Multicomponent synthesis of di-aryl dithiocarbamates via electron donor-acceptor photoactivation with thianthrenium salts.

Min Liu^a, Yong Qian^a, Yanqi Wu^{*b,a} and Fengzhi Zhang^{*b,a}

^a Zhejiang University of Technology, Hangzhou, 310014, P.R.China.

^b School of Pharmaceutical Science, Hangzhou Medical College, Hangzhou, 310013, P.R.China

Email: fengzhi_zhang@hotmail.com

Table of contents

I.	General informations	2
II.	Optimization of reaction conditions.	4
III.	Experimental procedures.	7
	General procedure for the synthesis of S-Aryl Dithiocarbamates	7
	Gram-scale reaction	8
IV.	Experiments of investigations on the mechanism	10
	UV-vis absorption spectra	10
	Job's plot	10
	Light on/off experiment	12
	Radical Clock Cyclization Experimet	13
V.	Characterization of products	14
VI.	Reference	31
VII.	NMR spectra	

I. General informations.

All reagents were obtained from commercial suppliers and used without further purification. Aryl thianthrenium Salts **2** were prepared from the previous procedures.^{1, 4} Yields for all compounds were determined by the column chromatography which was generally performed on silica gel (200-300 mesh) using petroleum ether 40-60 (PE)/EtOAc as eluent, and reactions were monitored by thin layer chromatography (TLC) on a glass pate coated with silica gel with fluorescent indicator (GF254) using UV light. The ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker ADNANCE III 500 MHz using CDCl₃ as solvent with TMS as internal standard. Chemical shifts are given in ppm (δ) referenced to CDCl₃ with 7.26 for ¹H and 77.16 for ¹³C, and to DMSO-d₆ with 2.50 for ^{*1*}H and 39.52 for ^{*13*}C. Signals are abbreviated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet, or combinations thereof, and coupling constants are expressed in hertz. Melting points were measured on a SGW_® X-4B apparatus and uncorrected. HRMS were recorded on Agilent 6210TOF LC/MS mass spectrometer. UV-visible spectroscopy was recorded on a Shimadzu UV-2250 UV-visible spectrophotometer.

All reactions were investigated in borosilicate glass vessels irradiated by a blue light LED manufactured by Xuzhou Ai Jia Electronic Technology Co., Ltd. without using filters.

Figure S1. The blue LED lamp.

by 已参数: 色品坐标:x=0.1678 y=0.0129/u'=0.2381 v'=0.0411 duv=-2.453e=001 相关色温:Tc=100000K 主波长:λd=436.9nm 色纯度: Purity=98.9% 色比:R=2.3% G=25.7% B=72.0% 峰值波长:λp=424.6nm 半宽度:Δλd=18.8nm 显色指数:Ra==64.8 R1 =14 R2 =-39 R3 ==-186 R4 ==-142 R5 =18 R6 ==-39 R7 ==-77 R8 ==-68 R9 ==-206 R10==-254 R11==-152 R12==-121 R13=10 R14==-46 R15=47 光度参数:

光通量 Φ = 0.9319 lm 光效: 4.37 lm/W Φe = 82.20 mW

Figure S2. The spectrum of our lamp

II. Optimization of reaction conditions.

Pł	$\begin{array}{ccc} H & 1. \ \mathrm{CS_2CO_3}, \mathrm{C} \\ & & \\ & \\ & & \\ $	S ₂ 2. 2a 420 nm LED 35-40 ^o C, N ₂ , 8h	Ph-N-S- 3a	Me Me	OTf 9
Entry ^a	Solvent	Yield of 3a ^b	Entry ^a	Solvent	Yield of 3a ^b
1	DMF	52%	5	Acetone	N.D.°
2	MeCN	messy	6	PhMe	Trace
3	DCE	N.D. °	7	H ₂ O	44%
4	MeOH	messy	8	DMSO	80%

Table S1: Screening of solvents.

^a **1a** (1.0 eq.), CS₂ (2.0 eq.) and CS₂CO₃ (2.0 eq.) were dissolved in solvent (2 mL), stirred for 1h at 40 °C; then **2a** (0.2 mmol) was added, irradiation with 10w blue LED (420 nm) at room temperature (~35-40 °C) under N₂ for 8h. ^{*b*} Isolated yield. ^c N.D. = No detected.

Table S2: Screening of light sources.

$\begin{array}{c} H \\ N \\ Ph \end{array} \stackrel{1.}{{\longrightarrow}} CS_2CO_3, CS_3 \\ \hline DMSO \\ 1a \\ 40 \\ ^{\circ}C, 1h \end{array}$	S_2 2. 2a \downarrow \downarrow \downarrow \downarrow Ph \downarrow S light sources 35-40 °C, N ₂ , 8h 3a	$Me \qquad Me \qquad 2a \qquad S + OTf$
Entry ^a	Light source	Yield of 3a ^b
1	420 nm (10 W)	80%
2	460 nm (10 W)	70%
3	395 nm (10 W)	44%
4	White CFL	48%
5	Dark	0%

^a **1a** (1.0 eq.), CS₂ (2.0 eq.) and CS₂CO₃ (2.0 eq.) were dissolved in DMSO (2 mL), stirred for 1h at 40 °C; then **2a** (0.2 mmol) was added, irradiation with different lights at room temperature (\sim 35-40 °C) under N₂ for 8h. ^{*b*} Isolated yield.

Pł	H 1.Base · CS Me DMSO 1a 40 °C, 1h	2 2. 2a 420 nm LED 35-40 °C, N ₂ , 8h	Ph-N-S- 3a		ŌTf le a
Entry ^a	Base	Yield of 3a ^b	Entry ^a	Base	Yield of 3a ^b
1	NaOH	N. D. ^c	5	CsF	75%
2	K ₂ CO ₃	63%	6	КОН	59%
3	Na ₂ CO ₃	80%	7	Et ₃ N	55%
4	K ₃ PO ₄	messy	8	none	N. R. ^d

Table S3: Screening of bases.

^{*a*} **1a** (1.0 eq.), CS₂ (2.0 eq.) and base (2.0 eq.) were dissolved in DMSO (2 mL), stirred for 1h at 40 °C; then **2a** (0.2 mmol) was added, irradiation with10w blue LED (420 nm) at room temperature (~35-40 °C) under N₂ for 8h. ^{*b*} Isolated yield. ^{*c*} N.D. = No detected. ^{*d*} N.R. = No reaction.

