Synthesis of P-stereogenic cyclicphosphinic amide via electrochemical enabled cobalt-catalyzed enantioselective $\mathbf{C}-\mathbf{H}$ annulation

Tao Liu, ${ }^{1, \ddagger}$ Wangqin Zhang, ${ }^{1, \$}$ Chao Xu, ${ }^{1, \$}$ Zhenhui Xu, ${ }^{1}$ Dingguo Song, ${ }^{1}$ Wei Qian, ${ }^{1,2}$ Gang Lu, ${ }^{2}$ Chang-Jun Zhang ${ }^{1}$, Weihui Zhong, ${ }^{1}$ and Fei Ling*, ${ }^{1}$
${ }^{1}$ College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
${ }^{2}$ Chengda Pharmaceuticals Co., Ltd., Jiashan 314100, People's Republic of China.

Supporting Information

Table of Contents

General Information S1
General Procedure for the Synthesis of Substrates and Ligands. S1
General Procedure for the Electrochemically Enantioselective C-H Annulation. S6
Kinetic Resolution of (rac)-11 S66
Gram-Scale Synthesis of (S)-30 with Reduced Catalyst Loading. S72
Mechanistic Studies. S73
DFT Calculations. S82
Reference S94
NMR Spectrum S95

General Information

Commercial reagents were purchased from Adamas-beta, Aladdin, Bidepharm, Energy Chemical and TCI. All air-sensitive manipulations were carried out with standard Schlenk techniques under argon. The progress of the reactions was monitored by TLC with silica gel plates, and the visualization was carried out under UV light (254 nm and 365 nm). Melting points were determined using a Büchi B-540 capillary melting point apparatus. Optical rotations were determined using a Rudolph AUTOPOL® V polarimeter. HPLC analyses were performed on Agilent 1100 and Waters e2695 with Daicel chiral columns. NMR spectra were recorded on Bruker Ascend TM (400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 375 \mathrm{MHz}$ for ${ }^{19} \mathrm{~F}, 162 \mathrm{MHz}$ for ${ }^{31} \mathrm{P}$) or Oxford Varian $\mathrm{Me}(400 \mathrm{MHz}$ for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 375 \mathrm{MHz}$ for ${ }^{19} \mathrm{~F}, 162 \mathrm{MHz}$ for 31 P). Chemical shifts were reported in $\delta(\mathrm{ppm})$ referenced to the residual solvent peak of $\mathrm{CDCl}_{3}(\delta 7.26)$, $\mathrm{DMSO}_{6}(\delta 2.50)$ for ${ }^{1} \mathrm{H}$ NMR and $\mathrm{CDCl}_{3}(\delta 77.1)$, DMSO- $d_{6}(\delta 39.5)$ for ${ }^{13} \mathrm{C}$ NMR. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplets), dd (double of doublet). Coupling constants were reported in $\mathrm{Hertz}(\mathrm{Hz})$. HRMS spectra were recorded on an electrospray ionization quadrupole time-of-flight (ESI-Q-TOF) mass spectrometer. Cyclic voltammetry experiments were carried out in an equipment of CHI600E. CV curves were recorded using a three-electrode scheme. The working electrode was a glassy carbon electrode, a platinum electrode served as counter electrode. $\mathrm{Ag} / \mathrm{AgCl}$ (KCl sat'd) was used as the reference electrode. The working electrode was polished before recording each CV curve.

General Procedure for the Synthesis of Substrates and Ligands

Synthesis of Substituted Aryl Phosphinamides 1a-1k

1a-1k were synthesized according to previously published works. ${ }^{1}$ The procedure was showed as following:

Step 1: $\mathrm{I}_{2}(0.05 \mathrm{~g}, 0.2 \mathrm{mmol})$ was added to a stirred extra dry THF $(20 \mathrm{~mL})$ solution containing magnesium turnings $(0.50 \mathrm{~g}, 20 \mathrm{mmol})$ under nitrogen protection. Then, a fraction of aryl bromide $(10.0 \mathrm{mmol})$ in THF (extra dry, 5 mL) was added slowly to the mixture and heated to initiate the reaction. When the color of I_{2} faded, the remainder of aryl bromide (10 mmol) was added dropwise over the course of 20 min at room temperature. After 4 h , diethyl phosphate ($0.8 \mathrm{ml}, 6 \mathrm{mmol}$) in THF (2 mL) was added slowly into the reaction mixture at $0^{\circ} \mathrm{C}$, then stirred at $80^{\circ} \mathrm{C}$ for 4 h . After the reaction was completed, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, acidifying the reaction mixture to $\mathrm{pH}=1$ by diluted $\mathrm{HCl}(4 \mathrm{~N})$. The solution was evaporated under reduced pressure and the residue was extracted with 20 mL EtOAc three times. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give crude product.

Step 2: Hydrogen peroxide $(30 \%, 5.0 \mathrm{~mL})$ was added dropwise to a suspension of crude product in aqueous $\mathrm{NaOH}(5 \mathrm{~N}, 4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 3 h at $100{ }^{\circ} \mathrm{C}$. After the solution was cooled to room temperature, 20 mL water was added to the mixture and extracted with 20 mL EtOAc. The aqueous phase was separated and hydrochloric acid (4 N) was added dropwise to aqueous phase at $0{ }^{\circ} \mathrm{C}$ until no white solid was precipitated out. The white solid was filtered out and dry in the oven as crude phosphonic.

Step 3: A suspension of phosphonic acid and thionyl chloride in toluene (10 mL) was stirred at $80^{\circ} \mathrm{C}$ for 3 h . After removal of thionyl chloride and toluene under reduced pressure, the residue was re-dissolved in toluene $(5 \mathrm{~mL})$, which was added to a mixture of 8 -aminoquinoline (5 mmol), N, N -dimethyl-4-aminopyridine $(0.2 \mathrm{mmol})$, and triethylamine (6 mmol) in toluene $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2}. Then, the solution was stirred at $110{ }^{\circ} \mathrm{C}$ for 24 h . After removal of the volatiles under reduced pressure, the residue was dissolved in $\mathrm{DCM}(20 \mathrm{~mL})$ and washed with saturated ammonium chloride ($25 \mathrm{~mL} \times 2$). Combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel to give the desired product.

Synthesis of Rac-11 ${ }^{2}$

Step 1:Under an atmosphere of nitrogen dichlorophenylphosphine ($5.9 \mathrm{~g}, 33 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) was$ added to a solution of anhydrous pyridine ($5.5 \mathrm{~g}, 69.5 \mathrm{mmol}, 2.1 \mathrm{eq}$.) in hexane (30 mL). The white suspension was cooled in an ice bath. A solution of anhydrous methanol ($2.1 \mathrm{~g}, 66.0 \mathrm{mmol}, 2.0$ equiv.) in hexane (10 mL) was added drop-wise over 2 h , the ice bath was maintained at $0{ }^{\circ} \mathrm{C}$ throughout. After complete addition the white suspension was removed from the ice bath and allowed to warm to room temperature. Stirring was continued for a further hour. The suspension was then filtered through a sintered glass funnel under a stream of nitrogen to remove the pyridine hydrochloride salt precipitate. The filtrate was concentrated on the rotary evaporator to yield the title compound as a grainy yellow liquid that was not further purified ($4.0 \mathrm{~g}, 70 \%$) 。

Step 2: A small amount of the crude phosphonite $(2.0 \mathrm{~g})$ was charged into a 15 mL pressure tube and mixed with a few drops of methyl iodide. The reaction mixture was carefully warmed under a nitrogen blanket until a vigorous exothermic reaction began (caution: danger of dramatic pressure increase). The resulting orange solution was then stirred 3 h at $70{ }^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel afforded the corresponding product (\pm)-methyl methylphenylphosphinate as a clear yellow oil ($1.6 \mathrm{~g}, 80 \%$).

