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General considerations for experimental methods

Chromatography separation of Diels-Alder adducts. The purification of the Diels-Alder adducts
was performed via column chromatography on a Biotage Isolera One unit with the aid of 40 g
RediSep Gold normal phase column. The separations were performed on 500 mg portions of
crude material utilizing a dichloromethane/methanol mobile phase flowed at 100 mL/min. The
mobile phase was kept at 1% methanol for 3 column volumes (CVs), then swept to 10% methanol
over 8 column volumes, followed by an isocratic region at 10% methanol for 3 column volumes.

HPLC analysis for quantification of chemical concentrations. The chemical concentrations of the
samples from the reaction kinetics experiments were measured by high performance liquid
chromatography (HPLC) analysis. 0.2 g (200 pL) of sample was diluted in 0.2 g (200 puL) of MQ
water (2 times dilution by volume), and the diluted samples were filtered by syringe filter (20 um
pore) to analyze the concentrations of N-substituted maleimides (EMAL, 3-Maleimidopropionic
acid) and the Diels-Alder adducts (Entry 4,7). The concentrations of the Diels-Alder adducts (Entry
4,7) in aqueous solution were measured by a Water 2695 separation module equipped with an
Aminex HPX-87H (Bio-Rad) column and a Waters 2998 PDA detector, set at 210 nm, while the
concentrations of N-substituted maleimides (EMAL, 3-Maleimidopropionic acid) were measured
with the PDA detector, set at 310 nm. The temperature of the HPLC column was maintained at
50°C, and the flow rate of the mobile phase (pH 2 water, acidified by sulfuric acid) was 0.6
mL/min.

NMR analysis for the compounds. 13C quantitative nuclear magnetic resonance (QNMR), and 2D
HSQC NMR spectra were obtained using a Brucker Avance-500 spectrometer. Tetramethylsilane
(TMS) (6: 0 ppm) or deuterated solvents (e.g. MeOD, CDCI3, DMSO-d6) were used as a reference
for chemical shifts.

General considerations for toxicity assays. Candida spp. cells were streaked on a yeast peptone
dextrose (YPD) agar plate from a frozen stock solution and grown overnight at 30°C. For each
assay, a colony was collected from the YPD plate and grown overnight in 15 mL centrifuge tubes
at 30°C in liquid YPD broth, and cells were then washed, resuspended, and prepared for
subsequent experiments. S. aureus cells were maintained in a similar fashion but on trypsin-soy
agar plates from frozen stock. For time-kill experiments, C. albicans colonies on agar plates were
counted manually. Absorbance measurements used in XTT assays were acquired at 490 nm using
a plate reader (EL800 Universal Microplate Reader, Bio-Tek Instruments, Inc).






Figures and Tables
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Figure S1. HPLC analysis for maleimide exchange at pH 5.0; After retro Diels-Alder reaction of PHAH-
EMAL at 37°C for 68 h, samples were collected by adding the maleimide (black) and carrying out Diels-

Alder reaction at 22°C for 1day (green), 2day (blue), and 3day (red).
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Figure S2. Simulation of reaction kinetics for the yield of EMAL at pharmacokinetic feed concentration
([PHAH-EMAL],=256 pg/mL=0.92 mM) under (a) pH7.4, (b) pH6.0, and (c) pH5.0 at 37°C in biological broth.
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Figure S3. (a) 'H NMR and (b) 3C gNMR of HAH by aldol-condensation of HMF and acetone. *H NMR: (500
MHz, MeOD) 6: 7.57 (1H), 7.48 (1H), 6.97 (1H), 6.94 (1H), 6.82-6.80 (2H), 6.47-6.45 (2H), 4.58 (4H) ppm,
13C qNMR: (126 MHz, MeOD) &: 190.47 (1C), 159.67 (2C), 152.49 (2C), 131.00 (2C), 123.41 (2C), 118.83
(2C), 111.42 (2C), 57.60 (2C) ppm.
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Figure S4. (a) *H NMR and (b) 13C gNMR of PHAH by HAH hydrogenation over Cu/y-Al,0;. *H NMR: (500
MHz, MeOD) 6 6.15 (d, 2H), 5.94 (d, 2H), 4.42 (s, 4H), 2.85-2.80 (m, 8H) ppm, 3C gNMR (126 MHz, MeQD)
§210.39 (1C), 155.86 (2C), 154.35 (2C), 109.24 (2C), 106.86 (2C), 57.39 (2C), 41.43 (2C), 23.09 (2C) ppm.
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Figure S5. (a) *H NMR and (b) 3C gqNMR of FHAH by HAH hydrogenation over Ru/C. *H NMR: (500 MHz,
MeOD) & 3.96-3.90 (m, 2H), 3.90-3.83 (m, 2H), 3.55-3.46 (m, 4H), 2.02-1.88 (m, 4H), 1.75-1.36 (m, 12H)
ppm, 13C gNMR (126 MHz, MeOD) 6 81.62 (1C), 81.30 (1C), 81.01 (2C), 72.41-72.24 (1C), 65.89-65.86 (2C),
35.11-34.85 (2C), 33.08 (2C), 32.02-31.99 (2C), 28.47-28.40 (2C) ppm (Splits of 3C chemical shifts resulted
from diastereoisomers).
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Figure S6. Characterization of PHAH-Amino Acid 1 (Amino acid 1 represents 3-Maleimidopropionic acid)
by (a) 13C gNMR and (b) 2D HSQC NMR spectrum (Red dot: -CH; and =CH group, Blue dot: =CH, group,
Deuterated solvent: DMSO-dg).
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Figure S7. Characterization of PHAH-Amino Acid 2 (Amino acid 2 represents 6-Maleimidohexanoic acid)
by (a) 13C gNMR and (b) 2D HSQC NMR spectrum (Red dot: -CH; and =CH group, Blue dot: =CH, group,
Deuterated solvent: DMSO-dg).
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Figure S8. Characterization of PHAH-HOMI (HOMI represents N-Hydroxymaleimide) by (a) *3C gNMR and
(b) 2D HSQC NMR spectrum (Red dot: -CH;3; and =CH group, Blue dot: =CH, group, Deuterated solvent:
DMSO-dg).
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Figure S9. Characterization of PHAH-EMAL (EMAL represents N-ethyl maleimide) by (a) 3C gNMR and (b)
2D HSQC NMR spectrum (Red dot: -CH3 and =CH group, Blue dot: =CH, group, Deuterated solvent: DMSO-

