Supporting Information

Hybrid synthesis of polyhydroxybutyrate bioplastics from carbon dioxide

Jie Zhang ${ }^{1,2,3 \#}$, Dingyu Liu ${ }^{2,3,4 \#}$, Yuwan Liu ${ }^{2,3,4}$, Huanyu Chu ${ }^{2,3}$, Jie Bai ${ }^{2,3}$, Jian Cheng ${ }^{2,3}$, Haodong Zhao ${ }^{1,2,3}$, Shaoping $\mathrm{Fu}^{2,3}$, Huihong Liu ${ }^{5}$, YuE Fu ${ }^{5}$, Yanhe $\mathrm{Ma}^{2,3^{*}}$, Huifeng Jiang ${ }^{2,3^{*}}$

Affiliations:

${ }^{1}$ School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
${ }^{2}$ Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
${ }^{3}$ National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
${ }^{4}$ Haihe Laboratory of Synthetic Biology, Tianjin 300308, China.
${ }^{5}$ China BlueChemical Ltd., Beijing 100029, China.
\#These authors contributed equally to this work.
*Corresponding author. Email: Huifeng Jiang, jiang_hf@tib.cas.cn; Yanhe Ma, ma_yh@tib.cas.cn.

Table of content

Materials and Methods 3
Chemicals and agents 3
Plasmids construction 3
Bacterial strains and growth condition 3
Purification of alcohol oxidases 4
Other protein synthesis and purification 4
Demonstration of the module III in vitro 4
The complete process in vitro from methanol to PHB 5
Assay of formaldehyde 5
Assay of formate, glycoaldehyde, acetate and acetyl-phosphate 6
Analytical method of PHB 6
Screening candidates of Alcohol oxidases 7
Iterative Saturation Mutagenesis of GALS 7
Kinetic properties of glycolaldehyde synthase 8
Four-site combination of mutations 8
The computational analysis of glycolaldehyde synthase 9
Concentration of reaction solution 9
Assay oxidative capacity of AOX and CAT for NADPH 9
Energy efficiency calculation 9
Figure Section 11
Figure S1 12
Figure S2 15
Figure S3 16
Figure S4 17
Figure S5 18
Figure S6 19
Figure S7 20
Figure S8 21
Figure S9 22
Figure S10 23
Figure S11 24
Figure S12 25
Table Section 26
Table S1 26
Table S2 27
Table S3 28
Table S4 29
References 33

Materials and Methods

Chemicals and agents

Common chemicals were bought from Sigma-Aldrich (Shanghai, China), SolarBio (Beijing, China), Zhenzhun Biotech (Shanghai, China) and Yuanye Biotech (Shanghai, China). Standard acetic acid, formaldehyde (FALD), glycoaldehyde (GALD), dihydroxyacetone (DHA), and acetyl phosphate (AcP) were purchased from Yuanye Biotech (Shanghai, China). Standard Poly(3-hydroxybutyrate) (PHB) was purchased from SHANGHAI ZZBIO CO., LTD. Restriction enzymes and DNA polymerase were purchased from Thermo Fisher Scientific (Shanghai, China), and TransGen Biotech (Beijing, China). Kits for DNA manipulation were purchased from Axygen (Shanghai, China), BL21(DE3) and DH5 α cells were purchased from TransGen Biotech (Beijing, China). Primers and synthesized genes were obtained from Genecreat (Wuhan, China) or GENEWIZ (Suzhou, China). Materials and equipment for protein purification were obtained from GE Healthcare (Beijing, China) and BioRad (Beijing, China). HPX-87H column were purchased from BioRad (Beijing, China).

Plasmids construction

Plasmids used in the study are listed in Supplementary Table 4. The plasmids of mutagenesis libraries were constructed by Gibson DNA assembly. The plasmids for protein expression were constructed into the pET28a plasmid. The genes were inserted between the NdeI and XhoI restriction sites. There was an $6 \times$ His tag in N -terminal for purification.

Bacterial strains and growth condition

E. coli BL21 (DE3) (TransGen ${ }^{\mathrm{TM}}$) was grown at $37^{\circ} \mathrm{C}$ and induced at $16^{\circ} \mathrm{C}$ in 2YT medium for protein expression. 2YT medium contains 1.6% peptone, 1% yeast extract, $0.5 \% \mathrm{NaCl}$. Antibiotics for selection purposes were used accordingly at $50 \mu \mathrm{~g}$
ml^{-1}.

Purification of alcohol oxidases

Transformed E. coli BL21 (DE3) was grown in 2 YT medium at $37^{\circ} \mathrm{C}$. Protein expression was induced when the cultures reached $\mathrm{OD}_{600} \approx 0.6-0.8$ by adding 0.5 mM isopropyl β-D-1-thiogalactopyrano (IPTG). Next, the cells were incubated at $16^{\circ} \mathrm{C}$ until late stationary phase and then harvested by centrifugation at 5500 rpm for 10 min at $4{ }^{\circ} \mathrm{C}$. Cells were resuspended in 35 mL lysis buffer (50 mM potassium phosphate $\mathrm{pH} 7.5,400 \mathrm{mM} \mathrm{NaCl}, 100 \mu \mathrm{M} \mathrm{FAD})$. The high-pressure homogenizer cracked the bacteria to release proteins. After removal of cellular debris by centrifugation ($10000 \mathrm{rpm}, 4^{\circ} \mathrm{C}, 60 \mathrm{~min}$), the supernatant was loaded onto nickel affinity columns (GE Healthcare) pre-equilibrated using the lysis buffer. The elution of proteins was performed using a $50-400 \mathrm{mM}$ imidazole gradient. Fractions containing the pure proteins as indicated by SDS-PAGE were pooled and then desalted and concentrated using 30 kDa centrifugal filter units and 50 mM potassium phosphate buffer (pH 7.5).

Other protein synthesis and purification

Catalase was purchased from Aladdin. All genes were transformed into E. coli BL21 (DE3) for expression and cultured with 800 mL 2YT medium. 0.5 mM IPTG was added and induced for 16 h . Cells were collected at 5500 rpm and resuspend in pre-cooled buffer. The high-pressure homogenizer cracked the bacteria to release the proteins. Proteins were purified by His-Spin protein mini-prep columns (Zymo Research). 50 mM and 100 mM imidazole was used to wash out impurities. Then used 200 mM imidazole to elute target proteins. And we used Amicon Ultra-15 ultrafiltration tubes to concentrate proteins. The proteins concentration was determined using a BCA Protein Assay Reagent Kit (Pierce, USA) with $2 \mathrm{mg} / \mathrm{mL}$ BSA as the standard. Purified enzymes were stored at $-80^{\circ} \mathrm{C}$ before use.

Demonstration of the module III in vitro

The module III used glycolaldehyde as the initial substrate: The assay was set up in a final volume of 1 mL at $37^{\circ} \mathrm{C}, 5 \mathrm{~h}$, containing 50 mM HEPES buffer (pH 7.5), 5 $\mathrm{mM} \mathrm{MgSO} 4,5 \mathrm{mM} \mathrm{K}{ }_{3} \mathrm{PO}_{4}, 1 \mathrm{mM} \mathrm{ThDP}, 0.5 \mathrm{mM}$ CoA, $0.5 \mathrm{mM} \mathrm{NADP}^{+}, 2 \mathrm{mg} \cdot \mathrm{mL}^{-1}$ ACPS, $1 \mathrm{mg} \cdot \mathrm{mL}^{-1}$ PTA, $2 \mathrm{mg} \cdot \mathrm{mL}^{-1}$ PhaA, $1 \mathrm{mg} \cdot \mathrm{mL}^{-1} \mathrm{PhaB}, 2 \mathrm{mg} \cdot \mathrm{mL}^{-1} \mathrm{PhaC}, 2$ $\mathrm{mg} \cdot \mathrm{mL}^{-1} \mathrm{FDH}$.