Step 3: (\pm)-Methyl methylphenylphosphinate was charged into a 25 mL 2-necked round bottom flask. A solution of $\mathrm{NaOH}(4 \mathrm{~N})$ in MeOH was added under ice bath then stirred 2 h and maintained at $0{ }^{\circ} \mathrm{C}$. Methanol removed in vacuo, hydrochloric acid (conc.) was added dropwise until no white solid was precipitated out. Filter the white solid obtained corresponding product
methylphenylphosphinic acid ($1.4 \mathrm{~g}, 90 \%$).
Rac-11 was synthesized from methylphenylphosphinic acid according to the step 3 of $\mathbf{1 a - 1 k}$.
Synthesis of Terminal Alkynes containing Drug Fragments (2aq, 2ar)

Step 1: Charging 2 mmol of bromobenzene, 0.06 mmol of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(42 \mathrm{mg}, 0.03 \mathrm{eq}),$. mmol of CuI ($23 \mathrm{mg}, 0.06 \mathrm{eq}$.), 2.4 mmol of trimethylsilylacetylene ($236 \mathrm{mg}, 1.2 \mathrm{eq}$.) and 10 mL of diisopropyamine as solvent into a 100 mL flask with three necks equipped with a stir bar under argon atmosphere. Placing the reaction mixture into a pre heated to $50^{\circ} \mathrm{C}$ oil bath for 12 h and then monitoring the reaction by (TLC). Evaporating solvent under decompression at the end of the reaction. Diluting the reaction mixture with 30 mL of EtOAc. Filtering the reaction mixture through thin pad of Celite and then washing the filtrate with water $(3 \times 5 \mathrm{~mL})$ and concentrate to obtain crude products.

Step 2: Adding $4.0 \mathrm{mmol}\left(552 \mathrm{mg}, 2.0 \mathrm{eq}\right.$.) of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ to a solution of 2.0 mmol of 1-aryl-2-trimethylsilylacetylene in 5 mL of dry MeOH . Stir the reaction mixture for 12 h at room temperature. Removing the solvent under reduced pressure. Purifying the residue by column chromatography on silica gel (eluent HE to $\mathrm{HE} / \mathrm{EtOAc}=60: 1 \mathrm{v} / \mathrm{v}$) to afford 2aq, 2ar.

1-Chloro-2-(4-ethoxybenzyl)-4-ethynylbenzene (2aq)

The title compound was purified by column chromatography on silica gel (eluent HE) as yellow oil liquid ($181.6 \mathrm{mg}, 67 \%$ yield). ${ }^{\mathbf{1} H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) $\delta 7.34-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{dt}, J=$ $8.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{dt}, J=8.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.05-4.00(\mathrm{~m}, 4 \mathrm{H}), 3.08(\mathrm{~s}, 1 \mathrm{H}), 1.42(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) \cdot{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 157.6,139.6,135.0,134.4,131.2,130.7,130.0,129.6$, $120.9,114.6,82.8,78.0,63.4,38.2,14.9$. HRMS (ESI) calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClO}[\mathrm{M}+\mathrm{H}]^{+}$: 271.0884, found: 271.0876.

(S)-3-(4-(2-Chloro-5-ethynylbenzyl)phenoxy)tetrahydrofuran (2ar)

The title compound was purified by column chromatography on silica gel (eluent HE) as yellow oil liquid ($237.2 \mathrm{mg}, 76 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.35-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.12$ (dt, $J=8.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.93-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.04-4.01(\mathrm{~m}, 3 \mathrm{H})$, $4.00-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 1 \mathrm{H}), 2.23-2.16(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3} \mathbf{C}}{ }^{\mathbf{N}} \mathbf{~ N M R ~ (1 0 0 ~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 156.1,139.4,134.9,134.4,131.2,130.1,129.6,120.9,115.5,115.5,82.7,78.0,77.3,73.2$, 67.2, 38.1, 33.0. HRMS (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 313.0990$, found: 313.0986.

Synthesis of Terminal Alkyne Derived from Drugs containing Carboxylic Acid (2au, 2aw-2ay)

To a solution of carboxylic acid ($2.2 \mathrm{mmol}, 1.1 \mathrm{eq}$.), 4-ethynylaniline ($2.0 \mathrm{mmol}, 234 \mathrm{mg}, 1.0$
eq.), 1-hydroxybenzotriazole (HOBT, $2.4 \mathrm{mmol}, 324 \mathrm{mg}, 1.2 \mathrm{eq}$.) and 4-methylmorpholine (NMM, $4.0 \mathrm{mmol}, 404 \mathrm{mg}, 2.0 \mathrm{eq}$.), 5 mL DMF were added. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 minutes under N_{2} atmosphere before EDCI ($2.6 \mathrm{mmol}, 498 \mathrm{mg}, 1.3 \mathrm{eq}$.) was added. Then, the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes until the system turned into orange clarification state. The reaction mixture was stirred at room temperature for 6 h . The reaction progress was monitored by TLC. After the starting material carboxylic acid was consumed, the reaction mixture was quenched with saturated NaHCO_{3} solution $(30 \mathrm{~mL})$ and extracted with EtOAc for 2-3 times. The combined organic phases were washed with dilute $\mathrm{HCl}(2 \mathrm{~N}, 10 \mathrm{~mL} \times 3)$ and brine $(10 \mathrm{~mL} \times$ 3), respectively. And then, the organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography ($\mathrm{HE} / \mathrm{EtOAc}=$ 10:1 to $2: 1 \mathrm{v} / \mathrm{v}$) to afford 2au, 2aw-2ay.

4-(N, N-dipropylsulfamoyl)- N-(4-ethynylphenyl)benzamide (2au)

The title compound was purified by column chromatography on silica gel $(\mathrm{HE} / \mathrm{EtOAc}=2: 1 \mathrm{v} / \mathrm{v})$ as a light-yellow solid $(637.7 \mathrm{mg}, 83 \%$ yield). M.p.: $120-121{ }^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{H}} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.98$ (s, $1 \mathrm{H}), 7.89-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{q}, J=7.6 \mathrm{~Hz}$, 2H), $7.48-7.41(\mathrm{~m}, 2 \mathrm{H}), 3.07-3.00(\mathrm{~m}, 5 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 4 \mathrm{H}), 0.87-0.80(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 165.0,142.5,138.7,138.5,132.9,128.2,127.1,120.0,118.2,83.4,77.1,50.0$, 21.9, 11.1. HRMS (ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 385.1580$, found: 385.1567 .

1-(4-Chlorobenzoyl)- N -(4-ethynylphenyl)-5-methoxy-2-methyl-1H-indole-3-carboxamide (2aw)

The title compound was purified by column chromatography on silica gel ($\mathrm{HE} / \mathrm{EtOAc}=3: 1 \mathrm{v} / \mathrm{v}$) as a light-yellow solid $(709.1 \mathrm{mg}$, 81\% yield). M.p.: 181-182 ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.66$ (dt, $J=8.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.48(\mathrm{dt}, J=8.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-$ $7.35(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (dd, $J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 5 \mathrm{H}), 3.03(\mathrm{~s}, 1 \mathrm{H}), 2.44$ $(\mathrm{s}, 3 \mathrm{H}) \cdot{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 168.4,168.3,156.5,139.8,137.9,136.8,133.5,132.9,131.3$, 131.0, 130.1, 129.3, 119.6, 118.1, 115.3, 112.5, 112.1, 100.8, 83.2, 77.0, 55.8, 33.4, 13.3. HRMS (ESI) calculated for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 457.1313$, found: 457.1309.