	H 1 Ph ^{/ Me}	.Na ₂ CO ₃ , CS ₂ DMSO 40 °C, 1h	2 2. 2a 420 nm LEI 35-40 °C, N ₂ ,	→ Ph N S 8h	S 3a	e Me 2a	TTC
a	CS_2	Na ₂ CO ₃	Yield of	a a	CS_2	Na ₂ CO ₃	Yield of
Entry	(X eq.)	(X eq.)	3a ^b	Entry	(X eq.)	(X eq.)	3a ^b
1	1.0	2.0	37%	4	1.5	2.0	52%
2	1.0	1.1	40%	5	2.5	2.0	70%
3°	2.0	2.0	74%	6	2.0	1.1	80%

Table S4: Screening of the amount of CS₂ and Na₂CO₃

^a **1a** (1.0 eq.), CS₂ (X eq.) and Na₂CO₃ (X eq.) were dissolved in DMSO (2 mL), stirred for 1h at 40 °C; then **2a** (0.2 mmol) was added, irradiation with 10w blue LED (420 nm) at room temperature (~35-40 °C) under N₂ for 8h. ^{*b*} Isolated yield. ^{*c*} **1a** (1.0 eq.), CS₂ (2 eq.), Na₂CO₃ (2.0 eq.) and **2a** (0.2 mmol) were dissolved in solvent. irradiation with 10w blue LED (420 nm) at room temperature (~35-40 °C) under N₂ for 8h.

H 1 Ph ^{/N} Me 1a	$\begin{array}{c} . \operatorname{Na_2CO_3, CS_2} & 2. 2a \\ \hline DMSO & 420 \text{ nm LED} \\ 40 ^{\circ}\text{C}, 1h & 35-40 ^{\circ}\text{C}, N_2, 8h \end{array} \xrightarrow{\operatorname{Me}} \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	St OTf Me 2a
Entry ^a	Solvent	Yield of 3a ^b
1	DMSO (1 mL)	59%
2	DMSO (4 mL)	45%
3	DMSO : H ₂ O (0.4 mL : 1.6 mL)	55%
4	DMSO : H ₂ O (1.0 mL : 1.0 mL)	81%
5	DMSO : H ₂ O (0.5 mL : 0.5 mL)	74%
6 ^c	DMSO : H ₂ O (1.0 mL : 1.0 mL)	50%
7 ^d	DMSO : H ₂ O (1.0 mL : 1.0 mL)	60%
8 ^d	DMSO (2 mL)	56%

Table S5: Screening of the mixture solvents and others

^{*a*} **1a** (1.0 eq.), CS₂ (2 eq.) and Na₂CO₃ (1.1 eq.) were dissolved in solvent (X mL), stirred for 1h at 40 °C; then **2a** (0.2 mmol) was added, irradiation with 10w blue LED (420 nm) at room temperature (~35-40 °C) under N₂ for 8h. ^{*b*} Isolated yield. ^{*c*} air atmosphere. ^{*d*} **1a** (1.0 eq.), CS₂ (2 eq.), Na₂CO₃ (1.1 eq.) and **2a** (0.2 mmol) were dissolved in solvent. irradiation with 10w blue LED (420 nm) at room temperature (~35-40 °C) under N₂ for 8h.

III. Experimental procedures.

General procedure for the synthesis of S-Aryl Dithiocarbamates.

General procedure A: To a 5 mL glass tube was charged with secondary aromatic or aliphatic amine (1.0 equiv), CS_2 (25 µL, 0.4 mmol, 2.0 eq.), and Na_2CO_3 (23.3 mg, 0.22 mmol, 1.1 equiv) in 2 mL mixture solvent (DMSO : $H_2O = 1$ mL : 1 mL) for 1h at 40 °C, then aryl thianthrenium salt **2** (0.2 mmol) was added, the tube was sealed with a rubber plug and purged with N₂ for three times. The reaction was stirred and irradiated with a 420 nm blue LEDs (approximately 2 cm away from the light source) at room temperature (the actual reaction temperature is about 35~40 °C) for 8 h. The reaction mixture was diluted with 25.0 mL of dichloromethane, followed by washing with 5 mL of H₂O. The dichloromethane layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The resulting crude product was purified by column chromatography (eluent: PE/AcOEt) to provide the products **3** or **4**.

General procedure B: To a 5 mL glass tube was charged with secondary aromatic or aliphatic amine (1.0 equiv), CS₂ (25 μ L, 0.4 mmol, 2.0 eq.), and Cs₂CO₃ (130.4 mg, 0.4 mmol, 2.0 equiv) in 2 mL mixture solvent (DMSO : H₂O = 1 mL : 1 mL) for 5h at 40 °C, then aryl thianthrenium salt **2** (0.2 mmol) was added, the tube was sealed with a rubber plug and purged with N₂ for three times. The reaction was stirred and irradiated with a 420 nm blue LEDs (approximately 2 cm away from the light source) at room temperature (the actual reaction temperature is about 35~40 °C) for 12 h. The reaction mixture was diluted with 25.0 mL of dichloromethane, followed by washing with 5 mL x 2 of H₂O. The dichloromethane layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The resulting crude product was purified by column chromatography (eluent: PE/AcOEt) to provide the products **3m-q**.

General procedure C: To a 5 mL glass tube was charged with secondary aromatic or aliphatic amine (1.0 equiv) and CS₂ (25 μ L, 0.4 mmol, 2.0 eq.) in 1.5 mL anhydrous DMSO at 0 °C, the tube was sealed with a rubber plug and purged with N₂ for three times. Then *n*-BuLi (0.27 mL, 1.5 M in THF, 0.4 mmol, 2.0 equiv) was added slowly, and warm to 40 °C gradually, stirred for 5h. Finally, aryl thianthrenium salt **2** (0.2 mmol) was added, the reaction was stirred and irradiated with a 420 nm blue LEDs (approximately 2 cm away from the light source) at room temperature (the actual reaction temperature is about 35~40 °C) for 8 h. The reaction mixture quenched with aqueous NH₄Cl solution, followed by diluting with 25.0 mL of dichloromethane and washing with 5.0 mL x 2 of H₂O. The dichloromethane layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The resulting crude product was purified by column chromatography (eluent: PE/AcOEt) to provide the products **3h** and **3j**.