The complete process in vitro from methanol to PHB

Firstly we used methanol as the initial substrate, the assay was set up at $37^{\circ} \mathrm{C}$ in a final volume of 1 mL containing 50 mM HEPES buffer (pH 7.5), $5 \mathrm{mM} \mathrm{MgSO} 4,1$ mM ThDP, $0.2 \mathrm{mg} \cdot \mathrm{mL}^{-1}$ AOX, $300 \mathrm{U} \mathrm{mL}^{-1}$ CAT, $2 \mathrm{mg} \cdot \mathrm{mL}^{-1}$ GALS $_{\mathrm{F} 397 \mathrm{YC} 398 \mathrm{~m}}$ (or 10 $\mathrm{mg} \cdot \mathrm{mL}^{-1}$ GALS). Reaction was taken place in an enzyme reactor at $900 \mathrm{rpm}, 37{ }^{\circ} \mathrm{C}$ for 1.5 h . The reaction solution was fed into micro-ultrafiltration tubes (3 kDa) to intercept proteins, at $3500 \mathrm{rpm}, 0.5 \mathrm{~h}$. The filtrate was used as the initial substrate for next step.

The second stage was initiated by supplementing the remaining enzymes and auxiliary components, containing final concentration $5 \mathrm{mM} \mathrm{K}_{3} \mathrm{PO}_{4}, 0.5 \mathrm{mM} \mathrm{CoA}, 0.5$ $\mathrm{mM} \mathrm{NADP}^{+}, 2 \mathrm{mg} \cdot \mathrm{mL}^{-1} \mathrm{ACPS}, 1 \mathrm{mg} \cdot \mathrm{mL}^{-1} \mathrm{PTA}, 2 \mathrm{mg} \cdot \mathrm{mL}^{-1} \mathrm{PhaA}, 1 \mathrm{mg} \cdot \mathrm{mL}^{-1} \mathrm{PhaB}, 2$ $\mathrm{mg} \cdot \mathrm{mL}^{-1} \mathrm{PhaC}, 2 \mathrm{mg} \cdot \mathrm{mL}^{-1} \mathrm{FDH}$. The reaction volume was filled to 1 mL by HEPES buffer (pH 7.5), $5 \mathrm{mM} \mathrm{MgSO} 4,5 \mathrm{mM} \mathrm{K}_{3} \mathrm{PO}_{4}$. The assay was set up at $37^{\circ} \mathrm{C}, 900 \mathrm{rpm}$ for 5 h .

Assay of formaldehyde

Preparation of 0.25% acetylacetone solution: weigh 25 g of ammonium acetate and dissolve in a little $\mathrm{ddH}_{2} \mathrm{O}$, then add 3 mL glacial acetic acid and 0.25 mL acetylacetone, after mixing, make up to 100 mL and adjust the pH to 6.0 .

Detection of formaldehyde: take $50 \mu \mathrm{~L}$ of samples and add $150 \mu \mathrm{~L}$ acetylacetone solution to reaction at $60^{\circ} \mathrm{C}$ for 10 min , then detect the absorbance value at 414 nm .

The amount of formaldehyde was calculated from the standard curve.

Assay of formate, glycoaldehyde, acetate and acetyl-phosphate

Formate was detected by high performance liquid chromatography (HPLC). HPLC conditions: column, Aminex HPX-87H (Bio-Rad); detection wavelength, 210 nm ; mobile phase, 5 mM sulphuric acid; flow rate, $0.6 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; sample volume, 20 $\mu \mathrm{L}$; column temperature, $40^{\circ} \mathrm{C}$.

Glycoaldehyde was detected by HPLC. HPLC conditions: column, Aminex HPX-87H (Bio-Rad); detection wavelength, 210 nm ; mobile phase, 5 mM sulphuric acid; flow rate, $0.6 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; sample volume, $20 \mu \mathrm{~L}$; column temperature, $40^{\circ} \mathrm{C}$.

Acetate was detected by HPLC. HPLC conditions: column, Aminex HPX-87H (Bio-Rad); detection wavelength, 210 nm ; mobile phase, 5 mM sulphuric acid; flow rate, $0.6 \mathrm{~mL} \mathrm{~min}^{-1}$; sample volume, $20 \mu \mathrm{~L}$; column temperature, $40^{\circ} \mathrm{C}$

Acetyl-phosphate was detected by HPLC: add equal volume of 5% sulfuric acid to the sample for completely decomposing AcP into acetic acid. Acetic acid was then detected by HPLC. HPLC conditions: column, Aminex HPX-87H (Bio-Rad); detection wavelength, 210 nm ; mobile phase, 5 mM sulphuric acid; flow rate, 0.6 mL $\min ^{-1}$; sample volume, $20 \mu \mathrm{~L}$; column temperature, $40^{\circ} \mathrm{C}$.

Analytical method of PHB

Samples after reaction were centrifuged and dried before digestion in 99.99% sulfuric acid for 30 min at $95^{\circ} \mathrm{C}$. The acid-digested samples were then allowed to cool to room temperature for 30 min prior to filtering the samples through a $0.2 \mu \mathrm{~m}$ PVDF syringe filter. The content of PHB was detected by HPLC equipped with an HPX-87H column. HPLC conditions: detection wavelength, 210 nm ; mobile phase, 5 mM sulphuric acid; flow rate, $0.6 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; sample volume, $20 \mu \mathrm{~L}$; column temperature, $40^{\circ} \mathrm{C}$. Different weights of PHB standards were processed in the same way and calculated to obtain a standard curve.

Screening candidates of Alcohol oxidases

We blasted the PcAOX from Phanerochaete chrysosporium to NR database in the NCBI database, and downloaded all potential AOX proteins with the amino acid identity more than 60 . We divided the AOX proteins into two sets: one included the proteins with identity $>=80$, the other included the proteins with identity >60 and $<$ 80. For each set, the AOX proteins were classified different groups by using OrthoMCL with the amino acid identity more than 90 in a group. For each group, we selected a AOX protein, which is closest approximation to supposed optimal sequence, consisting of the highest frequency residues in multiple sequences alignment. we selected eight AOX proteins from the first set, and two AOX proteins from the second set for next functional evaluation (Figure S6).

Then, we blasted the PpAOX from Komagataella phaffii to NR database in the NCBI database. We used the above method to select two AOX proteins from set for functional evaluation (Figure S6).

Iterative Saturation Mutagenesis of GALS

The determination of glycolaldehyde is as follows: $30 \mu \mathrm{~L}$ different concentrations of glycolaldehyde were prepared, and then $150 \mu \mathrm{~L}$ spetrophotometric chromogenic reagent (1.5 g diphenylamine was dissolved into 100 mL acetic acid, then added 1.5 mL concentrated sulfuric acid) was added, keeping at $90^{\circ} \mathrm{C}$ for 15 min . At last, product concentration was measured by spectrophotometrically monitoring at 652 nm .

In order to obtain the desired saturation mutagenesis, oligonucleotide primers were designed with degenerate codon NNK. For 95% library coverage, the screening of 96 transformants for single-site saturation mutant was required by using NNK codon degeneracy. Each single-site saturation mutant library was generated according to the PCR-based Quick Change method. PCR reaction was performed with Fastpfu DNA Polymerase (Transgen, China) under the following conditions: the reaction was started at $94{ }^{\circ} \mathrm{C}(5 \mathrm{~min})$, followed by 30 cycles $94^{\circ} \mathrm{C}(20 \mathrm{~s}), 58{ }^{\circ} \mathrm{C}(20 \mathrm{~s}), 72{ }^{\circ} \mathrm{C}(3.5$ $\mathrm{min})$, with a final extension at $72{ }^{\circ} \mathrm{C}(5 \mathrm{~min})$. The PCR product was digested with

DpnI restriction enzyme and transformed into E. coli BL21 (DE3) competent cells to create the library for screening.