(S)-N-(4-Ethynylphenyl)-2-(6-methoxynaphthalen-2-yl)propenamide (2ax)

The title compound was purified by column chromatography on silica gel $(\mathrm{HE} / \mathrm{EtOAc}=4: 1 \mathrm{v} / \mathrm{v})$ as a light-yellow solid $(493.7 \mathrm{mg}$, 83\% yield). M.p.: $169-170^{\circ} \mathrm{C} . \underline{\mathbf{1} \mathbf{H}} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $7.72(\mathrm{dd}, J=15.2,8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.18(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 172.6,158.0,138.4,135.7,134.0,132.8,129.3,129.1,127.9,126.4,126.0$, $119.4,119.3,117.6,105.8,83.4,76.8,55.4,48.1,18.5$. HRMS (ESI) calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{2}\right]^{+}$: 330.1489 , found: 330.1478 .

N-(4-ethynylphenyl)-2-(4-isobutylphenyl)propenamide (2ay)

The title compound was purified by column chromatography on silica gel $(\mathrm{He} / \mathrm{EtOAc}=5: 1 \mathrm{v} / \mathrm{v})$ as yellow liquid $(470.0 \mathrm{mg}, 77 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.46-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.27(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.05(\mathrm{~s}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) \cdot{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.9,141.2,138.4,137.8$, 132.8, 129.9, 127.4, 119.3, 117.6, 83.4, 76.8, 47.7, 45.0, 30.2, 22.4, 18.5. HRMS (ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 306.1852$, found: 306.1847.

Synthesis of Terminal Alkyne 2av

Step 1: Adding oxalyl chloride ($0.254 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) and a portion of DMF to a solution$ of gemfibrozil ($550 \mathrm{mg}, 2.2 \mathrm{mmol}, 1.1 \mathrm{eq}$.) in DCM (5 mL) was stirred at $0^{\circ} \mathrm{C}$ for 1 h . Next, the stirring system was continued to react at room temperature for 3 h . After the starting material carboxylic acid was consumed, the leftover oxalyl chloride and solvent were removed in vacuo.

Step 2: A solution of acyl chloride in DCM (5 mL) was injected into a solution of 4-ethynylaniline ($2.0 \mathrm{mmol}, 234 \mathrm{mg}, 1.0 \mathrm{eq}$.) in $\mathrm{DCM}(5 \mathrm{~mL})$ at room temperature for 14 h . The reaction progress was monitored by TLC. After the starting material 4-ethynylaniline was consumed, the reaction mixture was quenched with saturated NaHCO_{3} solution $(10 \mathrm{ml})$ and extracted with EtOAc for 2-3 times. The combined organic phases were washed with brine ($10 \mathrm{ml} \times 3$). Then, the organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography ($\mathrm{HE} / \mathrm{EtOAc}=6: 1 \mathrm{v} / \mathrm{v}$) to afford 2av as a light-yellow solid.

5-(2,5-dimethylphenoxy)- N -(4-ethynylphenyl)-2,2-dimethylpentanamide (2av)

The title compound was purified by column chromatography on silica gel $(\mathrm{HE} / \mathrm{EtOAc}=10: 1 \mathrm{v} / \mathrm{v})$ as a light-yellow solid $(460.9 \mathrm{mg}$, 66% yield). m.p.: $135-136^{\circ} \mathrm{C}$. ${ }^{\mathbf{H}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.50$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.19$ $(\mathrm{s}, 3 \mathrm{H}), 1.82(\mathrm{t}, J=2.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.34(\mathrm{~s}, 6 \mathrm{H}) .{ }^{\mathbf{1 3} \mathbf{C}} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 175.8,156.9,138.4$, $136.6,132.9,130.4,123.5,121.0,119.8,117.7,112.3,83.4,76.8,67.9,43.0,37.7,25.6,25.2,21.4$, 15.8. HRMS (ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 350.2115$, found: 350.2111.

Synthesis of L1-L5 ${ }^{1 \mathrm{~d}}$

Ligands L1-L5 were synthesized according reference $1 \mathrm{~d}: \mathrm{ZnCl}_{2}(1.14 \mathrm{~g}, 8.5 \mathrm{mmol}, 0.1 \mathrm{eq})$ was
added to a 250 mL round-bottomed flask, toluene $(150 \mathrm{~mL})$ was added to the flask under N_{2}. Lamino alcohol ($126 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added, followed by 2-hydroxybenzonitrile ($84.0 \mathrm{mmol}, 1.0$ eq). The solution was heated at reflux (oil bath $130^{\circ} \mathrm{C}$) under N_{2} and maintained at this temperature for 10 h . The reaction progress was monitored by TLC. After the starting material 2hydroxybenzonitrile was consumed, toluene was removed under reduced pressure. The crude residue was purified by flash column chromatography on silica gel ($\mathrm{HE} / \mathrm{EtOAc} / \mathrm{DCM}=15: 1: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$) to afford the chiral ligand.

General Procedure for the Racemic C-H Annulation ${ }^{1 d}$

Phosphinic amide 1a (0.1 mmol), alkyne 2a $(0.15 \mathrm{mmol})$, $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$, (rac)-L1 $(20 \mathrm{~mol} \%), \mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}), \mathrm{NaOPiv}(0.2 \mathrm{mmol})$ and $t-\mathrm{BuOH}(4 \mathrm{~mL})$ were added to an oven dried vial equipped with stirring bars. Then, the vial was instantly placed in a heating block set at $50^{\circ} \mathrm{C}$ under air for 48 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel to give the desired product.

General Procedure for the Electrochemically Enantioselective C-H Annulation

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ mm) and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 2 or $\mathbf{4}(0.30 \mathrm{mmol}, 1.5 \mathrm{eq}),. \mathrm{Co}(\mathrm{OAc})_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%)$, NaOPiv (0.2 mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel to give the desired product $\mathbf{3 , 4 , 5}$ and $\mathbf{6}$.

The racemic product was synthesized according to the following procedure: ${ }^{1 \mathrm{~d}}$

Phosphinic amide 1a $(0.1 \mathrm{mmol})$, alkyne 2a $(0.15 \mathrm{mmol}), \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$, (rac)-L1 $(20 \mathrm{~mol} \%), \mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}), \mathrm{NaOPiv}(0.2 \mathrm{mmol})$ and $t-\mathrm{BuOH}(4 \mathrm{~mL})$ were added to an oven dried vial equipped with stirring bars. Then, the vial was instantly placed in a heating block set at $70^{\circ} \mathrm{C}$ under air for 48 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel to give the racemic product.