Gram-scale reaction

To a 100 mL Three-necked flask equipped with a magnetic stir bar, added *N*-methylaniline **1a** (0.55 mL, 5 mmol), CS₂ (0.63 mL, 10 mmol), and Na₂CO₃ (0.59 g, 5.5 mmol) in DMSO (50 mL). The mixture was stirred for 1h at 40 °C before the aryl thianthrenium salt **2a** (2.28 g, 5 mmol) was added. Then the Three-necked flask was connected to a peristaltic pump with teflon catheters as shown in **Figure S3**. And the whole unit was purged with N₂ for three times. The reaction was initiated by the peristaltic pump with a flow rate 10.0 mL min⁻¹ under 420 nm blue LEDs for 5h at room temperature. The reaction mixture was diluted with 300 mL of dichloromethane, followed by washing with 50 mL X 2 of H₂O. The dichloromethane layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The resulting crude product was purified by column chromatography (PE/AcOEt = 70 : 1) to provide the product **3a** as a yellow solid (0.90 g, 66%). Additionally, the thianthrenium (TT) **2a'** was recovered as a white solid (0.97 g, 90%).

Figure S3. Gram-scale experiment

IV. Experiments of investigations on the mechanism.

UV-vis absorption spectra

UV/vis absorption spectra were measured in a 1 cm quartz cuvette using a Shimadzu UV-2250 UV/Visible spectrophotometer. Absorption spectra of individual reaction components and mixtures thereof were recorded as shown in **Figure S4**. A bathochromic shift was observed for a mixture of 0.05 M [**1a** + thianthrenium salt **2a** + $CS2 + Et_3N$] in DMSO, which was a visibly intense yellow in color. This indicates the formation of an electron donor-acceptor (EDA) complex (red line 3).

Figure S4. UV-vis absorption spectra of various combinations

Job's plot

Two equimolar (0.02 M) solution of 2a and 5a (where 5a was generated ² through the reaction of CS₂ and 1a in the presence of Et₃N) in DMSO were prepared. Then 7 samples were prepared with specific volumes of the two stock solutions to give a total volume of 4 mL and were analysed by UV/vis spectroscopy. The absorbance values at 420 nm (corresponding to the EDA complex's absorption) were measured (**Table S6**)

and plotted as a function of the molar fraction of thiolate **5a** by using UV/vis spectroscopy (**Figure S5**). A parabolic curve with a maximum absorbance value at 50% mol fraction of thianthrenium salt **2a** was obtained, indicating a 1:1 EDA complex between **2a** and the conjugated base of **5a**.

V_{2a} (mL)	V _{5a} (mL)	Xi 2a	Xi 5a	δA_{2a}^{420}	$\Delta(\delta A_{2a}^{420})$ * Xi _{2a}
3.5	0.5	0.875	0.125	0.1851	0.1620
3.0	1.0	0.750	0.250	0.3000	0.2250
2.5	1.5	0.625	0.375	0.5034	0.3146
2.0	2.0	0.500	0.500	0.6678	0.3339
1.5	2.5	0.375	0.625	0.7836	0.2939
1.0	3.0	0.250	0.750	0.9800	0.2450
0.5	3.5	0.125	0.875	1.0847	0.1356

Table S6. The absorbance values of various combinations of 2a and 5a

Figure S5. Job's plot for ratio between 2a and 5a

Light on/off experiment

To a 5 mL glass tube was charged with *N*-methylaniline **1a** (55 μ L, 0.5 mmol), CS₂ (63 μ L, 1.0 mmol), and Na₂CO₃ (58.3 mg, 0.55 mmol) in 5 mL DMSO for 1h at 40 °C, then aryl thianthrenium (TT) salt **2a** (228 mg, 0.5 mmol) was added, the tube was sealed with a rubber plug and purged with N₂ for three times. The reaction was stirred and irradiated with a 420 nm blue LEDs (approximately 2 cm away from the light source) at room temperature (the actual reaction temperature is about 35~40 °C) for 1h at which point a reaction aliquot (0.5 mL) was taken, and diluted with CDCl₃ and analysed by ¹H NMR spectroscopy with anisole as an internal standard. The light was switched off and the mixture was stirred in the dark for 1h at which point a reaction aliquot (0.5 mL) was taken, and illuted by ¹H NMR spectroscopy with anisole as an internal standard. The light was switched off and the mixture was stirred in the dark for 1h at which point a reaction aliquot (0.5 mL) was taken, and illuted by ¹H NMR spectroscopy with anisole as an internal standard. The light was switched off and the mixture was stirred in the dark for 1h at which point a reaction aliquot (0.5 mL) was taken, and diluted with CDCl₃ and analysed by ¹H NMR spectroscopy with anisole as an internal standard. The light was switched off and the mixture was stirred in the dark for 1h at which point a reaction aliquot (0.5 mL) was taken, and diluted with CDCl₃ and analysed by ¹H NMR spectroscopy with anisole

Figure S6. Light on/off experiment

Radical Clock Cyclization Experimet

To a 5 mL glass tube was charged with *N*-methylaniline (0.2 mmol), CS₂ (25 μ L, 0.4 mmol, 2.0 eq.), and Na₂CO₃ (23.3 mg, 0.22 mmol, 1.1 equiv.) in DMSO (2 mL) for 1h at 40 °C, then aryl thianthrenium salt **2r** (0.2 mmol) was added, the tube was sealed with a rubber plug and purged with N₂ for three times. The reaction was stirred and irradiated with a 420 nm blue LEDs (approximately 2 cm away from the light source) at room temperature (the actual reaction temperature is about 35~40 °C) for 8 h. The reaction mixture was diluted with 25.0 mL of dichloromethane, followed by washing with 5 mL of H₂O. The dichloromethane layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The resulting crude product was purified by column chromatography eluenting with PE/AcOEt (100:1 to 50:1, v/v) to provide the products **4r** (11.3 mg, 14%) as a brown solid, and **6** (2.6 mg, 6%) as a colorless oil.