Each of the mutant colonies was picked and incubated 24 hours in $200 \mu \mathrm{~L}$ LB medium with $100 \mu \mathrm{~mL}^{-1}$ kanamycin while shaking at $37{ }^{\circ} \mathrm{C}$ in 96 -well microplate, and then scaled up to 1 mL LB medium for protein expression as well as GALS. The cell pellets were harvested by centrifugation at $3,300 \mathrm{~g}$ for 10 min and lysed by the re-suspension in $150 \mu \mathrm{~L}$ lysis buffer with 1 U DNase I and $1 \mathrm{mg} \mathrm{mL}^{-1}$ lysozyme, followed by 1 hour at $37{ }^{\circ} \mathrm{C}$. Subsequently, $150 \mu \mathrm{~L}$ lysis buffer with $30 \mathrm{mM} \mathrm{L}^{-1}$ formaldehyde was added directly to the crude lysates for condensation assay and the plates were further incubated at $37^{\circ} \mathrm{C}$ at 750 rpm for 90 min . After removing cells by centrifugation, $30 \mu \mathrm{~L}$ of the samples was used for a coloration assay.

Kinetic properties of glycolaldehyde synthase

An initial continuous assay included 50 mM potassium phosphate buffer (pH 7.4), $5 \mathrm{mM} \mathrm{MgSO} 4,0.5 \mathrm{mM}$ ThDP, $50 \mu \mathrm{~g} \mathrm{~m}^{-1}$ glycerol dehydrogenase, 1 mM NADH, and different concentrations of formaldehyde. The reaction was initiated by the addition of purified GALS or mutants at $37^{\circ} \mathrm{C}$, and then an initial linear decrease in absorbance at 340 nm was observed. Enzyme kinetics were determined with formaldehyde as substrate. The concentrations ranged from 0 to 160 mM . Kinetic parameters $k_{c a t}$ and K_{m} were estimated by measuring the initial velocities of enzymic reaction and curve-fiting according to the Michaelis-Menten equation, using GraphPad Prism 5 software.

Four-site combination of mutations

Two double-sites saturation mutant library (N27, E28 and F397, C398) was constructed by consecutive degenerate codon NNK. Two rounds of directed evolution were implemented. In each round, the best double-sites mutation was obtained. Then, four beneficial substitutions were randomly fixed by single-point mutation. Finally, a library of 16 mutants was screened for the best mutants.

The computational analysis of glycolaldehyde synthase

To analyze the structural differences between GALS $\mathrm{F}_{\mathrm{F} 97 \mathrm{YC} 398 \mathrm{~m}}$ and GALS, we built a GALS F 397 YC 398 m structure model based on GALS crystal structure (PDBID: 6A50). Then we performed an energy minimization and equilibrium on the structure model of GALS $\mathrm{F}_{\mathrm{F397YC} 398 \mathrm{~m}}$ and the GALS crystal structure with Amber force field. After that the POVME [1] package was used to calculate the shape and volume of the binding pockets. The POVME calculation was run default settings, a voxel grid spacing of $1.0 \AA$ and the ConvexHullExclusion option set to 'first'.

When citing Amber22 or AmberTools22 please use the following: D.A. Case, H.M. Aktulga, K. Belfon, 1.Y. Ben-Shalom, J.T. Berryman, S.R. Brozell, D.S. Cerutti, T.Echeatham. I. G.A. Cisneros. VwD. Cruzeiro. TA. Darden. R.E. Duke. G. Giambasu. M.k. Gilson.HGohlke, A.W. Goetz, R. Harris, S. lzadi, S.A. lzmailov, K. Kasavajhala, M.C. Kaymak, E. King, A.Kovalenko, T. Kurtzman, T.s. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, M. Machado, VMan, M. Manathunga, K.M. Merz, Y. Miao, 0. Mikhailovski, G. Monard, H. Nguyen, K.A. OHeamn, AOnufriev, F. Pan, S. Pantano, R. Qi, A. Rahnamoun, D.R. Roe, A. Roitberg, C. Sagui, s. Schott-VerdugoA. Shajan, J. Shen, C.L. Simmerling, N.R. Skrynnikov, . Smith, J. Swails, R.C. Walker, J. Wang, jWang, H. Wei, R.M. Wolf, X. Wu, Y. Xiong, Y. Xue, D.M. York, S. Zhao, and P.A. Kollman (2022), Amber2022. University of California, San Francisco.

Concentration of reaction solution

The reaction solution was fed into parallel to several ultrafiltration tubes to intercept proteins. The filtrate was collected centrally and then was concentrated by Vacuum Concentrator at ambient temperature and pressure. Precipitated salts were removed during the concentration process.

Assay oxidative capacity of AOX and CAT for NADPH

The oxidative ability to NADPH is demonstrated by the reduction value of OD_{340}. The reaction was carried out in a $200 \mu \mathrm{~L}$ system contains 50 mM potassium phosphate
buffer (pH 7.5), $1 \mathrm{U} / \mathrm{mL}$ AOX or CAT, 2 mM NADPH.

Energy efficiency calculation

The theoretical energy efficiency was calculated based on the Gibbs free energy gain $\left(\Delta \mathrm{rG}^{\mathrm{o}}\right)$ as previous work [2]. The Gibbs free energy gain $(\Delta \mathrm{rG})$ of chemicals, along with the corresponding chemical reactions, are listed in the following:

Hydrogen formation:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+0.5 \mathrm{O}_{2}(\mathrm{~g}) \\
& \Delta \mathrm{rG}^{\mathrm{o}}{ }_{\text {hydrogen }} \sim-\Delta \mathrm{cH}^{\mathrm{o}}{ }_{\text {hydrogen }}=285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

Methanol formation:

$$
\begin{aligned}
& \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CH}_{4} \mathrm{O}(\mathrm{l})+1.5 \mathrm{O}_{2}(\mathrm{~g}) \\
& \Delta \mathrm{rG}^{\mathrm{o}}{ }_{\text {methanol }} \sim-\Delta \mathrm{cH}^{\mathrm{o}}{ }_{\text {methanol }}=726.1 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

PHB formation:
$4 \mathrm{nCO}_{2}(\mathrm{~g})+3 \mathrm{nH}_{2} \mathrm{O}(\mathrm{l}) \rightarrow\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}\right)_{\mathrm{n}}(\mathrm{s})+4.5 \mathrm{n} \mathrm{O}_{2}(\mathrm{~g})$
$\Delta \mathrm{rG}^{\mathrm{o}}{ }_{3 \mathrm{HB}} \sim-\Delta \mathrm{cH}^{\mathrm{o}}{ }_{3 \mathrm{HB}}=1903 \mathrm{~kJ} \mathrm{~mol}^{-1}$ per monomer

Theoretical hydrogen-to-methanol energy efficiency ($\eta \mathrm{HME}$):
$\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{4} \mathrm{O}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}$ (1)
Output energy $=1 \times \Delta \mathrm{rG}^{\mathrm{o}}$ methanol
Input energy $=3 \times \Delta \mathrm{rG}^{\mathrm{o}}{ }_{\text {hydrogen }}$
The theoretical $\eta \mathrm{HME}$ is 85%.