Synthetic Procedure and Characterization of 3a

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathrm{a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 2a ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}.), \mathrm{Co}(\mathrm{OAc})_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(P E /$ Acetone $=4: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 a}(93.6 \mathrm{mg})$ in 90% yield as a lightyellow foam with $>99 \%$ ee. Product exists as a $10: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-1,3,4-Triphenyl-2-(quinolin-8-yl)-2H-benzo $[c][1,2]$ azaphosphinine1-oxide (3a)

M.p.: $135-136{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+305.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right),>99 \%$ ee, $\mathrm{lit}^{1 \mathrm{~d}}:[\alpha]_{\mathrm{D}}{ }^{20}=+269.2$ [c $=1.0, \mathrm{CHCl}_{3},>99 \%$ ee $\left.(S)\right]$. The ee was determined by Daicel Chiralcel IC, Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ major $)=18.961 \mathrm{~min}, \mathrm{t}($ minor $)=$ $24.482 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.82(\mathrm{dd}, J=4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.14(\mathrm{~m}, 9 \mathrm{H}), 7.12-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 4 \mathrm{H}), 6.56-$ $6.53(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.3,144.5\left(\mathrm{~d}, J_{\mathrm{CP}}=3.5 \mathrm{~Hz}\right), 142.6,139.3\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=3.6 \mathrm{~Hz}), 138.8\left(\mathrm{~d}, J_{\mathrm{CP}}=0.9 \mathrm{~Hz}\right), 137.7\left(\mathrm{~d}, J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right), 136.7\left(\mathrm{~d}, J_{\mathrm{CP}}=3.9 \mathrm{~Hz}\right), 135.5,133.5(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=10.4 \mathrm{~Hz}\right), 132.5,131.7\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{CP}}=3.4 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 131.0$, $131.0,130.7\left(\mathrm{~d}, J_{\mathrm{CP}}=98.9 \mathrm{~Hz}\right), 128.2,127.7,127.4,127.1,127.0,126.4,126.3,125.8,125.7\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=14.5 \mathrm{~Hz}), 125.4,123.9\left(\mathrm{~d}, J_{\mathrm{CP}}=128.1 \mathrm{~Hz}\right), 121.0,117.9\left(\mathrm{~d}, J_{\mathrm{CP}}=7.4 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P} \mathbf{~ N M R ~ (1 6 2 ~ M H z}$ $\mathbf{C D C l}_{3}$) $\delta 16.23$; $\boldsymbol{\text { HRMS (ESI) }}$ calculated for $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 521.1777$, found: 521.1776.

Synthetic Procedure and Characterization of 3b

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 2b ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}.), \mathrm{Co}(\mathrm{OAc})_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L} 1(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=4: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 b}(94.3 \mathrm{mg})$ in 86% yield as a lightyellow foam with $>99 \%$ ee. Product exists as a $10: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.
(S)-1-Phenyl-2-(quinolin-8-yl)-3,4-di-p-tolyl-2H-benzo[c][1,2]azaphosphinine 1-oxide (3b)

M.p.: $134-135{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+285.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right),>99 \%$ ee, lit ${ }^{1 \mathrm{dd}}:[\alpha]_{\mathrm{D}}{ }^{20}=$ $+243.9\left[\mathrm{c}=0.5, \mathrm{CHCl}_{3},>99 \%\right.$ ee $\left.(S)\right]$. The ee was determined by Daicel Chiralcel IC, Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ major $)=16.912 \mathrm{~min}, \mathrm{t}$ $($ minor $)=24.671 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.80(\mathrm{dd}, J=4.0,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.04(\mathrm{~m}, 8 \mathrm{H}), 7.02-6.92(\mathrm{~m}, 4 \mathrm{H}), 6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 149.3$, $144.4\left(\mathrm{~d}, J_{\mathrm{CP}}=3.6 \mathrm{~Hz}\right), 142.6,139.3\left(\mathrm{~d}, J_{\mathrm{CP}}=3.6 \mathrm{~Hz}\right), 138.7\left(\mathrm{~d}, J_{\mathrm{CP}}=1.4 \mathrm{~Hz}\right), 137.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.3\right.$ $\mathrm{Hz}), 136.6\left(\mathrm{~d}, J_{\mathrm{CP}}=3.9 \mathrm{~Hz}\right), 135.5,133.4\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5 \mathrm{~Hz}\right), 132.4,131.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 131.4$ $\left(\mathrm{d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=1.6 \mathrm{~Hz}\right), 131.0,131.0,130.2\left(\mathrm{~d}, J_{\mathrm{CP}}=124.8 \mathrm{~Hz}\right), 128.2,127.7$, $127.4,127.0\left(\mathrm{~d}, J_{\mathrm{CP}}=13.6 \mathrm{~Hz}\right), 126.5,126.4,126.3,125.8,125.7\left(\mathrm{~d}, J_{\mathrm{CP}}=14.6 \mathrm{~Hz}\right), 125.4,123.7$ $\left(\mathrm{d}, J_{\mathrm{CP}}=129.3 \mathrm{~Hz}\right), 121.0,117.7\left(\mathrm{~d}, J_{\mathrm{CP}}=7.3 \mathrm{~Hz}\right), 21.2,20.9 ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 16.37$;
HRMS (ESI) calculated for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 549.2090$, found: 549.2091.

Synthetic Procedure and Characterization of 3c

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$. $)$, alkyne 2c ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}.), \mathrm{Co}(\mathrm{OAc})_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 c}(91.7 \mathrm{mg})$ in 79% yield as a lightyellow foam with $>99 \%$ ee. Product exists as a $14: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3,4-Bis(4-methoxyphenyl)-1-phenyl-2-(quinolin-8-yl)-2H-benzo $[c][1,2]$ azaphos-phinine 1oxide (3c)

M.p.: $135-136{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+287.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right),>99 \%$ ee, lit ${ }^{1 \mathrm{~d}}:[\alpha]_{\mathrm{D}}{ }^{20}=$ $+229.9\left[\mathrm{c}=0.5, \mathrm{CHCl}_{3},>99 \%\right.$ ee $\left.(S)\right]$. The ee was determined by Daicel Chiralcel IA, Hexanes $/$ IPA $=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}$ (major) $=15.897$ \min , t (minor) $=24.121 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.80(\mathrm{dd}, J=4.0$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.36(\mathrm{~m}, 2 \mathrm{H})$, $7.25(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 6 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.88$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 157.9,157.6,149.2,144.5(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 142.6,139.8(\mathrm{~d}, J=4.5 \mathrm{~Hz})$, $137.9(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 135.5,133.4,133.3,133.2(\mathrm{~d}, J=127.2 \mathrm{~Hz}), 132.2,131.4(\mathrm{~d}, J=3.0 \mathrm{~Hz})$, $131.4(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=12.6 \mathrm{~Hz}), 129.5(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}), 128.2,127.3,127.0,126.9,126.4(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 125.4,123.8(\mathrm{~d}, J=128.9 \mathrm{~Hz}), 121.0$, $117.5(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 113.3,111.4,55.1,54.6 ;{ }^{\mathbf{3 1} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2 ~ M H z}, \mathbf{C D C l}_{3}\right)} \delta 16.54 ; \underline{\text { HRMS (ESI) }}$ calculated for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 581.1989$, found: 581.1988.

Synthetic Procedure and Characterization of 3d

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$. $)$, alkyne $2 \mathbf{d}(0.3 \mathrm{mmol}, 1.5 \mathrm{eq}),. \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 d}(98.06 \mathrm{mg})$ in 86% yield as a lightyellow foam with 98% ee. Product exists as a $22: 1$ mixture of atropisomers due to the hindered rotation about the N -quinoline bond and the structure of major isomer was shown.

(S)-4,4'-(1-oxido-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c||1,2]azaphosphinine-3,4diyl)dibenzonitrile (3d)

M.p.: $130-132{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+369.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right), 98 \%$ ee, $\mathrm{lit}^{1 \mathrm{~d}}:[\alpha]_{\mathrm{D}}{ }^{20}=$ $+343.9\left[\mathrm{c}=0.5, \mathrm{CHCl}_{3}, 98 \%\right.$ ee $\left.(S)\right]$. The ee was determined by Daicel Chiralcel IA, Hexanes $/$ IPA $=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}$ (minor) $=14.967 \mathrm{~min}, \mathrm{t}$ $($ major $)=22.153 \mathrm{~min} . \mathbf{H}^{\mathbf{H}} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.82(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=12.8,7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.58-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.05(\mathrm{~m}$, 4H), 7.03 - $6.97(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.7,143.9(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 143.4,141.1,140.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 137.6\left(\mathrm{~d}, J_{\mathrm{CP}}=4.0 \mathrm{~Hz}\right), 136.7\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right)$, $135.9,133.5,133.4,133.2,132.1,132.0,131.5,131.4,131.3,130.1,128.4,128.2,127.3\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $13.2 \mathrm{~Hz}), 126.8\left(\mathrm{~d}, J_{\mathrm{CP}}=14.3 \mathrm{~Hz}\right), 126.0\left(\mathrm{~d}, J_{\mathrm{CP}}=8.8 \mathrm{~Hz}\right), 125.6,121.5,118.6,118.2,116.8\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=6.9 \mathrm{~Hz}), 111.0,110.8 ;{ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 16.45$; $\underline{\text { HRMS (ESI) }}$ calculated for $\mathrm{C}_{37} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 571.1982$, found: 571.1984.