V. Characterization of products

p-Tolyl methyl(phenyl)carbamodithioate. (3a) Following the general procedure A, 3a which was purified by PE/EtOAc (70:1) and obtained as a yellow solid (44 mg, 80%). Mp = 119-120 °C. $\mathbf{R_f} = 0.25$ (PE/EtOAc = 50:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 – 7.44 (m, 3H), 7.40 – 7.34 (m, 2H), 7.29 (d, *J* = 8.1 Hz, 2H), 7.21 (d, *J* = 8.1 Hz, 2H), 3.78 (s, 3H), 2.38 (s, 3H). ¹³C NMR (101 MHz, Chloroform*d*) δ 200.20, 145.03, 140.20, 136.63 (2C), 129.93 (2C), 129.81 (2C), 129.19, 129.11, 126.97 (2C), 46.57, 21.52. HRMS m/z (ESI) calcd for C₁₅H₁₅NNaS₂ [M + Na]⁺ 296.0538 ; found 296.0528.

p-Tolyl (4-fluorophenyl) (methyl) carbamodithioate. (3b) Following the general procedure A, 3b which was purified by PE/EtOAc (70:1) and obtained as a yellow solid (40 mg, 69%). Mp = 114-115 °C. $\mathbf{R_f} = 0.25$ (PE/EtOAc = 50:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 – 7.35 (m, 2H), 7.31 (d, J = 8.2 Hz, 2H), 7.28 – 7.18 (m, 4H), 3.79 (s, 3H), 2.41 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.64, 162.49 (d, J = 249.6 Hz), 140.91, 140.34, 136.59 (2C), 130.00 (2C), 128.92 (d, J = 9.1 Hz, 3C), 116.82 (d, J = 22.9 Hz, 2C), 46.59, 21.53. HRMS m/z (ESI) calcd for C₁₅H₁₄FNNaS₂ [M + Na]⁺ 314.0444 ; found 314.0444.

p-Tolyl (4-bromophenyl) (methyl) carbamodithioate. (3c) Following the general procedure A, 3c which was purified by PE/EtOAc (70:1) and obtained as a yellow solid (39 mg, 55%). Mp = 127-128 °C. $\mathbf{R_f} = 0.20$ (PE/EtOAc = 50:1).¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 – 7.61 (m, 2H), 7.34 – 7.21 (m, 6H), 3.78 (s, 3H), 2.41 (s, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ 200.31, 143.94, 140.39, 136.58 (2C), 133.08 (2C), 130.02 (2C), 128.83, 128.74 (2C), 123.08, 46.35, 21.53. HRMS m/z (ESI) calcd for C₁₅H₁₅BrNS₂ [M + H]⁺ 351.9824 ; found 351.9824.

p-Tolyl methyl (*p*-tolyl) carbamodithioate. (3d) Following the general procedure A, 3d which was purified by PE/EtOAc (70:1) and obtained as a yellow solid (40 mg, 70%). Mp = 129-130 °C. $\mathbf{R_f} = 0.20$ (PE/EtOAc = 50:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.30 (m, 4H), 7.26 (m, 4H), 3.79 (s, 3H), 2.46 (s, 3H), 2.41 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.22, 142.46, 140.15, 139.28, 136.64 (2C), 130.41 (2C), 129.91 (2C), 129.31, 126.63 (2C), 46.66, 21.53, 21.33. HRMS m/z (ESI) calcd for C₁₆H₁₇NNaS₂ [M + Na]⁺ 310.0695 ; found 310.0688.

p-Tolyl methyl (*o*-tolyl) carbamodithioate. (3e) Following the general procedure A, 3e which was purified by PE/EtOAc (70:1) and obtained as a yellow solid (30 mg, 52%). Mp = 131-132 °C. $R_f = 0.25$ (PE/EtOAc = 50:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.27 (m, 6H), 7.25 (d, *J* = 8.0 Hz, 2H), 3.74 (s, 3H), 2.41 (s, 3H), 2.37 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.13, 143.73, 140.19, 136.60 (2C), 135.26, 131.60, 129.94 (2C), 129.62, 129.05, 127.52, 127.19, 45.08, 21.55, 17.49. HRMS m/z (ESI) calcd for C₁₆H₁₇NNaS₂ [M + Na]⁺ 310.0695 ; found 310.0691.

p-Tolyl (4-methoxyphenyl) (methyl) carbamodithioate. (3f) Following the general procedure A, 3f which was purified by PE/EtOAc (30:1) and obtained as a yellow solid (36 mg, 59%). Mp = 107-108 °C. $\mathbf{R}_{\mathbf{f}} = 0.35$ (PE/EtOAc = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.29 (m, 4H), 7.24 (d, *J* = 7.8 Hz, 2H), 7.02 (d, *J* = 8.9 Hz, 2H), 3.89 (s, 3H), 3.79 (s, 3H), 2.41 (s, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ 200.66, 159.84, 140.14, 137.72, 136.62 (2C), 129.92 (2C), 129.44, 128.07 (2C), 114.85 (2C), 55.57, 46.78, 21.53. HRMS m/z (ESI) calcd for C₁₆H₁₇NNaOS₂ [M + Na]⁺ 326.0644 ; found 326.0643.

p-Tolyl (4-hydroxyphenyl) (methyl) carbamodithioate. (3g) Following the general procedure A, 3g which was purified by PE/EtOAc (20:1) and obtained as a yellow solid (31 mg, 54%). Mp = 170-171 °C. $\mathbf{R_f} = 0.10$ (PE/EtOAc = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.18 (m, 6H), 6.95 (d, J = 8.4 Hz, 2H), 5.43 (s, 1H), 3.78 (s, 3H), 2.40 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.83, 156.13, 140.22, 136.61 (2C), 129.96 (2C), 128.76, 128.26 (2C), 127.71, 116.46 (2C), 46.82, 21.54. HRMS m/z (ESI) calcd for C₁₅H₁₆NOS₂ [M + H]⁺ 290.0688 ; found 299.0664.

p-Tolyl methyl (pyridin-4-yl) carbamodithioate. (3h) Following the general procedure C, 3h which was purified by PE/EtOAc (2:1) and obtained as a yellow solid (27 mg, 50%). Mp = 155-157 °C. $\mathbf{R_f} = 0.20$ (PE/EtOAc = 2:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.81 (d, *J* = 5.3 Hz, 2H), 7.38 (d, *J* = 5.1 Hz, 2H), 7.31 (d, *J* = 8.2 Hz, 2H), 7.26 (d, *J* = 8.1 Hz, 2H), 3.79 (s, 3H), 2.41 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.00, 152.40, 151.58 (2C), 140.68, 136.55 (2C), 130.15 (2C), 128.18, 121.89 (2C), 45.80, 21.56. HRMS m/z (ESI) calcd for C₁₄H₁₄N₂NaS₂ [M + Na]⁺ 297.0491 ; found 297.0500.