Theoretical methanol-to-PHB energy efficiency (η MPE):
$4 \mathrm{nCH}_{4} \mathrm{O}(\mathrm{l})+\mathrm{NADPH}(\mathrm{l})+1.5 \mathrm{O}_{2} \rightarrow\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}\right) \mathrm{n}+\mathrm{NADP}^{+}+5 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+}$

In this study, the NADPH consumed for PHB synthesis is derived from methanol. Thus, the stoichiometry of converting methanol to PHB is $5: 1$. Thus, the theoretical η MPE is 52.4%.

Output energy $=1 \times \Delta \mathrm{GG}^{\mathrm{o}}{ }_{3 \mathrm{HB}}$
Input energy $=5 \times \Delta \mathrm{rG}^{\mathrm{o}}{ }_{\text {methanol }}$

The E-factor calculation

The classical E-factor was calculated using equation [3]:
$\boldsymbol{E}=\frac{\sum \boldsymbol{m}(\text { wastes })}{\boldsymbol{m}(\text { product })} \frac{[K g]}{[K g]}$
The m (wastes) represents the mass of the wastes including enzymes, vapour, solvents (except water) and chemical catalyst. The reaction volume of Module II was 1 L . The enzyme mass in Module II were 0.2 g of PcAOX and 2 g of GALS. The enzyme CAT was used in negligible amount due to its high activity. The reaction volume of Module III was approximately 58.8 mL . The enzyme mass in Module III were 0.059 g of ACPS, 0.059 g of PTA, 0.12 g of PhaA, 0.059 g of PhaB and 0.12 g of PhaC. The total mass of inorganic salts was approximately 12.97 g including HEPES, MgSO_{4} and ThDP. The methanol produced in the chemical module was accompanied by an equal amount of vapour consumption (Approximately 0.64 g). The amount of chemical catalyst was 1.1 g .

The m (product) represents the mass of PHB produced in the initial 1 L reaction system. The final titer of the PHB was $5.96 \mathrm{~g} / \mathrm{L}$. According to the final volume after concentration, the mass of PHB was 0.36 g .

Supplementary Figure 1

A

Supplementary Figure 1A. Sugar-based feedstock metabolic pathway for carbon assimilation. The molar carbon yield of PHB is 0.67 because of the irreversible CO_{2}-releasing reactions from pyruvate decarboxylation. One C6 substrate generate two acetyl-CoA molecules. One C3 substrate generate one acetyl-CoA molecule. Three C5 substrates generate five acetyl-CoA molecules.

B

Supplementary Figure 1B. CBB cycle for $\mathrm{CO}_{\mathbf{2}}$ assimilation. Three CO_{2} molecules enter the CBB cycle to generate one acetyl-CoA with one carbon loss. The molar carbon yield of PHB is 0.67 because of the irreversible CO_{2}-releasing reactions from pyruvate decarboxylation.

C

Strain II

Supplementary Figure 1C. An integrated two-module process for the production of PHB from CO_{2}. Strain I:Wood-Ljungdahl pathway for CO_{2} assimilation, two CO_{2} molecules enter the Wood-Ljungdahl Pathway to generate one acetyl-CoA, which then enters acetogenesis. Strain II: Acetate assimilation in this strain, one acetate is assimilated to generate one acetyl-CoA, which can enter the TCA cycle.

Supplementary Figure 2

Supplementary Figure 2. SDS-PAGE analysis of the recombinant enzymes. PcAOX: Alcohol oxidase from Phanerochaete chrysosporium, GALS: glycolaldehyde synthase, ACPS: acetyl-phosphate synthase, PTA: phosphate acetyltransferase, PhaA: Acetyl-CoA acetyltransferase, PhaB: Acetoacetyl-CoA reductase, PhaC: PHB synthase, FDH: formate dehydrogenase.

Supplementary Figure 3

Supplementary Figure 3. One-pot enzymatic synthesis of PHB in vitro. The reaction mixture (0.5 mL) was performed under the condition of 20 mM methanol, at $37^{\circ} \mathrm{C}, 4 \mathrm{~h}$ and 8 h . The enzyme loading was $2 \mathrm{~g} / \mathrm{L}$ each and the glucose- 6 -phosphate was supplemented to regenerate reduced nicotinamide adenine dinucleotide phosphate (NADPH) by glucose-6-phosphate-dehydrogenase (G6PD). All values shown are means of triplicate measurements. The error bars represent standard deviations.

Supplementary Figure 4

(A)

(B)

Supplementary Figure 4. Identified the activity of AOX (A) and CAT (B) in response to NADPH. The oxidative ability to NADPH is demonstrated by the reduction value of OD_{340}. The reaction was carried out in a $200 \mu \mathrm{~L}$ system contains 50 mM potassium phosphate buffer (pH 7.5), $1 \mathrm{U} / \mathrm{mL}$ AOX or CAT, 2 mM NADPH.

Supplementary Figure 5

Supplementary Figure 5. Modular pathway for PHB synthesis from CO_{2}.
Schematic of modular pathway design, with individual modules colored. The colored arrows and structures indicate the artificially designed pathways for production of PHB from CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. All enzymes and chemicals are indicated.

Supplementary Figure 6

Supplementary Figure 6. Phylogenetic tree of selected AOX genes. The Maximum likelihood tree was constructed by MEGA 7.0 based on the protein sequences. Accession ID: LeAOX: XP_046079723, TeAOX: KAG5730165, SsAOX: KAG2364097, PeAOX: KAF9487399, MrAOX: ESK84078, TpAOX: KAI0637534, PcAOX: UXW61383.1, AcAOX: KAI0915540, FmAOX: XP_007269069, ArAOX: KAH8919511, McAOX: RPB07876, CcAOX: OLN87382, PpAOX: XP_002494271

Supplementary Figure 7

Supplementary Figure 7. Experimental validation of single-point saturation mutant. The x -axis label represents the selected positions in GALS. The single-point saturation mutation assays were carried out for each selected position. The y-axis label represents the relative catalytic activity of different mutants. The relative activity was defined as the ratio of the production of glycolaldehyde in the mutants to that in GALS. The yields of glycolaldehyde were determined by the chromogenic reaction. 4 positions containing higher activity mutants were selected in the red rectangle.

Supplementary Figure 8

Supplementary Figure 8. Michaelis-Menten graphs of GALS and GALS ${ }_{\text {F397YC398m. }}$ Enzyme kinetics were determined with $0.1 \mathrm{mg} \mathrm{mL}^{-1}$ GALS and GALS $\mathrm{F} 397 \mathrm{YC3} 98 \mathrm{~m}$. The concentration of formaldehyde ranged from 1 to 160 mM . Error bars represent standard deviation, $n=3$.

Supplementary Figure 9

Supplementary Figure 9. PHB production from glycolaldehyde by increasing enzyme loadings. The reaction mixture $(0.5 \mathrm{~mL})$ was performed under the condition of 20 mM glycolaldehyde, at $37^{\circ} \mathrm{C}, 5 \mathrm{~h}$. Group C 1 indicates $2 \mathrm{~g} / \mathrm{L}$ of enzyme loading in this pathway. Group C 2 indicates $4 \mathrm{~g} / \mathrm{L}$ of enzyme loading in this pathway. All values shown are means of triplicate measurements. The error bars represent standard deviations.

Supplementary Figure 10

a) Glycolaldehyde+phosphate $<=>$ acetyl-phosphate
b) Acetyl-phosphate $+\mathrm{CoA}<=>$ acetyl-CoA
c) 2 Acetyl-CoA \Leftrightarrow Acetoacetyl-CoA +CoA
d) Acetoacetyl-CoA+NADPH $<\gg 3$-hydroxybutyryl-CoA+NADP ${ }^{+}$
e) 3-hydroxybutyryl-CoA $<=>$ polyhydroxybutyrate +CoA

Supplementary Figure 10. Standard Gibbs free energy changes of each and the overall reaction steps under conditions of pH 7.5 and ionic strength of 0.25 M .