Synthetic Procedure and Characterization of 3e

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$. $)$, alkyne $\mathbf{2 e}(0.3 \mathrm{mmol}, 1.5 \mathrm{eq}),. \mathrm{Co}(\mathrm{OAc})_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 e}(108.9 \mathrm{mg})$ in 83% yield as a yellow oil with $>99 \%$ ee. Product exists as a $10: 1$ mixture of atropisomers due to the hindered rotation about the N -quinoline bond and the structure of major isomer was shown.

(S)-1-Phenyl-2-(quinolin-8-yl)-3,4-bis(4-(trifluoromethyl)phenyl)-2H-benzo[c][1,2] azaphosphinine 1-oxide (3e)

$[\alpha]_{\mathrm{D}}{ }^{20}=+79.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right),>99 \%$ ee. The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ major $)=5.163$ \min , t (minor) $=6.745 \mathrm{~min} . \mathbf{}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.86(\mathrm{dd}, J=4.0$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.81$ $(\mathrm{m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.69(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}$, $4 \mathrm{H}), 7.30(\mathrm{dd}, J=8.0,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.13-7.03(\mathrm{~m}, 3 \mathrm{H})$, $\left.6.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 150.1,145.2(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 142.8,137.6$ (d, $J=1.6 \mathrm{~Hz}), 137.5(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 135.8,133.7,133.6,132.5,132.0(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.7(\mathrm{~d}, J$ $=2.6 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=185.6 \mathrm{~Hz}), 130.8,130.1(\mathrm{~d}, J$ $=4.7 \mathrm{~Hz}), 129.8(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 128.6,128.1,127.5,127.3,127.0(\mathrm{~d}, J=14.5 \mathrm{~Hz}), 126.4(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}), 126.1,125.8(\mathrm{~d}, J=14.7 \mathrm{~Hz}), 125.5,125.4-125.1(\mathrm{~m}), 125.0-124.8(\mathrm{~m}), 124.6(\mathrm{~d}, J=$

MHz, $\mathbf{C D C l}_{3}$) $\delta 15.50$; $\underline{\text { HRMS (ESI) calculated for } \mathrm{C}_{37} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 657.1530 \text {, found: }}$ 657.1533.

峰 \＃	保留时间 ［min］		峰宽 ［min］	峰面积 $[\mathrm{mAU} * \mathrm{~s}]$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％		保留时间 [min]	类型	峰宽 ［min］	峰面积 ［mAU＊s］	$\begin{aligned} & \text { 峰高 } \\ & \text { [mAU] } \end{aligned}$	峰面积 $\%$
1	5.163	MM	0.1998	4092.18774	341.42752	51.1380							
2	6.745	MM	0.2435	3910.05347	267.64615	48.8620	1	5.156	BV	0.1969	2.54011 e 4	1953.19	100.0000

Synthetic Procedure and Characterization of $3 f$

The electrocatalysis was carried out in an undivided cell，with a GF anode（ $10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode（ $10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$ ）．Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$ ．）， alkyne $\mathbf{2 f}(0.3 \mathrm{mmol}, 1.5 \mathrm{eq}),. \mathrm{Co}(\mathrm{OAc})_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$ ， 2.0 eq．）were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$（3．0：1．0）． Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h ．After the reaction was completed，the reaction mixture was cooled to room temperature，quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ，and extracted with EtOAc．The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo．Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=5: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 f}(97.3 \mathrm{mg})$ in 72% yield as a light－ yellow foam with 99% ee．Product exists as a $17: 1$ mixture of atropisomers due to the hindered rotation about the N－quinoline bond and the structure of major isomer was shown．
（S）－3，4－Bis（4－bromophenyl）－1－phenyl－2－（quinolin－8－yl）－2H－benzo［c］［1，2］azaphos－phinine 1－ oxide（3f）

M．p．：165－171 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+264.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right), 99 \%$ ee， $\mathrm{lit}^{1 \mathrm{ld}}:[\alpha]_{\mathrm{D}}{ }^{20}=+258.7$ ［c $=1.0, \mathrm{CHCl}_{3}, 98 \%$ ee $\left.(S)\right]$ ．The ee was determined by Daicel Chiralcel IA， Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}$（minor）$=7.687 \mathrm{~min}, \mathrm{t}$（major） $=9.377 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.80(\mathrm{dd}, J=4.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.04$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 3 \mathrm{H})$ ， $7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.07(\mathrm{~m}, 6 \mathrm{H}), 6.95(\mathrm{td}, J=7.6,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}$ ， $\left.J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 149.4,144.2\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $3.4 \mathrm{~Hz}), 141.5,138.6\left(\mathrm{~d}, J_{\mathrm{CP}}=4.4 \mathrm{~Hz}\right), 137.4,137.2\left(\mathrm{~d}, J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right), 135.7,135.4\left(\mathrm{~d}, J_{\mathrm{CP}}=3.9\right.$ $\mathrm{Hz}), 134.0,133.3\left(\mathrm{~d}, J_{\mathrm{CP}}=10.6 \mathrm{~Hz}\right), 132.4,131.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 131.3$ $\left(\mathrm{d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right), 131.2,131.0\left(\mathrm{~d}, J_{\mathrm{CP}}=12.7 \mathrm{~Hz}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{CP}}=136.8 \mathrm{~Hz}\right), 129.3,128.2,127.8$ ， $127.0\left(\mathrm{~d}, J_{\mathrm{CP}}=13.6 \mathrm{~Hz}\right), 126.3\left(\mathrm{~d}, J_{\mathrm{CP}}=26.4 \mathrm{~Hz}\right), 126.2\left(\mathrm{~d}, J_{\mathrm{CP}}=3.2 \mathrm{~Hz}\right), 125.5,123.9\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $128.7 \mathrm{~Hz}), 121.2,121.0,120.8,116.8\left(\mathrm{~d}, J_{\mathrm{CP}}=7.3 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P} \mathbf{~ N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 16.39$ ； HRMS（ESI）calculated for $\mathrm{C}_{35} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 676.9988$ ，found：676． 9992.