p-Tolyl ethyl (phenyl) carbamodithioate. (3i) Following the general procedure A, 3i which was purified by PE/EtOAc (70:1) and obtained as a yellow solid (35 mg, 61%). Mp = 128-129 °C. $R_f = 0.25$ (PE/EtOAc = 50:1).¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 – 7.47 (m, 3H), 7.39 – 7.35 (m, 2H), 7.32 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 4.39 (q, J = 7.1 Hz, 2H), 2.41 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.71, 143.18, 140.14, 136.69 (2C), 129.89 (2C), 129.74 (2C), 129.20, 129.15, 128.05 (2C), 53.09, 21.53, 11.92. HRMS m/z (ESI) calcd for C₁₆H₁₈NS₂ [M + H]⁺ 288.0875 ; found 288.0868.

p-Tolyl diphenylcarbamodithioate. (3j) Following the general procedure C, 3j which was purified by PE/EtOAc (70:1) and obtained as a yellow solid (17 mg, 25%). Mp = 204-205 °C. $R_f = 0.30 (PE/EtOAc = 50:1)$. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 – 7.48 (m, 4H), 7.46 (t, J = 7.6 Hz, 4H), 7.41 – 7.33 (m, 4H), 7.25 (d, J = 7.9 Hz, 2H), 2.41 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 202.49, 145.44 (2C), 140.28, 136.53 (2C), 130.00 (2C), 129.62 (4C), 128.90, 128.32 (2C), 128.01 (4C), 21.56. HRMS m/z (ESI) calcd for C₂₀H₁₈NS₂ [M + H]⁺ 336.0875 ; found 336.0885.

p-Tolyl allyl (phenyl) carbamodithioate. (3k) Following the general procedure A,3k which was purified by PE/EtOAc (70:1) and obtained as a yellow solid (21 mg,

35%). **Mp** = 154-155 °C. **R**_f = 0.25 (PE/EtOAc = 50:1).¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.56 – 7.46 (m, 3H), 7.39 – 7.29 (m, 4H), 7.24 (d, *J* = 7.9 Hz, 2H), 6.05 (ddt, *J* = 16.7, 10.2, 6.4 Hz, 1H), 5.23 (d, *J* = 10.2 Hz, 1H), 5.20 – 5.11 (m, 1H), 4.94 (d, *J* = 6.4 Hz, 2H), 2.41 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 200.59, 140.22, 136.64 (2C), 131.01, 129.92 (2C), 129.61 (2C), 129.31, 129.24, 129.09, 128.08 (2C), 119.54, 60.70, 21.53. **HRMS m/z** (ESI) calcd for C₁₇H₁₈NS₂ [M + H]⁺ 300.0875 ; found 300.0876.

p-Tolyl morpholine-4-carbodithioate. (3m) Following the general procedure B, 3m which was purified by PE/EtOAc (10:1) and obtained as a yellow solid (36 mg, 71%). Mp = 136-137 °C. $R_f = 0.15$ (PE/EtOAc = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (d, J = 8.1 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 4.46 – 3.98 (m, 4H), 3.90 – 3.79 (m, 4H), 2.44 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.57, 140.63, 136.92 (2C), 130.10 (2C), 127.41, 66.32 (br, 2C), 51.26 (br, 2C), 21.57. The spectra data are matched with those reported. ^[3]

p-Tolyl pyrrolidine-1-carbodithioate. (3n) Following the general procedure B, 3n which was purified by PE/EtOAc (10:1) and obtained as a yellow solid (31 mg, 65%). Mp = 115-116 °C. $R_f = 0.30$ (PE/EtOAc = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 7.9 Hz, 2H), 3.96 (t, J = 7.0 Hz, 2H), 3.82 (t, J = 6.9 Hz, 2H), 2.43 (s, 3H), 2.15 (m, 2H), 2.02 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 193.58, 140.40, 136.77 (2C), 130.03 (2C), 127.70, 55.37, 51.04, 26.38, 24.42, 21.58. The spectra data are matched with those reported ^[3]

p-Tolyl 4-phenylpiperazine-1-carbodithioate. (30) Following the general procedure B, 30 which was purified by PE/EtOAc (15:1) and obtained as a yellow solid (30 mg, 46%). Mp = 168-169 °C. $\mathbf{R_f} = 0.4$ (PE/EtOAc = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 (d, J = 8.1 Hz, 2H), 7.38 – 7.27 (m, 4H), 6.98 (d, J = 7.5 Hz, 3H), 4.40 (d, J = 105.2 Hz, 4H), 3.38 (s, 4H), 2.45 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.16, 150.31, 140.60, 136.95 (2C), 130.11 (2C), 129.38 (2C), 127.61, 120.64, 116.40 (2C), 51.21(br), 50.24 (br), 48.84, 21.59. HRMS m/z (ESI) calcd for C₁₈H₂₁N₂S₂ [M + H]⁺ 329.1141 ; found 329.1150.

p-Tolyl (S)-2- (phenylcarbamoyl) pyrrolidine-1-carbodithioate. (3p) Following the general procedure B, 3p which was purified by PE/EtOAc (4:1) and obtained as a yellow solid (23 mg, 32%). Mp = 310-312 °C. $\mathbf{R_f} = 0.2$ (PE/EtOAc = 4:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.52 (s, 1H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 7.8 Hz, 2H), 7.35 – 7.26 (m, 4H), 7.11 (t, *J* = 7.4 Hz, 1H), 5.50 (d, *J* = 7.6 Hz, 1H), 3.95 (d, *J*

= 9.5 Hz, 2H), 2.63 (dd, J = 12.5, 6.8 Hz, 1H), 2.45 (m, 4H), 2.25 (m, 1H), 2.07 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 198.01, 167.32, 140.89, 137.93, 136.70 (2C), 130.19 (2C), 128.94 (2C), 127.19, 124.32, 120.12 (2C), 68.13, 51.77, 27.67, 25.21, 21.60. HRMS m/z (ESI) calcd for C₁₉H₂₁N₂OS₂ [M + H]⁺ 357.1090 ; found 357.1095.