Supplementary Figure 11

Supplementary Figure 11. The introduction of acetyl-CoA synthetase (ACS) to decrease the accumulation of acetic acid. The reaction mixture (0.5 mL) was performed under the condition of 20 mM glycolaldehyde, at $37^{\circ} \mathrm{C}, 5 \mathrm{~h}$. Group with ACS added $2 \mathrm{~g} / \mathrm{L}$ acetyl-CoA synthetase, 1 mM ATP , 1 mM polyphosphoric acid and $2 \mathrm{~g} /$ L ATP-polyphosphate phosphotransferase additionally. All values shown are means of triplicate measurements. The error bars represent standard deviations.

Supplementary Figure 12

Supplementary Figure 12. Increasing substrate concentration for module II and module III. (A) Increasing glycolaldehyde concentration for module III. The reaction mixture (0.5 mL) was performed under the condition of $20-500 \mathrm{mM}$ glycolaldehyde, at $37^{\circ} \mathrm{C}, 5 \mathrm{~h}$. (B) Increasing methanol concentration for module II. The reaction mixture (0.5 mL) was performed under the condition of $20-200 \mathrm{mM}$ methanol, at $37^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$. All values shown are means of triplicate measurements. The error bars represent standard deviations.

Supplementary Table 1. Enzymes used in this hybrid system

Enzyme	Name	Plasmid	Tag	Organism	references
AOX	Alcohol oxidases	pet28a	N -His	Phanerochaete chrysosporium	[4]
CAT	catalase	purchased from Aladdin			
FDH	formate dehydrogenase	pet28a	N -His	Mycolicibacterium vaccae	[5]
GALS	glycolaldehyde synthase	pet28a	N -His		[6]
ACPS	Phosphoketolases	pet28a	N -His	Bifidobacterium	[6]
PTA	phosphate acetyltransferase	pet28a	N -His	E. coli	
PhaA	Acetyl-CoA acetyltransferase	pet28a	N -His	R. eutropha	[7]
PhaB	Acetoacetyl-CoA reductase	pet28a	N -His	R. eutropha	[7]
PhaC	Polyhydroxybutyrate synthase	pet28a	N -His	R. eutropha	[7]

Supplementary Table 2. The thermodynamic data of all reactions

Enzyme	Reaction	$\triangle \mathrm{G}(\mathrm{kJ} / \mathrm{mol})$
AOX	Methanol $+\mathrm{O}_{2}<=>$ formaldehyde $+\mathrm{H}_{2} \mathrm{O}_{2}$	-98.9 ± 10.3
CAT	$2 \mathrm{H}_{2} \mathrm{O}_{2}<=>2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$	-174.8 ± 13.2
GALS	2Formaldehyde <=> glycolaldehyde	-28.7 ± 6.4
ACPS	Glycolaldehyde+phosphate $<=>$ acetyl-phosphate	-58.8 ± 3.8
PTA	Acetyl-phosphate + CoA $<>$ acetyl-CoA	-8.7 ± 1.2
PhaA	2 Acetyl-CoA $<>$ Acetoacetyl-CoA+CoA	25.0 ± 1.7
PhaB	Acetoacetyl-CoA+NADPH $<>$ 3-hydroxybutyryl-CoA+NADP ${ }^{+}$	-13.8 ± 2.3
PhaC	3-hydroxybutyryl-CoA $<>$ polyhydroxybutyrate +CoA	-35.7
FDH	Formate+NADP ${ }^{+} \quad \Leftrightarrow \mathrm{CO}_{2}+\mathrm{NADPH}$	-14.4 ± 6.4

Supplementary Table 3. Plasmids used in this study.

Plasmids	Relevant characteristics	Source
pET28a	pBR322 ori with pT7; KanR	Novagen
pET28a-PcAOX	pET28a vector, NdeI-PcAOX-XhoI	This study
pET28a-GALS	pET28a vector, NdeI-GALS-XhoI	This study
pET28a-ACPS	pET28a vector, NdeI-ACPS-XhoI	This study
pET28a-PTA	pET28a vector, NdeI-pta-XhoI	This study
pET28a-PhaA	pET28a vector, NdeI-phaA-XhoI	This study
pET28a-PhaB	pET28a vector, NdeI-phaB-XhoI	This study
pET28a-PhaC	pET28a vector, NdeI-phaC-XhoI	This study
pET28a-FDH	pET28a vector, NdeI-FDH-XhoI	This study

