexane carboxaldehyde (70 mmol, 10.0 equiv). Then, the reaction mixture was irradiated under 380 LED strips (10W) for 24 h at room temperature with stirring. After the reaction was complete, the reaction was quenched with saturated sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure. The crude residue was subjected to flash column chromatography on silica gel eluting with ethyl acetate/petroleum ether to give product **3** as a a yellow solid with 1.33 g (77%).

Figure S3. Reaction setup (7 mmol scale)

4.2 Synthesis of antihistaminic 50

Step 1. According to the reported literature,²² a 250 mL Schlenk flask equipped with a magnetic stirrer was charged with 1-(2-bromoethyl)-4-methoxybenzene **A** (2.35 g, 11 mmol, 1.1 equiv), piperidin-4-ylmethanol **B** (1.15 g, 10 mmol) and potassium carbonate (5.52 g, 40 mmol, 4.0 equiv) in acetonitrile (70 mL). The reaction stirred at 78 °C for 18 h, then cooled to room temperature and filtered. The filtrate was washed with water (70 mL), brine (70 mL), and CH₂Cl₂ (70 mL). The organic layers were combined, dried with Na₂SO₄, and concentrated under reduced pressure. The crude residue was subjected to flash column chromatography on silica gel eluting with dichloromethane/methanol to give product **INT-I** (2.12 g, 85% yield) as a yellow solid.

Step 2. According to the reported literature,²³ a solution oxalyl chloride (0.86 mL, 10 mmol, 2.0 equiv) in CH_2Cl_2 (40 mL) was cooled to -78 °C, treated dropwise with DMSO (1.42 mL, 20 mmol, 4.0 equiv), stirred for 20 min, treated with a solution of **INT-I** (1.24 g, 5 mmol) in CH_2Cl_2 (20 mL), and stirred for a further 20 min at -78 °C. The resulting mixture was treated with Et_3N (2.78 mL, 20 mol, 4.0 equiv), stirred at -78 °C for 30 min, warmed to 22 °C, stirred for 1h, and diluted with

water (50 mL). The separated aqueous phase was extracted with CH_2Cl_2 (2 x 20 mL). The combined organic phases were dried with Na_2SO_4 , and concentrated under reduced pressure. The crude residue was subjected to flash column chromatography on silica gel eluting with dichloromethane/methanol to afford **INT-II** (1.17 g, 95%) as a yellow solid.

Step 3. To a flame-dried 8-mL vial equipped with a magnetic stir bar was charged with the heteroarene (0.2 mmol, 1.0 equiv), TBADT (0.006 mmol, 3 mol%), acetonitrile (0.4 mL), deionized water (0.1 mL) and **INT-II** (2 mmol, 10.0 equiv). Then, the reaction mixture was irradiated under 380 LED strips (10W) for 24 h at room temperature with stirring. After the reaction was complete, the reaction was quenched with saturated sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was subjected to flash column chromatography on silica gel eluting with dichloromethane/methanol to give the target product **50**.

5. Mechanism investigation

5.1 Radical trap experiment

To an 8 mL high glass tube equipped with a magnetic stir bar was charged with the 2-(methylsulfonyl)benzo[d]thiazole (0.2 mmol, 1.0 equiv), TBADT (0.006 mmol, 3 mol%), TEMPO ((1 mmol, 5.0 equiv), deionized water (1 mL) and aldehyde (1 mmol, 5.0 equiv). Then, the reaction mixture was irradiated under 380 LED strips (10W) for 24 h at room temperature with stirring. After the reaction was completed, the reaction was quenched with saturated sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Meanwhile, TEMPO-trapped product was detected by GC-MS, and the formation of **3** was completely suppressed. The crude residue was subjected to flash column chromatography on silica gel eluting with ethyl acetate/petroleum ether to give TEMPO-trapped product **C**.

Figure S4. TEMPO-adduct of acyl radical

2,2,6,6-tetramethylpiperidin-1-yl cyclohexanecarboxylate (C)²⁰

The product was purified by column chromatography (PE/EA = 20:1) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 2.44 – 2.32 (m, 1H), 1.97 (d, *J* = 12.5 Hz, 2H), 1.86 – 1.60 (m, 6H), 1.59 – 1.46 (m, 4H), 1.44 – 1.22 (m, 4H), 1.16 (s, 6H), 1.04 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 174.9, 59.6, 42.7, 38.6, 31.6, 29.1, 25.5, 25.3, 20.3, 16.7.