Phenyl methyl(phenyl)carbamodithioate. (4b) Following the general procedure A, 4b which was purified by PE/EtOAc (70:1) and obtained as a yellow solid (31 mg, 60%). Mp = 90-91 °C. $R_f = 0.3$ (PE/EtOAc = 50:1). ¹H NMR (400 MHz, Chloroform*d*) δ 7.58 – 7.37 (m, 10H), 3.82 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.66, 144.94, 136.82 (2C), 132.60, 129.95, 129.87 (2C), 129.20, 129.06 (2C), 126.97 (2C), 46.59. HRMS m/z (ESI) calcd for C₁₄H₁₄NS₂ [M + H]⁺ 260.0562 ; found 260.0554.

4-Chlorophenyl methyl(phenyl)carbamodithioate. (4c) Following the general **procedure A**, 4c which was purified by PE/EtOAc (50:1) and obtained as a yellow solid (33 mg, 57%). Mp = 129-130 °C. $\mathbf{R_f} = 0.4$ (PE/EtOAc = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 – 7.49 (m, 3H), 7.42 – 7.32 (m, 6H), 3.81 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.77, 144.78, 138.01 (2C), 136.42, 131.04, 129.89 (2C), 129.33 (2C), 129.30, 126.93 (2C), 46.60. HRMS m/z (ESI) calcd for C₁₄H₁₃NClS₂ [M + H]⁺ 294.0172 ; found 294.0166.

4-Fluorophenyl methyl(phenyl)carbamodithioate. (4d) Following the general **procedure A**, 4d which was purified by PE/EtOAc (50:1) and obtained as a yellow solid (32 mg, 58%). Mp = 102-103 °C. $\mathbf{R_f} = 0.3$ (PE/EtOAc = 50:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 – 7.47 (m, 3H), 7.44 – 7.36 (m, 4H), 7.12 (t, *J* = 8.7 Hz, 2H), 3.81 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.44 (d, *J* = 2.1 Hz), 163.85 (d, *J* = 250.9 Hz), 144.77, 138.87 (d, *J* = 8.7 Hz, 2C), 129.89 (2C), 129.29, 128.04 (d, *J* = 3.3 Hz), 126.94 (2C), 116.32 (d, *J* = 22.1 Hz, 2C), 46.68. HRMS m/z (ESI) calcd for C₁₄H₁₃FNS₂ [M + H]⁺ 278.0468 ; found 278.0471.

4-Methoxyphenyl methyl(phenyl)carbamodithioate. (4e) Following the general **procedure A**, 4e which was purified by PE/EtOAc (20:1) and obtained as a yellow solid (35 mg, 60%). Mp = 125-126 °C. $\mathbf{R}_{\mathbf{f}} = 0.3$ (PE/EtOAc = 10:1).¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 – 7.46 (m, 3H), 7.42 – 7.37 (m, 2H), 7.36 – 7.31 (m, 2H), 6.99 – 6.90 (m, 2H), 3.85 (s, 3H), 3.81 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.80, 160.98, 144.99 (2C), 138.25, 129.81 (2C), 129.11, 126.96 (2C), 123.48, 114.63 (2C), 55.28, 46.63. HRMS m/z (ESI) calcd for C₁₅H₁₆NOS₂[M + H]⁺ 290.0668 ; found 290.0661.

2, 4-Dimethoxyphenyl methyl(phenyl)carbamodithioate. (4f) Following the general **procedure A**, **4f** which was purified by PE/EtOAc (10:1) and obtained as a yellow solid (35 mg, 55%). **Mp** = 142-143 °C. **R**_f = 0.2 (PE/EtOAc = 10:1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.56 – 7.49 (m, 2H), 7.49 – 7.40 (m, 3H), 7.27 (dd, *J* = 9.2, 1.5 Hz, 1H), 6.59 – 6.52 (m, 2H), 3.86 (s, 3H), 3.84 (s, 3H), 3.81 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 200.09, 163.18, 161.49, 145.22, 139.36, 129.79 (2C), 128.95, 126.98 (2C), 112.23, 105.32, 99.38, 56.18, 55.41, 46.66. **HRMS m/z** (ESI) calcd for C₁₆H₁₈NO₂S₂ [M + H]⁺ 320.0773 ; found 320.0778.

3-Formyl-4-methoxyphenyl methyl(phenyl)carbamodithioate. (4g) Following the general procedure A, 4g which was purified by PE/EtOAc (10:1) and obtained as a yellow solid (34 mg, 54%). Mp = 139-141 °C. $\mathbf{R}_{\mathbf{f}} = 0.1$ (PE/EtOAc = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 10.44 (s, 1H), 7.85 (d, J = 2.4 Hz, 1H), 7.60 (dd, J = 8.7, 2.4 Hz, 1H), 7.57 – 7.46 (m, 3H), 7.39 (d, J = 6.8 Hz, 2H), 7.06 (d, J = 8.7 Hz, 1H), 3.99 (s, 3H), 3.80 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.45, 188.77, 162.76, 144.77, 144.43, 137.11, 129.88 (2C), 129.28, 126.93 (2C), 125.27, 124.61, 112.42, 55.90, 46.66. HRMS m/z (ESI) calcd for C₁₆H₁₆NO₂S₂ [M + H]⁺ 318.0617 ; found 318.0612.

3-Cyano-4-methoxyphenyl methyl(phenyl)carbamodithioate. (4h) Following the general procedure A, 4h which was purified by PE/EtOAc (10:1) and obtained as a yellow solid (40 mg, 64%). Mp = 145-146 °C. $\mathbf{R}_{f} = 0.1$ (PE/EtOAc = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 – 7.48 (m, 5H), 7.41 – 7.35 (m, 2H), 7.02 (d, J = 8.7 Hz, 1H), 3.99 (s, 3H), 3.80 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.64, 162.28, 144.54, 143.17, 142.00, 129.95 (2C), 129.44, 126.89 (2C), 124.64, 115.61, 111.82, 102.76, 56.31, 46.75. HRMS m/z (ESI) calcd for C₁₆H₁₅N₂OS₂ [M + H]⁺ 315.0620 ; found 315.0622.