Supplementary Table 4. The DNA sequences of used in this study

Gene	Sequence
pcaox	ATGGGTCACCCCGAGGAGGTCGATGTCATCGTATGCGGTGGTGGTCCTGCTGGATGC
	GTTGTGGCGGGCAGGCTCGCTTACGCGGACCCTACACTGAAGGTCATGCTCATTGAA
	GGTGGTGCCAACAACCGCGATGACCCATGGGTGTACCGCCCAGGCATCTACGTCCGC
	AACATGCAGAGGAACGGCATCAACGACAAGGCGACGTTCTACACCGACACCATGGC
	TTCTTCGTATCTCCGTGGCCGTCGCAGCATCGTCCCCTGCGCCAACATCCTCGGTGGT
	GGTTCTTCGATCAACTTCCAGATGTACTTTCGCGCGTCTGCTTCCGATTGGGACGACT
	TCAAGACCGAAGGGTGGACCTGCAAGGATCTTCTGCCTCTTATGAAGCGGCTCGAG
	AACTACCAGAAGCCATGCAACAACGACACCCACGGCTACGATGGTCCGATTGCCATC
	TCCAACGGTGGACAGATCATGCCTGTCGCCCAAGACTTCCTGAGGGCTGCCCATGCG
	ATCGGTGTGCCATACAGCGATGATATCCAGGATCTTACCACTGCACATGGTGCTGAGA
	TTTGGGCCAAGTATATCAACCGTCACACCGGCCGTCGTAGCGATGCTGCGACCGCAT
	ACGTGCACTCCGTCATGGACGTCCAGGATAACCTCTTCCTACGCTGCAACGCCCGCG
	TCAGCCGCGTTCTATTCGACGACAACAACAAGGCAGTCGGCGTAGCCTATGTCCCGT
	CCCGCAACCGGACACACGGCGGTAAGCTCCATGAGACCATTGTCAAGGCTCGCAAG
	ATGGTCGTCCTCAGCTCCGGCACTCTTGGTACTCCTCAGATCCTCGAGCGCTCCGGT
	GTCGGCAACGGCGAGCTCCTCCGCCAACTTGGCATCAAGATCGTCAGCGACCTCCCG
	GGTGTTGGTGAGCAGTACCAGGACCACTACGCAACGCTGTCCATATACCGTGTCTCC
	AACGAGTCCATTACCACCGATGACTTCCTCCGTGGTGTCAAGGACGTGCAGCGCGAG
	CTTTTCACAGAGTGGGAGGTTTCGCCCGAGAAGGCTCGTCTGTCGTCCAACGCCATC
	GACGCTGGCTTCAAGATCCGCCCAACGGAGGAAGAGCTGAAGGAGATGGGCCCTGA
	GTTCAACGAACTCTGGAACCGCTACTTCAAGGACAAGCCCGACAAGCCCGTCATGT
	TCGGCTCCATCGTCGCTGGTGCCTACGCCGACCACACACTCCTGCCGCCCGGCAAGT
	ACATTACGATGTTCCAATTTCTCGAGTACCCGGCGTCGCGTGGCAAGATCCACATCAA
	GTCGCAGAACCCCTACGTCGAGCCATTCTTCGACTCCGGCTTCATGAACAACAAGGC
	CGACTTTGCGCCCATCCGCTGGAGCTACAAGAAGACCCGTGAGGTCGCGCGCCGCA
	TGGATGCATTCCGTGGTGAACTGACGTCGCACCACCCGCGCTTCCACCCTGCCTCCC
	CCGCGGCATGCAAGGACATTGACATCGAGACTGCCAAGCAGATCTACCCCGACGGC
	CTCACGGTCGGCATCCACATGGGCTCGTGGCACCAGCCGTCCGAGCCGTACAAGCA
	CGACAAGGTCATCGAGGACATCCCCTACACCGAGGAGGATGACAAGGCTATCGACG
	ACTGGGTCGCCGATCACGTTGAGACCACCTGGCACTCGCTCGGTACCTGCGCCATGA
	AGCCGCGCGAGCAGGGCGGTGTTGTCGACAAGCGCCTCAACGTCTACGGCACGCAG
	AACCTCAAGTGTGTTGACCTGTCGATCTGCCCCGACAACCTCGGCACGAACACCTAC
	TCGTCTGCGCTCCTCGTCGGCGAGAAGGGCGCTGATCTCATCGCTGAGGAACTCGGC
	CTCAAGATCAAGACCCCGCATGCTCCCGTCCCGCACGCACCCGTCCCGACCGGCAG
	GCCCGCTACCCAGCAGGTCCGG
gals	ATGGCTTCTGTTCACGGTACCACCTACGAACTGCTGCGTCGTCAGGGTA
	TCGACACCGTTTTCGGTAACCCGGGTTCTAACGAACTGCCGTTCCTGAA
	AGACTTCCCGGAAGACTTCCGTTACATCCTGGCTCTGCAGGAAGCTTGC
	GTTGTTGGTATCGCTGACGGTTACGCTCAGGCTTCTCGTAAACCGGCTTT
	CATCAACCTGCACTCTGCTGCTGGTACCGGTAACGCTATGGGTGCTCTG
	TCTAACGCTCGTACCTCTCACTCTCCGCTGATCGTTACCGCTGGTCAGCA
	GACCCGTGCTATGATCGGTGTTGAAGCTGGTGAAACCAACGTTGACGCT
	GCTAACCTGCCGCGTCCGCTGGTTAAATGGTCTTACGAACCGGCTTCTG
	CTGCTGAAGTTCCGCACGCTATGTCTCGTGCTATCCACATGGCTTCTATG
	GCTCCGCAGGGTCCGGTTTACCTGTCTGTTCCGTACGACGACTGGGACA
	AAGACGCTGACCCGCAGTCTCACCACCTGTTCGACCGTCACGTTTCTTC
	TTCTGTTCGTCTGAACGACCAGGACCTGGACATCCTGGTTAAAGCTCTG
	AACTCTGCTTCTAACCCGGCTATCGTTCTGGGTCCGGACGTTGACGCTG
	CTAACGCTAACGCTGACTGCGTTATGCTGGCTGAACGTCTGAAAGCTCC
	GGTTTGGGTTGCTCCGTCTGCTCCGCGTTGCCCGTTCCCGACCCGTCAC
	CCGTGCTTCCGTGGTCTGATGCCGGCTGGTATCGCTGCTATCTCTCAGCT
	GCTGGAAGGTCACGACGTTGTTCTGGTTATCGGTGCTCCGGTTTTCCGT
	TACGTTTTTTACGACCCGGGTCAGTACCTGAAACCGGGTACCCGTCTGA
	TCTCTGTTACCTGCGACCCGCTGGAAGCTGCTCGTGCTCCGATGGGTGA
	CGCTATCGTTGCTGACATCGGTGCTATGGCTTCTGCTCTGGCTAACCTGG
	TTGAAGAATCTTCTCGTCAGCTGCCGACCGCTGCTCCGGAACCGGCTAA

Abstract

AGTTGACCAGGACGCTGGTCGTCTGCACCCGGAAACCGTTTTCGACAC CCTGAACGACATGGCTCCGGAAAACGCTATCTACCTGAACGAATCTACC TCTACCACCGCTCAGATGTGGCAGCGTCTGAACATGCGTAACCCGGGTT CTTACTACTTCTGCGCTGCTGGTGGTCTGGGTTTCGCTCTGCCGGCTGCT ATCGGTGTTCAGCTGGCTGAACCGGAACGTCAGGTTATCGCTGTTATCG GTGACGGTTCTGCTAACTACTCTATCTCTGCTCTGTGGACCGCTGCTCAG TACAACATCCCGACCATCTTCGTTATCATGAACAACGGTACCTACGGTAT GCTGCGTTGGTTCGCTGGTGTTCTGGAAGCTGAAAACGTTCCGGGTCTG GACGTTCCGGGTATCGACTTCCGTGCTCTGGCTAAAGGTTACGGTGTTC AGGCTCTGAAAGCTGACAACCTGGAACAGCTGAAAGGTTCTCTGCAGG AAGCTCTGTCTGCTAAAGGTCCGGTTCTGATCGAAGTTTCTACCGTTTCT CCGGTTAAA

ATGACGAGTCCTGTTATTGGCACCCCTTGGAAGAAGCTGAACGCTCCGG TTTCCGAGGAAGCTATCGAAGGCGTGGATAAGTACTGGCGCGCAGCCA ACTACCTCTCCATCGGCCAGATCTATCTGCGTAGCAACCCGCTGATGAA GGAGCCTTTCACCCGCGAAGACGTCAAGCACCGTCTGGTCGGTCACTG GGGCACCACCCCGGGCCTGAACTTCCTCATCGGCCACATCAACCGTCTC ATTGCTGATCACCAGCAGAACACTGTGATCATCATGGGCCCGGGCCACG GCGGCCCGGCTGGTACCGCTCAGTCCTACCTGGACGGCACCTACACCG AGTACTTCCCGAACATCACCAAGGATGAGGCTGGCCTGCAGAAGTTCTT CCGCCAGTTCTCCTACCCGGGTGGCATCCCGTCCCACTACGCTCCGGAG ACCCCGGGCTCCATCCACGAAGGCGGCGAGCTGGGTTACGCCCTGTCC CACGCCTACGGCGCTGTGATGAACAACCCGAGCCTGTTCGTCCCGGCCA TCGTCGGCGACGGCGAAGCTGAGACCGGCCCGCTGGCCACCGGCTGGC AGTCCAACAAGCTCATCAACCCGCGCACCGACGGTATCGTGCTGCCGAT CCTGCACCTCAATGGCTACAAGATCGCCAACCCGACCATCCTGTCCCGC ATCTCCGACGAAGAGCTCCACGAGTTCTTCCACGGCATGGGCTATGAGC CGTACGAGTTCGTCGCTGGCTTCGACAACGAGGATCACCTGTCGATCCA CCGTCGTTTCGCCGAGCTGTTCGAGACCGTCTTCGACGAGATCTGCGAC ATCAAGGCCGCCGCTCAGACCGACGACATGACTCGTCCGTTCTACCCGA TGATCATCTTCCGTACCCCGAAGGGCTGGACCTGCCCGAAGTTCATCGA CGGCAAGAAGACCGAGGGCTCCTGGCGTTCCCACCAGGTGCCGCTGGC TTCCGCCCGCGATACCGAGGCCCACTTCGAGGTCCTCAAGAACTGGCTC GAGTCCTACAAGCCGGAAGAGCTGTTCGACGAGAACGGCGCCGTGAA acps GCCGGAAGTCACCGCCTTCATGCCGACCGGCGAACTGCGCATCGGTGA GAACCCGAACGCCAACGGTGGCCGCATCCGCGAAGAGCTGAAGCTGCC GAAGCTGGAAGACTACGAGGTCAAGGAAGTCGCCGAGTACGGCCACG GCTGGGGCCAGCTCGAGGCCACCCGTCGTCTGGGCGTCTACACCCGCG ACATCATCAAGAACAACCCGGACTCCTTCCGTATCTTCGGACCGGATGA GACCGCTTCCAACCGTCTGCAGGCCGCTTACGACGTCACCAACAAGCA GTGGGACGCCGGCTACCTGTCCGCTCAGGTCGACGAGCACATGGCTGT CACCGGCCAGGTCACCGAGCAGCTTTCCGAGCACCAGATGGAAGGCTT CCTCGAGGGCTACCTGCTGACCGGCCGTCACGGCATCTGGAGCTCCTAT GAGTCCTTCGTGCACGTGATCGACTCCATGCTGAACCAGCACGCCAAGT GGCTCGAGGCTACCGTCCGCGAGATTCCGTGGCGCAAGCCGATCTCCTC CATGAACCTGCTCGTCTCCTCCCACGTGTGGCGTCAGGATCACAACGGC TTCTCCCACCAGGATCCGGGTGTCACCTCCGTCCTGCTGAACAAGTGCT TCAACAACGATCACGTGATCGGCATCTACTTCCCGGTGGATTCCAACAT GCTGCTCGCTGTGGCTGAGAAGTGCTACAAGTCCACCAACAAGATCAA CGCCATCATCGCCGGCAAGCAGCCGGCCGCCACCTGGCTGACCCTGGA CGAAGCTCGCGCCGAGCTCGAGAAGGGTGCTGCCGAGTGGAAGTGGG CTTCCAACGTGAAGTCCAACGATGAGGCTCAGATCGTGCTCGCCGCCA CCGGTGATGTTCCGACTCAGGAAATCATGGCCGCTGCCGACAAGCTGG ACGCCATGGGCATCAAGTTCAAGGTCGTCAACGTGGTTGACCTGGTCA AGCTGCAGTCCGCCAAGGAGAACAACGAGGCCCTCTCCGATGAGGAGT TCGCTGAGCTGTTCACCGAGGACAAGCCGGTCCTGTTCGCTTACCACTC CTATGCCCGCGACGTGCGTGGTCTGATCTACGATCGCCCGAACCACGAC