de).
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Figure S10. Characterization of PHAH-BMAL (BMAL represents N-benzyl maleimide) by (a) *3C gNMR and
(b) 2D HSQC NMR spectrum (Red dot: -CH;3; and =CH group, Blue dot: =CH, group, Deuterated solvent:
CDCls), Split chemical shifts in 13C gNMR resulted from endo- and exo- isomers.
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Figure S11. Characterization of PHAH-MAL-H (Hydrogenated PHAH-MAL) by (a) 3*C gNMR and (b) 2D HSQC
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Figure S13. Characterization of PHAH-BMAL-H (Hydrogenated PHAH-BMAL) by (a) 3C gNMR and (b) 2D
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Figure S14. Plots of concentration-dependent growth inhibition of C. albicans by compounds. C. albicans
cells (5x103 cells/mL) were incubated with compounds for 48 h and susceptibility was assessed using an
XTT reduction assay to compare the absorbance at 490 nm for compound-treated samples and untreated
samples. Data points are the average of at least two technical replicates each and error bars represent
the standard deviation. Graphs are shown for (a) Entries 1-3, (b) Entries 4-8, (c) Entries 9-11. Each viability
curve was normalized against a DMSO vehicle control, shown in black circles.
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Figure S15. Plots of concentration-dependent growth inhibition of S. aureus by compounds. S. aureus cells
(108 cells/mL) were incubated with compounds for 24 h and susceptibility was assessed using an XTT
reduction assay to compare the absorbance at 490 nm for compound-treated samples and untreated
samples. Data points are the average of at least two technical replicates each and error bars represent
the standard deviation. Graphs are shown for (a) Entries 1-3, (b) Entries 4-8, (c) Entries 9-11. DMSO vehicle
controls were added as comparison.
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Figure S16. Characterization of cytotoxicity against MDA-MB-231 triple-negative human breast cancer
cells. MDA-MB-231 cells were seeded at (25,000 cells/mL) for 24 h and then incubated with compounds
for 48 h and cytotoxicity was assessed using an ATP luminescence assay (CellTiterGlo 2.0) to compare the
luminescence for compound-treated samples and untreated samples. Data points are the average of at
least two technical replicates each and error bars represent the standard deviation. Graphs are shown for
(a) Entries 1-3, (b) Entries 4-8, (c) Entries 9-11. Each viability curve was normalized against a DMSO vehicle
control, shown in black circles.
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Figure S17. Characterization of cytotoxicity against MCF-10A human mammary epithelial cells. MCF-10A
cells were seeded at (25,000 cells/mL) for 24 h and then incubated with compounds for 48 h and
cytotoxicity was assessed using an ATP luminescence assay (CellTiterGlo 2.0) to compare the
luminescence for compound-treated samples and untreated samples. Data points are the average of at
least two technical replicates each and error bars represent the standard deviation. Graphs are shown for
(a) Entries 1-3, (b) Entries 4-8, (c) Entries 9-11. Each viability curve was normalized against a DMSO vehicle