Figure S5. ¹H NMR spectrum of C

To a flame-dried 8-mL vial equipped with a magnetic stir bar was charged with the 2-(methylsulfonyl)benzo[d]thiazole (0.2 mmol, 1.0 equiv), TBADT (0.006 mmol, 3 mol%), TEMPO ((1 mmol, 5.0 equiv). Acetonitrile (0.8 mL), deionized water (0.2 mL) and alkanes (1 mmol, 5.0 equiv) are added via a syringe under N₂ atmosphere. Then, the reaction mixture was irradiated under 380 LED strips (10W) for 24 h at room temperature with stirring. After the reaction was completed, the reaction was quenched with saturated sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Meanwhile, TEMPO-trapped product was detected by GC-MS, and the formation of **24** was completely suppressed. The crude residue was subjected to flash column chromatography on silica gel eluting with ethyl acetate/petroleum ether to give TEMPO-trapped product **D**.

Figure S7. TEMPO-adduct of alkyl radical

1-(cyclohexyloxy)-2,2,6,6-tetramethylpiperidine (D)²¹

The product was purified by column chromatography (PE) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 2.44 – 2.32 (m, 1H), 1.97 (d, *J* = 12.5 Hz, 2H), 1.86 – 1.60 (m, 6H), 1.59 – 1.46 (m, 4H), 1.44 – 1.22 (m, 4H), 1.16 (s, 6H), 1.04 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 174.9, 59.6, 42.7, 38.6, 31.6, 29.1, 25.5, 25.3, 20.3, 16.7.

Figure S8. ¹H NMR spectrum of D

Figure S9. ¹³C NMR spectrum of D

5.2 Experiments of H/D exchange

To a flame-dried 8-mL vial equipped with a magnetic stir bar was charged with the 2-(methylsulfonyl)benzo[d]thiazole **1** (0.2 mmol, 1.0 equiv), TBADT (0.006 mmol, 3 mol%), deionized water (1 mL) and phenylpropyl aldehyde **51** (2 mmol, 10.0 equiv). Then, the reaction mixture was irradiated under 380 LED strips (10W) for 24 h at room temperature with stirring. After the reaction was complete, the reaction was quenched with saturated sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was subjected to flash column chromatography on silica gel eluting with ethyl acetate/petroleum ether to give the target product. The deuterium incorporation was determined by the analysis of the ¹H NMR spectra.

To a flame-dried 8-mL vial equipped with a magnetic stir bar was charged with the 2-(methylsulfonyl)benzo[*d*]thiazole **1** (0.2 mmol, 1.0 equiv), TBADT (0.006 mmol, 3 mol%), D₂O (1 mL) and cyclohexanecarboxaldehyde **2** (2 mmol, 10.0 equiv). Then, the reaction mixture was irradiated under 380 LED strips (10W) for 24 h at room temperature with stirring. After the reaction was complete, the reaction was quenched with saturated sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was subjected to flash column chromatography on silica gel eluting with ethyl acetate/petroleum ether to give the target product. The deuterium incorporation was determined by the analysis of the ¹H NMR spectra.

5.3 Intermediate experiment

To a flame-dried 8-mL vial equipped with a magnetic stir bar was charged with the intermediate **53** (0.2 mmol, 1.0 equiv) and TBADT (0.006 mmol, 3 mol%), acetonitrile (0.4 mL), deionized water (0.1 mL). Then, the reaction mixture was irradiated under 380 LED strips (10W) for 24 h at room temperature with stirring. After the reaction was complete, the reaction was quenched with saturated sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was subjected to flash column chromatography on silica gel eluting with ethyl acetate/petroleum ether to give the target product in 74% isolated yield.

To a flame-dried 8-mL vial equipped with a magnetic stir bar was charged with the 6-methoxy-2-(methylsulfonyl)benzo[*d*]thiazole (0.2 mmol, 1.0 equiv), TBADT (0.006 mmol, 3 mol%), deionized water (1.0 mL) and cyclohexanecarbaldehyde (2 mmol, 10.0 equiv). Then, the reaction mixture was irradiated under 380 LED strips (10W) for different time (1 h, 3 h, 6 h, 12 h, 16 h, 20 h, 24 h and 36 h) at room temperature with stirring. After the reaction was complete, the reaction was quenched with saturated sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Thioanisole (10 uL, 0.2 mmol) was added to the crude residue as an internal standard, and yield was obtained by ¹H NMR. The conversion of 6-methoxy-2-(methylsulfonyl)benzo[d]thiazole and yield of Product **20** and ketone intermediate **53** was determined by ¹H NMR.

6. References

1 P. J. Sarver, V. Bacauanu, D. M. Schultz, D. A. DiRocco, Y. H. Lam, E. C. Sherer and D. W. C. MacMillan, *Nat. Chem.*, 2020, **12**, 459-467.