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	峰面积 ［mAU＊s］	$\begin{aligned} & \text { 峰高 } \\ & \text { [mAU] } \end{aligned}$	峰面积 \％	峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{array}{r} \text { 峰面积 } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{array}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	$\begin{gathered} \text { 峰面积 } \\ \% \end{gathered}$
1	7.687	BV	0.6411	4494.16699	108.35613	47.3371	1	7.762	MM	0.3600	56.75049	2.62759	0.3013
2	9.377	VV	0.5125	4999.79053	146.74965	52.6629	2	9.360	BV	0.4952	1.87768 e 4	576.18195	99.6987

Synthetic Procedure and Characterization of 3g

The electrocatalysis was carried out in an undivided cell，with a GF anode（ $10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$ ．Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$ ．$)$ ， alkyne $2 \mathrm{~g}(0.3 \mathrm{mmol}, 1.5 \mathrm{eq}),. \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$ ， 2.0 eq．）were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$（3．0：1．0）． Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h ．After the reaction was completed，the reaction mixture was cooled to room temperature，quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ，and extracted with EtOAc．The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo．Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=4: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 g}(95.6 \mathrm{mg})$ in 85% yield as a light－ yellow foam with $>99 \%$ ee．Product exists as a $14: 1$ mixture of atropisomers due to the hindered rotation about the N－quinoline bond and the structure of major isomer was shown．

（S）－3，4－Bis（4－fluorophenyl）－1－phenyl－2－（quinolin－8－yl）－2H－benzo［c］［1，2］azaphos－phinine 1－ oxide（3g）

M．p．： $125-126{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+90.33\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right),>99 \%$ ee．The ee was determined by Daicel Chiralcel IA，Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210$ nm, t（major）$=10.762 \mathrm{~min}, \mathrm{t}($ minor $\left.)=12.285 \mathrm{~min} . \mathbf{1}^{\mathbf{H}} \mathbf{~ N M R ~ (4 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 8.84(\mathrm{dd}, J=4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}$ ， $2 \mathrm{H}), 7.84(\mathrm{dd}, J=12.8,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.27(\mathrm{~m}, 4 \mathrm{H})$ ， $7.33-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{t}, J=8.8 \mathrm{~Hz}$ ， 2H）， 6.15 － $6.11(\mathrm{~m}, 2 \mathrm{H}) \cdot{ }^{\mathbf{1 3} \mathbf{C}} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 163.5(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 161.1(\mathrm{~d}, J=5.8$ $\mathrm{Hz}), 150.0,145.2,138.2(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 137.8,135.6,134.7(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 133.6(\mathrm{~d}, J=9.9 \mathrm{~Hz})$ ， $132.5,132.4,132.2(\mathrm{~d}, J=27.8 \mathrm{~Hz}), 131.8,131.4,131.07(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 130.9,130.6(\mathrm{~d}, J=$ $139.1 \mathrm{~Hz}), 128.5,127.9,127.3(\mathrm{~d}, J=13.5 \mathrm{~Hz}), 126.7(\mathrm{~d}, J=32.3 \mathrm{~Hz}), 126.4$（d，$J=8.6 \mathrm{~Hz}), 126.0$ ， $125.6(\mathrm{~d}, J=128.5 \mathrm{~Hz}), 122.4(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 121.2,118.0(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 115.14(\mathrm{dd}, J=22.2$ ， 7.9 Hz ）；${ }^{\mathbf{1 9} \mathbf{F}} \mathbf{N M R}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) ~ \delta 110.23,114.70 ;{ }^{\mathbf{3 1} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2 ~ M H z}, \mathbf{C D C l}_{3}\right)} \delta 15.42$ ；

HRMS（ESI）calculated forC ${ }_{35} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 557.1594$ ，found：521．1595．

Synthetic Procedure and Characterization of 3h

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$. $)$, alkyne 2 h ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}.), \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 h}(100.9 \mathrm{mg})$ in 87% yield as a lightyellow foam with $>99 \%$ ee. Product exists as a $14: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3,4-Bis(3-methoxyphenyl)-1-phenyl-2-(quinolin-8-yl)-2H-benzo $[c][1,2]$ azaphos-phinine 1oxide (3h)

M.p.: $93-95{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+178.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right),>99 \%$ ee, lit ${ }^{1 \mathrm{~d}}:[\alpha]_{\mathrm{D}}{ }^{20}=$ $+189.8\left[\mathrm{c}=0.5, \mathrm{CHCl}_{3}, 98 \%\right.$ ee $\left.(S)\right]$. The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}$ (minor) $=17.267 \mathrm{~min}, \mathrm{t}$ (major) $=19.021 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} \mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.83(\mathrm{dd}, J=4.4,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=13.2$, $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 3 \mathrm{H})$, 7.19 - 7.12 (m, 2H), $7.04(\mathrm{td}, J=7.6,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=8.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 159.6,158.8,145.0,145.3\left(\mathrm{~d}, J_{\mathrm{CP}}=3.6 \mathrm{~Hz}\right), 140.1,138.18(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=4.2 \mathrm{~Hz}\right), 137.9,135.6,133.7\left(\mathrm{~d}, J_{\mathrm{CP}}=10.6 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.4\right.$ $\mathrm{Hz}), 131.1\left(\mathrm{~d}, J_{\mathrm{CP}}=5.3 \mathrm{~Hz}\right), 130.9,130.1\left(\mathrm{~d}, J_{\mathrm{CP}}=139.8 \mathrm{~Hz}\right), 129.1,128.9,128.5,127.8,127.3$, $127.2,126.9,126.7\left(\mathrm{~d}, J_{\mathrm{CP}}=8.2 \mathrm{~Hz}\right), 126.4\left(\mathrm{~d}, J_{\mathrm{CP}}=14.5 \mathrm{~Hz}\right), 126.0,125.6\left(\mathrm{~d}, J_{\mathrm{CP}}=127.5 \mathrm{~Hz}\right)$, $123.6\left(\mathrm{~d}, J_{\mathrm{CP}}=6.9 \mathrm{~Hz}\right), 123.1\left(\mathrm{~d}, J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right), 121.3,121.0,115.9,115.3,115.0,113.7,55.4,55.0$; ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 15.48$; HRMS (ESI) calculated for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$: 581.1989, found: 581.1985.

Synthetic Procedure and Characterization of 3i

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) ,$ alkyne $2 \mathbf{i}$ ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S) \mathbf{L} \mathbf{1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 i}(115.2 \mathrm{mg})$ in 90% yield as a lightyellow foam with $>99 \%$ ee. Product exists as a $17: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3,4-Bis(3,5-dimethoxyphenyl)-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2] azaphosphinine 1-oxide (3i)

M.p.: 65-71 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+50.0\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right),>99 \%$ ee. The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=22$ $0 \mathrm{~nm}, \mathrm{t}$ (major) $=9.231 \mathrm{~min}, \mathrm{t}($ minor $)=10.959 \mathrm{~min} .{ }^{\mathbf{1} \mathbf{H} \mathbf{N M R}(400 \mathbf{~ M H z},}$ $\left.\mathbf{C D C l}_{3}\right) \delta 8.82(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.85(\mathrm{dd}, J=13.2,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.39(\mathrm{~m}$, $4 \mathrm{H}), 7.30(\mathrm{dd}, J=8.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 1 \mathrm{H})$, $7.09-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.52(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($100 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 160.6,160.0,150.0,145.3$ $\left(\mathrm{d}, J_{\mathrm{CP}}=3.5 \mathrm{~Hz}\right), 140.7,138.0\left(\mathrm{~d}, J_{\mathrm{CP}}=4.4 \mathrm{~Hz}\right), 137.8\left(\mathrm{~d}, J_{\mathrm{CP}}=1.8 \mathrm{~Hz}\right), 135.5,133.7,133.6,131.7$ $\left(\mathrm{d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{CP}}=12.7 \mathrm{~Hz}\right), 123.0$ $\left(\mathrm{d}, J_{\mathrm{CP}}=139.5 \mathrm{~Hz}\right), 128.5,127.8,127.3,127.2,126.7\left(\mathrm{~d}, J_{\mathrm{CP}}=9.0 \mathrm{~Hz}\right), 126.5,126.3,126.0,124.8$ $\left(\mathrm{d}, \boldsymbol{J}_{\mathrm{CP}}=128.3 \mathrm{~Hz}\right), 123.6\left(\mathrm{~d}, J_{\mathrm{CP}}=7.0 \mathrm{~Hz}\right), 108.3,101.8,100.3,97.6,55.4,55.1 ;{ }^{31} \mathbf{P}$ NMR (162 $\underline{\mathbf{M H z}, \mathbf{C D C l}_{3}}$) $\delta 15.53$; $\underline{\text { HRMS (ESI) calculated for } \mathrm{C}_{39} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 641.2205 \text {, found: }}$ 641.2202 .