control, shown in black circles.
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Figure S18. Characterization of cytotoxicity against NIH-3T3 mouse fibroblast cells. NIH-3T3 cells were
seeded at (25,000 cells/mL) for 24 h and then incubated with compounds for 48 h and cytotoxicity was
assessed using an ATP luminescence assay (CellTiterGlo 2.0) to compare the luminescence for compound-
treated samples and untreated samples. Data points are the average of at least two technical replicates
each and error bars represent the standard deviation. Graphs are shown for (a) Entries 1-3, (b) Entries 4-
8, (c) Entries 9-11. Each viability curve was normalized against a DMSO vehicle control, shown in black

circles.
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Figure S19. Characterization of cytotoxicity against human umbilical vein endothelial cells (HUVECs).
HUVECs were seeded at (25,000 cells/mL) for 24 h and then incubated with compounds for 48 h and
cytotoxicity was assessed using an ATP luminescence assay (CellTiterGlo 2.0) to compare the
luminescence for compound-treated samples and untreated samples. Data points are the average of at
least two technical replicates each and error bars represent the standard deviation. Graphs are shown for
(a) Entries 1-3, (b) Entries 4-8, (c) Entries 9-11. Each viability curve was normalized against a DMSO vehicle
control, shown in black circles.
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Figure S20. pH-dependent antifungal MIC characterization assay of PHAH-EMAL against C. albicans. C.
albicans cells (5x103 cells/mL) were incubated with compounds for 48 h in different pH broth (RPMI 1640
buffered with citrate-phosphate to adjust pH) and susceptibility was assessed using an XTT reduction
assay to compare the absorbance at 490 nm for compound-treated samples and untreated samples. Data
points are the average of at least two technical replicates each and error bars represent the standard
deviation. Graphs are shown for (a) Trial 1, (b) Trial 2, and (c) Trial 3. DMSO vehicle controls at different
pH were added as negative controls.
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Figure S21. pH-dependent antifungal MIC characterization assay of PHAH-EMAL against C. parapsilosis. C.
parapsilosis cells (5x103 cells/mL) were incubated with compounds for 48 h in different pH broth (RPMI
1640 buffered with citrate-phosphate to adjust pH) and susceptibility was assessed using an XTT reduction
assay to compare the absorbance at 490 nm for compound-treated samples and untreated samples. Data
points are the average of at least two technical replicates each and error bars represent the standard
deviation. Graphs are shown for (a) Trial 1 and (b) Trial 2. DMSO vehicle controls at different pH were
added as negative controls.
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Figure S22. pH-dependent antifungal MIC characterization assay of PHAH-EMAL against C. tropicalis. C.
tropicalis cells (5x103 cells/mL) were incubated with compounds for 48 h in different pH broth (RPMI 1640
buffered with citrate-phosphate to adjust pH) and susceptibility was assessed using an XTT reduction
assay to compare the absorbance at 490 nm for compound-treated samples and untreated samples. Data
points are the average of at least two technical replicates each and error bars represent the standard
deviation. Graphs are shown for (a) Trial 1 and (b) Trial 2. DMSO vehicle controls at different pH were
added as negative controls.
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Figure S23. pH-dependent antifungal MIC characterization assay of EMAL against C. albicans, C. tropicalis,
and C. parapsilosis. Cells (5%103 cells/mL) were incubated with compounds for 48 h in different pH broth
(RPMI 1640 buffered with citrate-phosphate to adjust pH) and susceptibility was assessed using an XTT
reduction assay to compare the absorbance at 490 nm for compound-treated samples and untreated
samples. Data points are the average of at least two technical replicates each and error bars represent
the standard deviation. Graphs are shown for (a) C. albicans, (b) C. tropicalis, and (c) C. parapsilosis. DMSO
vehicle controls at different pH were added as negative controls.



Table S1. The mean values of the regressed rate constants for Diels-Alder, retro Diels-Alder, and
degradation under different pH conditions at 37°C in biological broth.

4 [

N— ) & Retro Diels-Alder (k_,) o ( oH [

| I o O""'.i?"' ) ) +20 i o
Intermediate EMAL PHAH EMAL
Degraded PHAH-EMAL
pH k4 (h) k; (mM'h) ko (hT) kq (07) (katkollky (Kitko)k; (MM)
7.4 0.0007 0.0206 0.0092 0.0096 0.85 0.41
6.0 0.0095 0.0646 0.0059 0.0026 5.92 0.24
5.0 0.0130 0.0535 0.0068 0.0010 10.8 0.37

Table S2. The composition of RPMI 1640 Broth with citrate-phosphate buffer at different pH.

Molar Concentration (M)

pH Disodium Phosphate Citric Acid
(Na,HPOQ,)

5.0 0.103 0.049

6.0 0.126 0.037

7.4 0.181 0.009