2-Methoxy-5-(trifluoromethyl)phenyl methyl(phenyl)carbamodithioate. (4i) Following the general procedure A, 4i which was purified by PE/EtOAc (10:1) and obtained as a yellow solid (30 mg, 42%). Mp = 121-122 °C. R_f = 0.15 (PE/EtOAc = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (dd, *J* = 8.2, 1.9 Hz, 1H), 7.63 (d, *J* = 2.4 Hz, 1H), 7.58 – 7.40 (m, 5H), 7.04 (d, *J* = 8.7 Hz, 1H), 3.92 (s, 3H), 3.81 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.31, 162.72, 144.95, 135.63 (q, *J* = 3.7 Hz), 129.88 (2C), 129.44 (q, *J* = 3.6 Hz), 129.22, 126.92 (2C), 123.37 (q, *J* = 287.1 Hz),123.15 (d, *J* = 33.2 Hz), 121.71, 111.47, 56.45, 46.56. HRMS m/z (ESI) calcd for C₁₆H₁₅F₃NOS₂ [M + H]⁺ 358.0542 ; found 358.0545.

4-(2-Oxopyrrolidin-1-yl)phenyl methyl(phenyl)carbamodithioate. (4j) Following the general **procedure A**, **4j** which was purified by PE/EtOAc (3:1) and obtained as a yellow solid (40 mg, 59%). **Mp** = 175-176 °C. **R**_f = 0.1 (PE/EtOAc = 4:1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.78 – 7.70 (m, 2H), 7.58 – 7.46 (m, 3H), 7.40 (t, *J* = 7.5 Hz, 4H), 3.90 (t, *J* = 7.0 Hz, 2H), 3.81 (s, 3H), 2.63 (t, *J* = 8.1 Hz, 2H), 2.24 – 2.12 (m, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 199.92, 174.46, 144.93, 140.89, 137.37 (2C), 129.84 (2C), 129.18, 127.43, 126.95 (2C), 119.59 (2C), 48.50, 46.58, 32.95, 17.96. **HRMS m/z** (ESI) calcd for C₁₈H₁₉N₂OS₂ [M + H]⁺ 343.0933 ; found 343.0935.

4-((Methyl(phenyl)carbamothioyl)thio)phenyl dimethylcarbamate. (4k) Following the general **procedure A**, **4k** which was purified by PE/EtOAc (5:1) and obtained as a yellow solid (46 mg, 67%). **Mp** = 144-146 °C. **R**_f = 0.3 (PE/EtOAc = 4:1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.58 – 7.44 (m, 3H), 7.44 – 7.35 (m, 4H), 7.19 (d, *J* = 8.7 Hz, 2H), 3.80 (s, 3H), 3.11 (s, 3H), 3.03 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 199.66, 154.32, 152.91, 144.88, 137.87 (2C), 129.86 (2C), 129.20, 128.86, 126.93 (2C), 122.29 (2C), 46.60, 36.72, 36.50. **HRMS m/z** (ESI) calcd for C₁₇H₁₈N₂NaO₂S₂ [M + Na]⁺ 369.0702 ; found 369.0705.

2, 3-Dihydrobenzofuran-5-yl methyl(phenyl)carbamodithioate. (41) Following the general **procedure A**, **41** which was purified by PE/EtOAc (50:1) and obtained as a yellow solid (40 mg, 66%). **Mp** = 158-159 °C. **R**_f = 0.1 (PE/EtOAc = 50:1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.57 – 7.45 (m, 3H), 7.38 (dd, *J* = 7.0, 1.7 Hz, 2H), 7.22 (s, 1H), 7.16 (d, *J* = 8.2 Hz, 1H), 6.82 (d, *J* = 8.2 Hz, 1H), 4.64 (t, *J* = 8.8 Hz, 2H), 3.81 (s, 3H), 3.25 (t, *J* = 8.7 Hz, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 201.26, 161.83, 145.01, 137.27, 133.52, 129.80 (2C), 129.08, 128.20, 126.94 (2C), 122.92, 110.03, 71.77, 46.65, 29.41. **HRMS m/z** (ESI) calcd for C₁₆H₁₆NOS₂ [M + H]⁺ 302.0668 ; found 302.0660.

4'-Iodo-[1,1'-biphenyl]-4-yl methyl(phenyl)carbamodithioate. (4m) Following the general **procedure A**, **4m** which was purified by PE/EtOAc (50:1) and obtained as a yellow solid (61 mg, 66%). **Mp** = 160-161 °C. **R**_f = 0.3 (PE/EtOAc = 50:1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.79 (d, *J* = 8.4 Hz, 2H), 7.61 (d, *J* = 8.3 Hz, 2H), 7.58 – 7.47 (m, 5H), 7.42 (d, *J* = 7.2 Hz, 2H), 7.38 (d, *J* = 8.4 Hz, 2H), 3.83 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 199.26, 144.94, 141.41, 139.69, 137.92 (2C), 137.21 (2C), 131.94, 129.88 (2C), 129.25, 129.07 (2C), 127.43 (2C), 126.96 (2C), 93.74, 46.60. **HRMS m/z** (ESI) calcd for C₂₀H₁₇INS₂ [M + H]⁺ 461.9842 ; found 461.9851.

4-(4-Bromophenoxy)phenyl methyl(phenyl)carbamodithioate. (4n) Following the general **procedure A**, **4n** which was purified by PE/EtOAc (50:1) and obtained as a yellow solid (43 mg, 50%). **Mp** = 140-141 °C. **R**_f = 0.3 (PE/EtOAc = 50:1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.61 – 7.45 (m, 5H), 7.39 (dd, *J* = 10.8, 8.0 Hz, 4H), 7.00 (dd, *J* = 8.8, 7.1 Hz, 4H), 3.82 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 199.86, 158.73, 155.24, 144.86, 138.56 (2C), 132.93 (2C), 129.88 (2C), 129.23, 126.96 (2C), 126.59, 121.63 (2C), 118.53 (2C), 116.74, 46.69. **HRMS m/z** (ESI) calcd for C₂₀H₁₇BrNOS₂ [M + H]⁺ 429.9929 ; found 429.9933.

9-Oxo-9H-thioxanthen-2-yl methyl(phenyl)carbamodithioate. (40) Following the general procedure A, 40 which was purified by PE/EtOAc (10:1) and obtained as a yellow solid (25 mg, 32%). Mp = 206-207 °C. $\mathbf{R_f} = 0.3$ (PE/EtOAc = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.65 – 8.58 (m, 2H), 7.70 – 7.46 (m, 8H), 7.45 – 7.41 (m, 2H), 3.82 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.48, 179.18, 144.78, 140.13, 139.20, 137.68, 136.78, 132.46, 131.01, 129.94, 129.92 (2C), 129.61, 129.35, 129.22, 126.97 (2C), 126.61, 126.53, 126.08, 46.56. HRMS m/z (ESI) calcd for C₂₁H₁₆NOS₃ [M + H]⁺ 394.0389 ; found 394.0390.