	AACTTCAACGTTCACGGCTACGAGGAGCAGGGCTCCACCACCACCCCG
	TACGACATGGTTCGCGTGAACAACATCGATCGCTACGAGCTCCAGGCTG
	AAGCTCTGCGCATGATCGACGCTGACAAGTACGCCGACAAGATCAACG
	AGCTCGAGGCCTTCCGTCAGGAAGCCTTCCAGTTCGCTGTCGACAACG
	GCTACGATCACCCGGATTACACCGACTGGGTCTACTCCGGTGTCAACAC
	CAACAAGCAGGGTGCTATCTCCGCTACCGCCGCAACCGCTGGCGATAAC
	GAGTGA
phaA	ATGACTGACGTTGTCATCGTATCCGCCGCCCGCACCGCGGTCGGCAAGT
	TTGGCGGCTCGCTGGCCAAGATCCCGGCACCGGAACTGGGTGCCGTGG
	TCATCAAGGCCGCGCTGGAGCGCGCCGGCGTCAAGCCGGAGCAGGTGA
	GCGAAGTCATCATGGGCCAGGTGCTGACCGCCGGTTCGGGCCAGAACC
	CCGCACGCCAGGCCGCGATCAAGGCCGGCCTGCCGGCGATGGTGCCGG
	CCATGACCATCAACAAGGTGTGCGGCTCGGGCCTGAAGGCCGTGATGC
	TGGCCGCCAACGCGATCATGGCGGGCGACGCCGAGATCGTGGTGGCCG
	GCGGCCAGGAAAACATGAGCGCCGCCCCGCACGTGCTGCCGGGCTCGC
	GCGATGGTTTCCGCATGGGCGATGCCAAGCTGGTCGACACCATGATCGT
	CGACGGCCTGTGGGACGTGTACAACCAGTACCACATGGGCATCACCGC
	CGAGAACGTGGCCAAGGAATACGGCATCACACGCGAGGCGCAGGATGA
	GTTCGCCGTCGGCTCGCAGAACAAGGCCGAAGCCGCGCAGAAGGCCG
	GCAAGTTTGACGAAGAGATCGTCCCGGTGCTGATCCCGCAGCGCAAGG
	GCGACCCGGTGGCCTTCAAGACCGACGAGTTCGTGCGCCAGGGCGCCA
	CGCTGGACAGCATGTCCGGCCTCAAGCCCGCCTTCGACAAGGCCGGCA
	CGGTGACCGCGGCCAACGCCTCGGGCCTGAACGACGGCGCCGCCGCG
	GTGGTGGTGATGTCGGCGGCCAAGGCCAAGGAACTGGGCCTGACCCCG
	CTGGCCACGATCAAGAGCTATGCCAACGCCGGTGTCGATCCCAAGGTGA
	TGGGCATGGGCCCGGTGCCGGCCTCCAAGCGCGCCCTGTCGCGCGCCG
	AGTGGACCCCGCAAGACCTGGACCTGATGGAGATCAACGAGGCCTTTG
	CCGCGCAGGCGCTGGCGGTGCACCAGCAGATGGGCTGGGACACCTCCA
	AGGTCAATGTGAACGGCGGCGCCATCGCCATCGGCCACCCGATCGGCG
	CGTCGGGCTGCCGTATCCTGGTGACGCTGCTGCACGAGATGAAGCGCC
	GTGACGCGAAGAAGGGCCTGGCCTCGCTGTGCATCGGCGGCGGCATGG
	GCGTGGCGCTGGCAGTCGAGCGCAAATAA
phaB	ATGACTCAGCGCATTGCGTATGTGACCGGCGGCATGGGTGGTATCGGAA
	CCGCCATTTGCCAGCGGCTGGCCAAGGATGGCTTTCGTGTGGTGGCCGG
	TTGCGGCCCCGAAGATCCGAATCAGGAAAAGTGGCTGGAGCAGCAGAA
	GGCCCTGGGCTTCGATTTCATTGCCTCGGAAGGCAATGTGGCTGACTGG
	GACTCGACCAAGACCGCATTCGACAAGGTCAAGTCCGAGGTCGGCGAG
	GTTGATGTGCTGATCAACAACGCCGGTATCACCCGCGACGTGGTGTTCC
	GCAAGATGACCCGCGCCGACTGGGATGCGGTGATCGACACCAACCTGA
	CCTCGCTGTTCAACGTCACCAAGCAGGTGATCGACGGCATGGCCGACC
	GTGGCTGGGGCCGCATCGTCAACATCTCGTCGGTGAACGGGCAGAAGG
	GCCAGTTCGGCCAGACCAACTACTCCACCGCCAAGGCCGGCCTGCATG
	GCTTCACCATGGCACTGGCGCAGGAAGTGGCGACCAAGGGCGTGACCG
	TCAACACGGTCTCTCCGGGCTATATCGCCACCGACATGGTCAAGGCGAT
	CCGCCAGGACGTGCTCGACAAGATCGTCGCGACGATCCCGGTCAAGCG
	CCTGGGCCTGCCGGAAGAGATCGCCTCGATCTGCGCCTGGTTGTCGTCG
	GAGGAGTCCGGTTTCTCGACCGGCGCCGACTTCTCGCTCAACGGCGGC
	CTGCATATGGGCTGA
phaC	ATGGCGACCGGCAAAGGCGCGGCAGCTTCCACGCAGGAAGGCAAGTC
	CCAACCATTCAAGGTCACGCCGGGGCCATTCGATCCAGCCACATGGCTG
	GAATGGTCCCGCCAGTGGCAGGGCACTGAAGGCAACGGCCACGCGGC
	CGCGTCCGGCATTCCGGGCCTGGATGCGCTGGCAGGCGTCAAGATCGC
	GCCGGCGCAGCTGGGTGATATCCAGCAGCGCTACATGAAGGACTTCTCA
	GCGCTGTGGCAGGCCATGGCCGAGGGCAAGGCCGAGGCCACCGGTCC
	GCTGCACGACCGGCGCTTCGCCGGCGACGCATGGCGCACCAACCTCCC
	ATATCGCTTCGCTGCCGCGTTCTACCTGCTCAATGCGCGCGCCTTGACCG
	AGCTGGCCGATGCCGTCGAGGCCGATGCCAAGACCCGCCAGCGCATCC