Synthetic Procedure and Characterization of 3j

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$. $)$, alkyne $\mathbf{2 j}$ ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}.), \mathrm{Co}(\mathrm{OAc})_{2}{ }^{\bullet} \mathbf{4 H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathrm{L} 1(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 j}(84.4 \mathrm{mg})$ in 68% yield as a lightyellow foam with $>99 \%$ ee. Product exists as a $10: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3,4-Di(naphthalen-2-yl)-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphos-phinine 1 oxide (3i)

M.p.: $114-115{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+168.6\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right),>99 \%$ ee. The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210$ nm, t (minor) $=9.035 \mathrm{~min}, \mathrm{t}$ (major) $=16.964 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 8.90(\mathrm{dd}, J=4.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=8.4,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.99-7.94(\mathrm{~m}, 3 \mathrm{H}), 7.95-7.84(\mathrm{~m}, 4 \mathrm{H}), 7.71(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.28-$ $7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{dd}, J=7.8,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.00$ $(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 150.1,138.0,136.4,135.7,133.8,133.7$, 133.7, 132.9, 132.4, 132.3, 132.2, 132.0, 131.9, 131.7.131.7, 131.4, 131.4, 131.2, 131.1, 131.0, $130.9,129.8\left(\mathrm{~d}, J_{\mathrm{CP}}=167.2 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{\mathrm{CP}}=3.1 \mathrm{~Hz}\right), 128.2,127.9,127.7,127.5,127.4,127.3$, $127.3,127.2,127.0,126.8\left(\mathrm{~d}, J_{\mathrm{CP}}=9.0 \mathrm{~Hz}\right), 126.5,126.2,126.0\left(\mathrm{~d}, J_{\mathrm{CP}}=2.0 \mathrm{~Hz}\right), 121.3,119.3 ;{ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 15.58$; HRMS (ESI) calculated for $\mathrm{C}_{43} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 621.2096$, found: 621.2091.

Synthetic Procedure and Characterization of 3k

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$. $)$, alkyne $2 \mathbf{k}(0.3 \mathrm{mmol}, 1.5 \mathrm{eq}),. \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(P E /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 k}(104.1 \mathrm{mg})$ in 84% yield as a lightyellow foam with $>99 \%$ ee. Product exists as a $11: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-1-Phenyl-2-(quinolin-8-yl)-3,4-di(thiophen-2-yl)-2H-benzo[c][1,2]azaphos-phinine 1oxide (3k)

M.p.: 129-133 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+168.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right),>99 \%$ ee, lit ${ }^{1 \mathrm{ld}}:[\alpha]_{\mathrm{D}}{ }^{20}=+238.5$ $\left[\mathrm{c}=1.0, \mathrm{CHCl}_{3}, 98 \%\right.$ ee $\left.(S)\right]$. The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ minor $)=35.402 \mathrm{~min}, \mathrm{t}($ major $)=$ $42.029 \mathrm{~min} .{ }^{\mathbf{1} H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.82(\mathrm{dd}, J=4.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=13.2,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.47$ $(\mathrm{m}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{dd}, J=7.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.08(\mathrm{~m}$, $1 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{dd}, J=5.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=4.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.5,144.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5\right.$ $\mathrm{Hz}), 139.8,139.3\left(\mathrm{~d}, J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right), 138.4,137.5\left(\mathrm{~d}, J_{\mathrm{CP}}=4.5 \mathrm{~Hz}\right), 137.3\left(\mathrm{~d}, J_{\mathrm{CP}}=1.8 \mathrm{~Hz}\right), 135.5$, $133.3,133.2,131.7\left(\mathrm{~d}, J_{\mathrm{CP}}=4.2 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{CP}}=4.2 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 131.0,130.8$ $\left(\mathrm{d}, J_{\mathrm{CP}}=12.1 \mathrm{~Hz}\right), 130.3,129.7,128.3,127.6,127.1,126.9,126.8\left(\mathrm{~d}, J_{\mathrm{CP}}=9.0 \mathrm{~Hz}\right), 126.5\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $7.3 \mathrm{~Hz}), 126.3\left(\mathrm{~d}, J_{\mathrm{CP}}=7.0 \mathrm{~Hz}\right), 125.5,124.4,123.1,121.2,112.9\left(\mathrm{~d}, J_{\mathrm{CP}}=7.2 \mathrm{~Hz}\right) ;{ }^{\mathbf{3 1} \mathbf{P} \mathbf{~ N M R ~ (1 6 2}}$ MHz, $\mathbf{C D C l}_{3}$) $\delta 16.96$; $\underline{\text { HRMS (ESI) calculated for } \mathrm{C}_{31} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OPS}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 533.0906 \text {, found: }}$ 533.0903.

Synthetic Procedure and Characterization of 31

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$. $)$, alkyne 21 ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=5: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $31(71.2 \mathrm{mg})$ in 84% yield as a lightyellow foam with 99% ee. Product exists as a $10: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3,4-Diethyl-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphinine 1-oxide (31)

M.p.: 197-201 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+399.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right), 99 \% \mathrm{ee}, \mathrm{lit}^{1 \mathrm{~d} .}[\alpha]_{\mathrm{D}}{ }^{20}=+625.0$ $\left[\mathrm{c}=0.5, \mathrm{CHCl}_{3}, 99 \%\right.$ ee $\left.(S)\right]$. The ee was determined by Daicel Chiralcel IC, Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ major $)=29.002 \mathrm{~min}, \mathrm{t}($ minor $)=$ $36.932 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.78(\mathrm{dd}, J=4.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=8.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ $-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{td}, J=7.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{td}, J$ $=7.6,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.43(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.6 \mathrm{~Hz}, 5 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 150.1,145.3\left(\mathrm{~d}, J_{\mathrm{CP}}=3.7\right.$ $\mathrm{Hz}), 142.2,139.0\left(\mathrm{~d}, J_{\mathrm{CP}}=4.2 \mathrm{~Hz}\right), 137.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 135.8,133.2\left(\mathrm{~d}, J_{\mathrm{CP}}=10.2 \mathrm{~Hz}\right), 131.4$ $\left(\mathrm{d}, J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right), 130.7\left(\mathrm{~d}, J_{\mathrm{CP}}=12.8 \mathrm{~Hz}\right), 130.7\left(\mathrm{~d}, J_{\mathrm{CP}}=135.3 \mathrm{~Hz}\right), 130.6$ $\left(\mathrm{d}, J_{\mathrm{CP}}=3.4 \mathrm{~Hz}\right), 128.5,127.4,126.9\left(\mathrm{~d}, J_{\mathrm{CP}}=13.3 \mathrm{~Hz}\right), 125.8,124.9\left(\mathrm{~d}, J_{\mathrm{CP}}=129.7 \mathrm{~Hz}\right), 124.8(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=14.7 \mathrm{~Hz}\right), 123.5\left(\mathrm{~d}, J_{\mathrm{CP}}=9.4 \mathrm{~Hz}\right), 121.2,114.2\left(\mathrm{~d}, J_{\mathrm{CP}}=8.3 \mathrm{~Hz}\right), 24.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 22.39$, 14.93, 13.29; ${ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 16.098$; $\underline{\text { HRMS (ESI) calculated for } \mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}, ~}$ $+\mathrm{H}]^{+}: 425.1777$, found: 425.1776.