4-(4-(2-(Pyridin-2-yloxy)propoxy)phenoxy)phenyl methyl(phenyl) carbamodithioate. (4p) Following the general procedure A, 4p which was purified by PE/EtOAc (20:1) and obtained as a yellow solid (53 mg, 53%). Mp = 115-116 °C. $\mathbf{R}_{\mathbf{f}} = 0.3$ (PE/EtOAc = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (dd, J = 5.2, 1.9 Hz, 1H), 7.59 (m, 1H), 7.56 – 7.45 (m, 3H), 7.39 (d, J = 7.4 Hz, 2H), 7.32 (d, J =8.7 Hz, 2H), 7.04 (d, J = 9.0 Hz, 2H), 6.96 (dd, J = 11.3, 8.9 Hz, 4H), 6.91 – 6.86 (m, 1H), 6.77 (d, J = 8.3 Hz, 1H), 5.62 (q, J = 5.7 Hz, 1H), 4.22 (dd, J = 9.9, 5.3 Hz, 1H), 4.11 (dd, J = 9.9, 4.8 Hz, 1H), 3.81 (s, 3H), 1.52 (d, J = 6.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.26, 163.15, 160.35, 155.78, 149.03, 146.80, 144.94, 138.76, 138.32 (2C), 129.84 (2C), 129.15, 126.96 (2C), 125.13, 121.65 (2C), 117.37 (2C), 116.82, 115.89 (2C), 111.71, 71.02, 69.27, 46.65, 17.05. HRMS m/z (ESI) calcd for C₂₈H₂₇N₂O₃S₂ [M + H]⁺ 503.1459 ; found 503.1465.

Methyl 2-(4-chloro-2-((methyl(phenyl)carbamothioyl)thio)phenoxy)acetate. (4q) Following the general procedure A, 4q which was purified by PE/EtOAc (10:1) and obtained as a yellow solid (34 mg, 45%). Mp = 85-86 °C. $\mathbf{R}_{\mathbf{f}} = 0.2$ (PE/EtOAc = 10:1).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.57 – 7.50 (m, 2H), 7.50 – 7.43 (m, 3H), 7.38 (d, *J* = 7.4 Hz, 2H), 6.82 (dt, *J* = 8.4, 1.0 Hz, 1H), 4.66 (s, 2H), 3.83 (s, 3H), 3.80 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 197.48, 168.74, 157.47, 145.06, 137.58, 131.73, 129.88 (2C), 129.19, 126.93 (2C), 126.79, 123.98, 114.59, 66.73, 52.28, 46.56. **HRMS m/z** (ESI) calcd for C₁₇H₁₇ClNO₃S₂ [M + H]⁺ 382.0333 ; found 382.0333.

methyl 3-((methyl(phenyl)carbamothioyl)thio)-4-((3-methylbut-2-en-1-yl) oxy) bnzoate. (4r) $\mathbf{R}_{\mathbf{f}} = 0.2$ (PE/EtOAc = 50:1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.04 (dd, J = 8.7, 2.3 Hz, 1H), 7.83 (d, J = 2.2 Hz, 1H), 7.62 – 7.53 (m, 2H), 7.53 – 7.47 (m, 3H), 7.21 (d, J = 8.8 Hz, 1H), 5.44 – 5.39 (m, 1H), 4.64 (d, J = 6.6 Hz, 2H), 3.83 (s, 3H), 3.70 (s, 3H), 1.78 (s, 4H), 1.73 (s, 4H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 196.79, 165.80, 163.23, 145.28, 139.76, 138.69, 133.95, 130.32 (2C), 129.62, 127.33 (2C), 122.38, 121.71, 119.56, 113.72, 66.17, 52.52, 46.78, 25.99, 18.71. HRMS m/z (ESI) calcd for C₂₁H₂₄NO₃S₂ [M + H]⁺402.1198 ; found 402.1186.

methyl 3-(prop-1-en-2-yl)-2,3-dihydrobenzofuran-5-carboxylate. (6)

R_f = 0.6 (PE/EtOAc = 50:1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.91 (dd, J = 8.4, 1.5 Hz, 1H), 7.80 (t, J = 1.5 Hz, 1H), 6.81 (d, J = 8.4 Hz, 1H), 4.92 (d, J = 0.9 Hz, 1H), 4.90 – 4.88 (m, 1H), 4.74 (t, J = 9.5 Hz, 1H), 4.44 (dd, J = 9.2, 6.7 Hz, 1H), 4.19 (dd, J= 9.8, 6.7 Hz, 1H), 3.87 (s, 2H), 1.64 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 166.98, 164.34, 143.82, 131.55, 129.34, 126.95, 122.85, 113.64, 109.32, 76.32, 51.91, 49.60, 18.71. **HRMS m/z** (EI) calcd for $C_{13}H_{14}O_3$ [M]⁺ 218.0943 ; found 218.0939. The spectra data are matched with those reported ^[4]

VI. Reference

- 1. Z. Y. Tian, Z. H. Lin and C. P. Zhang, Org. Lett., 2021, 23, 4400-4405.
- X. Li, W. Cui, Q. Deng, X. Song, J. Lv and D. Yang, *Green Chem.*, 2022, 24, 1302-1307.
- 3. S. K. Parida, S. Jaiswal, P. Singh and S. Murarka, Org. Lett., 2021, 23, 6401-6406.
- J. Li, J. Chen, R. Sang, W. S. Ham, M. B. Plutschack, F. Berger, S. Chabbra, A. Schnegg, C. Genicot and T. Ritter, *Nat. Chem.*, 2020, 12, 56-62.

VII. NMR spectra

110 · 100 f1 (ppm)

110 ' 100 f1 (ppm)

2.41

3p

Me N S S OMe

2.85

2.86 3.81 3.81

Me N S OMe

8 8 : .

2, 90 2, 65 2, 65 2, 65 2, 65 2, 18 2, 18 2, 18 2, 18 2, 18 2, 18 2, 18

3.83