GCTTCGCGATCTCGCAATGGGTCGATGCGATGTCGCCCGCCAACTTCCT TGCCACCAATCCCGAGGCGCAGCGCCTGCTGATCGAGTCGGGCGGCGA ATCGCTGCGTGCCGGCGTGCGCAACATGATGGAAGACCTGACACGCGG CAAGATCTCGCAGACCGACGAGAGCGCGTTTGAGGTCGGCCGCAATGT CGCGGTGACCGAAGGCGCCGTGGTCTTCGAGAACGAGTACTTCCAGCT GTTGCAGTACAAGCCGCTGACCGACAAGGTGCACGCGCGCCCGCTGCT GATGGTGCCGCCGTGCATCAACAAGTACTACATCCTGGACCTGCAGCCG GAGAGCTCGCTGGTGCGCCATGTGGTGGAGCAGGGACATACGGTGTTT CTGGTGTCGTGGCGCAATCCGGACGCCAGCATGGCCGGCAGCACCTGG GACGACTACATCGAGCACGCGGCCATCCGCGCCATCGAAGTCGCGCGC GACATCAGCGGCCAGGACAAGATCAACGTGCTCGGCTTCTGCGTGGGC GGCACCATTGTCTCGACCGCGCTGGCGGTGCTGGCCGCGCGCGGCGAG CACCCGGCCGCCAGCGTCACGCTGCTGACCACGCTGCTGGACTTTGCC GACACGGGCATCCTCGACGTCTTTGTCGACGAGGGCCATGTGCAGTTGC GCGAGGCCACGCTGGGCGGCGGCGCCGGCGCGCCGTGCGCGCTGCTGC GCGGCCTTGAGCTGGCCAATACCTTCTCGTTCTTGCGCCCGAACGACCT GGTGTGGAACTACGTGGTCGACAACTACCTGAAGGGCAACACGCCGGT GCCGTTCGACCTGCTGTTCTGGAACGGCGACGCCACCAACCTGCCGGG GCCGTGGTACTGCTGGTACCTGCGCCACACCTACCTGCAGAACGAGCTC AAGGTACCGGGCAAGCTGACCGTGTGCGGCGTGCCGGTGGACCTGGCC AGCATCGACGTGCCGACCTATATCTACGGCTCGCGCGAAGACCATATCG TGCCGTGGACCGCGGCCTATGCCTCGACCGCGCTGCTGGCGAACAAGC TGCGCTTCGTGCTGGGTGCGTCGGGCCATATCGCCGGTGTGATCAACCC GCCGGCCAAGAACAAGCGCAGCCACTGGACTAACGATGCGCTGCCGGA GTCGCCGCAGCAATGGCTGGCCGGCGCCATCGAGCATCACGGCAGCTG GTGGCCGGACTGGACCGCATGGCTGGCCGGGCAGGCCGGCGCGAAAC GCGCCGCGCCCGCCAACTATGGCAATGCGCGCTATCGCGCAATCGAACC CGCGCCTGGGCGATACGTCAAAGCCAAGGCATGA
CATATGGCAAAAGTGCTGTGCGTGCTGTATGATGATCCGGTGGATGGTTA TCCGAAAACCTATGCACGTGATGATCTGCCGAAAATTGATCATTATCCGG GTGGCCAGATTCTGCCGACCCCGAAAGCAATTGATTTTACCCCGGGCCA GCTGCTGGGTAGTGTTAGTGGCGAACTGGGCCTGCGCGAATATCTGGAA AGCAATGGTCATACCCTGGTGGTGACCAGTGATAAAGATGGTCCGGATA GTGTGTTTGAACGTGAACTGGTGGATGCAGATGTGGTGATTAGTCAGCC GTTTTGGCCGGCCTATCTGACCCCGGAACGCATTGCCAAAGCCAAAAAT CTGAAACTGGCACTGACCGCAGGCATTGGTAGTGATCATGTGGATCTGC AGAGCGCCATTGATCGTAATGTTACCGTTGCAGAAGTGACCTATAGTAAT AGTATTAGCGTGGCCGAACATGTTGTTATGATGATTCTGAGCCTGGTGCG TAATTATCTGCCGAGCCATGAATGGGCACGCAAAGGTGGTTGGAATATT GCCGATTGCGTTAGTCATGCCTATGATCTGGAAGCCATGCATGTGGGCAC CGTGGCCGCAGGCCGCATTGGTCTGGCCGTGCTGCGCCGTCTGGCCCCT TTTGATGTTCATCTGCATTATACCCAGCGTCATCGTCTGCCGGAAAGTGT GGAAAAAGAACTGAATCTGACCTGGCATGCAACCCGTGAAGATATGTAT CCGGTGTGTGATGTGGTGACCCTGAATGTTCCGCTGCATCCGGAAACCG AACACATGATTAATGATGAAACCCTGAAACTGTTTAAGCGCGGTGCATAT ATTGTGAATACCGCACGTGGTAAACTGTGTGATCGCGATGCAGTGGCCC GCGCCCTGGAAAGTGGTCGTCTGGCAGGTTATGCCGGCGATGTTTGGTT TCCGCAGCCGGCACCGAAAGATCATCCGTGGCGCACCATGCCGTATAAT GGCATGACCCCGCATATTAGCGGCACCACCCTGACCGCCCAGGCACGTT ATGCCGCCGGCACCCGTGAAATTCTGGAATGTTTTTTTGAAGGCCGTCC GATTCGCGATGAATATCTGATTGTTCAGGGCGGTGCACTGGCCGGCACC GGTGCACATAGCTATAGTAAAGGTAATGCAACCGGTGGTAGCGAAGAAG CCGCAAAATTTAAAAAAGCCGTTCTCGAG

References

1. Durrant, J.D., C. Oliveira, and J.A. Mccammon, POVME: An Algorithm for Measuring Binding-Pocket Volumes. Journal of molecular graphics \& modelling, 2011. 29(5): 773-776.
2. Ziesack et al. Water splitting-biosynthetic system with CO_{2} reduction efficiencies exceeding photosynthesis. Science, 2016. 352: 1210-1213.
3. Tieves, F., et al., Energising the E-factor: The E+-factor. Tetrahedron, 2019. 75:1311-1314.
4. Linke, D., Lehnert, N., Nimtz, M. \& Berger, R. G. An alcohol oxidase of Phanerochaete chrysosporium with a distinct glycerol oxidase activity. Enzyme and microbial technology, 2014. 61: 7-12.
5. Hoelsch, K., Sührer, I., Heusel, M. \& Weuster-Botz, D. Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability. Applied Microbiology \& Biotechnology, 2013. 97: 2473-2481.
6. Lu, X., et al., Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design. Nature communications, 2019. 10(1): 1-10.
7. Fleige, C., J. Kroll, and A. Steinbüchel, Establishment of an alternative phosphoketolase-dependent pathway for fructose catabolism in Ralstonia eutropha H16. Applied Microbiology and Biotechnology, 2011. 91(3):769-76.