2 X. Wang, W.-C. Ye, T.-G. Kong, C.-L. Wang, C.-F. Ni and J.-B. Hu, *Org. Lett.*, 2021, 23, 8554-8558.

3 B. Yu, A.-H. Liu, L.-N. He, B. Li, Z.-F. Diao and Y.-N. Li, *Green Chem.*, 2012, **14**, 957-962.

4 K. Ando, T. Kobayashi and N. Uchida, Org. Lett., 2015, 17, 2554-2557.

5 Y.-L. Kuang, H. Cao, H.-D. Tang, J. Chew, W. Chen, X.-C. Shi and J. Wu, *Chem. Sci.*, 2020, **11**, 8912-8918.

6 H. Chikashita, M. Ishibaba, K. Ori and K. Itoh, Bull. Chem. Soc. Jpn., 1988, 61, 3637-3648.

7 K. N. Boblak and D. A. Klumpp, J. Org. Chem., 2014, 79, 5852-5857.

8 M. N. Alam, K. M. Lakshmi and P. Maity, Org. Biomol. Chem., 2018, 16, 8922-8926.

9 T. Magata, Y. Hirokawa, A. Furokawa, K. Takeuchi, Y. Ohtomo, T. Kino, J. Kominami, Y. Nakai, M. Kitamura and N. Maezaki, *Chem. Pharm. Bull.*, 2018, **66**, 416-422.

10 L. Zhou and H. Togo, Eur. J. Org. Chem., 2019, 2019, 1627-1634.

11 Y.-H. Ma, J. Cammarata and J. Cornella, J. Am. Chem. Soc., 2019, 141, 1918-1922.

12 T. He, L. Yu, L. Zhang, L. Wang and M. Wang, Org. Lett., 2011, 13, 5016-5019.

13 J.-D. Zhou, Y.-W. Zou, P. Zhou, Z.-W. Chen and J.-J. Li, Org. Chem. Front., 2019, 6, 1594-1598.

14 N. Pramanik, S. Sarkar, D. Roy, S. Debnath, S. Ghosh, S. Khamarui and D. K. Maiti, *RSC Adv.*, 2015, **5**, 101959-101964.

15 Y.-L. Kong, W.-X. Xu, X.-H. Liu and J.-Q. Weng, Chin. Chem. Lett., 2020, 31, 3245-3249.

16 M. Arfan, A. Tahira, A. Mannan and T. Fatima, Russ. J. Org. Chem., 2020, 56, 292-297.

17 K. Yang, D.-S. Li, L. Zhang, Q. Chen and T.-D. Tang, RSC Adv., 2018, 8, 13671-13674.

18 Z.-Y. Xie, Y.-P. Cai, H.-W. Hu, C. Lin, J.-L. Jiang, Z.-X. Chen, L.-Y. Wang and Y. Pan, *Org. Lett.*, 2013, **15**, 4600-4603.

19 K. M. H. Nguyen and M. Largeron, *Eur. J. Org. Chem.*, 2016, **2016**, 1025-1032.

20 X.-S. Liu, L.-Q. Yu, M.-P. Luo, J.-D. Zhu and W.-G. Wei, Chem. Eur. J., 2015, 21, 8745-8749.

21 D.-L. Wei, X.-P. Li, L. Shen, Y.-Z. Ding, K.-J. Liang and C.-F. Xia, *Org. Chem. Front.*, 2021, **8**, 6364-6370.

22 J. I. Perlmutter, L. T. Forbes, D. J. Krysan, K. Ebsworth-Mojica, J. M. Colquhoun, J. L. Wang, P. M. Dunman and D. P. Flaherty, *J. Med. Chem.*, 2014, **57**, 8540-8562.

23 T. A. Reekie, M. Sekita, L. M. Urner, S. Bauroth, L. Ruhlmann, J. P. Gisselbrecht, C. Boudon, N. Trapp, T. Clark, D. M. Guldi and F. Diederich, *Chem. Eur. J.*, 2017, **23**, 6357-6369.

7. NMR Spectra of products

¹³C NMR spectrum of 3

¹³C NMR spectrum of 4

¹³C NMR spectrum of 5

¹³C NMR spectrum of 6

S35

¹³C NMR spectrum of 9

¹³C NMR spectrum of 10

¹³C NMR spectrum of 11

¹³C NMR spectrum of 12

¹³C NMR spectrum of 14

¹³C NMR spectrum of 15

¹³C NMR spectrum of 16

¹³C NMR spectrum of 17

¹³C NMR spectrum of 19

¹H NMR spectrum of 20

¹H NMR spectrum of 21

¹H NMR spectrum of 22

¹H NMR spectrum of 23

¹H NMR spectrum of 24

¹³C NMR spectrum of 26

¹H NMR spectrum of 27

¹H NMR spectrum of 28

1.00

¹H NMR spectrum of 30

¹H NMR spectrum of 31

¹H NMR spectrum of 32

¹H NMR spectrum of 33

¹H NMR spectrum of 36

¹H NMR spectrum of 37

¹H NMR spectrum of 38

¹H NMR spectrum of 41

¹H NMR spectrum of 42

¹H NMR spectrum of 45

¹³C NMR spectrum of 46

¹³C NMR spectrum of 47

¹³C NMR spectrum of 48

¹³C NMR spectrum of 49

¹³C NMR spectrum of 50

¹³C NMR spectrum of 53