Synthetic Procedure and Characterization of 3m

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 2 m ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$.), $\mathrm{Co}(\mathrm{OAc})_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=5: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 m}(83.5 \mathrm{mg})$ in 87% yield as a yellow oil with $>99 \%$ ee. Product exists as a 11:1 mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3,4-Dibutyl-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphinine 1-oxide (3m)

$[\alpha]_{\mathrm{D}}{ }^{20}=+399.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right),>99 \%$ ee. The ee was determined by Daicel Chiralcel IC, Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ minor $)=9.035$ $\min , \mathrm{t}($ major $)=16.964 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.76(\mathrm{dd}, J=4.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.47(\mathrm{~m}$, $6 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{td}, J=7.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{td}, J=7.6,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.79-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.62(\mathrm{~m}, 3 \mathrm{H})$, $1.58-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.08-0.93(\mathrm{~m}, 5 \mathrm{H}), 0.57(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 145.0,145.3\left(\mathrm{~d}, J_{\mathrm{CP}}=3.7 \mathrm{~Hz}\right), 141.3,139.2\left(\mathrm{~d}, J_{\mathrm{CP}}=4.2 \mathrm{~Hz}\right), 137.5\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $2.6 \mathrm{~Hz}), 135.7,133.2\left(, J_{\mathrm{CP}}=10.1 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=135.1 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right), 131.1(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=2.7 \mathrm{~Hz}\right), 130.6\left(\mathrm{~d}, J_{\mathrm{CP}}=12.7 \mathrm{~Hz}\right), 130.4\left(\mathrm{~d}, J_{\mathrm{CP}}=3.2 \mathrm{~Hz}\right), 128.4,127.3,126.9,126.7,125.6$, $125.5\left(\mathrm{~d}, J_{\mathrm{CP}}=129.8 \mathrm{~Hz}\right), 124.7\left(\mathrm{~d}, J_{\mathrm{CP}}=14.8 \mathrm{~Hz}\right), 123.5\left(\mathrm{~d}, J_{\mathrm{CP}}=9.5 \mathrm{~Hz}\right), 121.2,113.3\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ 8.4 Hz), $32.6,31.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right), 30.8,29.3,23.1,22.4,14.0,13.5 ;{ }^{\left.\mathbf{3 1} \mathbf{P} \mathbf{~ N M R ~ (1 6 2 ~ M H z}, \mathbf{C D C l}_{3}\right)}$ $\delta 16.098$; $\boldsymbol{\text { HRMS (ESI) }}$ calculated for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 481.2403$, found: 481.2401.

Synthetic Procedure and Characterization of 3an_and 3n'

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 2 n ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=5: 1 \mathrm{v} / \mathrm{v})$ to give mixture $\mathbf{3 n}$ and $\mathbf{3 n}{ }^{\prime}(2.5: 1,70.0 \mathrm{mg})$ in 72% yield as a yellow oil with all $>99 \%$ ees. Major product exists as a $12: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

Compounds 3n and 3n'

$[\alpha]_{\mathrm{D}}{ }^{20}=+294.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right),>99 \%$ ee. The ee was determined by Daicel Chiralcel IA, Hexanes/IPA=70/30, 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}_{1}$ (major) $=5.260 \mathrm{~min}, \mathrm{t}_{1}($ minor $)=$ $6.541 \mathrm{~min}, \mathrm{t}_{2}($ major $)=7.329 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=8.995 \mathrm{~min}$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.90-8.74(\mathrm{~m}, 1 \mathrm{H}), 8.29-$ $6.73(\mathrm{~m}, 20 \mathrm{H}), 3.13-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.44(\mathrm{~m}, 2 \mathrm{H}), 0.85-0.32(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 150.1\left(\mathrm{~d}, J_{\mathrm{CP}}=26.1 \mathrm{~Hz}\right), 149.7,149.3,145.5\left(\mathrm{~d}, J_{\mathrm{CP}}=3.7 \mathrm{~Hz}\right), 144.7\left(\mathrm{~d}, J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right)$, $141.1,138.45\left(\mathrm{~d}, J_{\mathrm{CP}}=4.5 \mathrm{~Hz}\right), 138.0\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 137.1\left(\mathrm{~d}, J_{\mathrm{CP}}=3.6 \mathrm{~Hz}\right), 135.5\left(\mathrm{~d}, J_{\mathrm{CP}}=6.6\right.$ $\mathrm{Hz}), 133.6,133.4\left(\mathrm{~d}, J_{\mathrm{CP}}=10.4 \mathrm{~Hz}\right), 132.5\left(\mathrm{~d}, J_{\mathrm{CP}}=10.1 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.3 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=3.0 \mathrm{~Hz}), 131.2\left(\mathrm{~d}, J_{\mathrm{CP}}=12.6 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{\mathrm{CP}}=7.1 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{CP}}=3.6 \mathrm{~Hz}\right), 130.5,129.1$ $\left(\mathrm{d}, J_{\mathrm{CP}}=116.3 \mathrm{~Hz}\right), 128.2,127.3\left(\mathrm{~d}, J_{\mathrm{CP}}=33.8 \mathrm{~Hz}\right), 127.0\left(\mathrm{~d}, J_{\mathrm{CP}}=6.8 \mathrm{~Hz}\right), 126.6,125.7\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $14.7 \mathrm{~Hz}), 125.4,124.5(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 124.1\left(\mathrm{~d}, J_{\mathrm{CP}}=9.6 \mathrm{~Hz}\right), 121.0119 .7\left(\mathrm{~d}, J_{\mathrm{CP}}=6.8 \mathrm{~Hz}\right), 114.9$ $\left(\mathrm{d}, J_{\mathrm{CP}}=7.5 \mathrm{~Hz}\right), 98.6,31.9,23.1,21.4,21.0,14.0,13.0 ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 16.79$, 15.33; HRMS (ESI) calculated for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 487.1939$, found: 487.1942.

Synthetic Procedure and Characterization of 30

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 2 o ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}.), \mathrm{Co}(\mathrm{OAc})_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=5: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 o}(80.8 \mathrm{mg})$ in 91% yield as a lightyellow foam with $>99 \%$ ee. Product exists as a $8: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-1,3-Diphenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphinine 1-oxide (30)

M.p.: 136-137 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+363.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right),>99 \%$ ee, lit ${ }^{1 \mathrm{ld}}:[\alpha]_{\mathrm{D}}{ }^{20}=+472.7$ $\left[\mathrm{c}=0.5, \mathrm{CHCl}_{3}, 98 \%\right.$ ee $\left.(S)\right]$. The ee was determined by Daicel Chiralcel IC, Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ major $)=40.417 \mathrm{~min}, \mathrm{t}($ minor $)=$ 49.610 min . ${ }^{\mathbf{H}} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.71(\mathrm{dd}, J=4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{dt}$, $J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 2 \mathrm{H})$, $7.38-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{td}, J=7.7,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.89$ $(\mathrm{dd}, J=5.0,2.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.33(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 149.3,145.3$, $144.1\left(\mathrm{~d}, J_{\mathrm{CP}}=3.3 \mathrm{~Hz}\right), 138.4\left(\mathrm{~d}, J_{\mathrm{CP}}=4.3 \mathrm{~Hz}\right), 138.1\left(\mathrm{~d}, J_{\mathrm{CP}}=5.0 \mathrm{~Hz}\right), 137.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right)$,
$135.4,133.1,133.0,131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{\mathrm{CP}}=12.3 \mathrm{~Hz}\right), 130.4$ $\left(\mathrm{d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 129.0,128.4,127.4,127.3,127.2,127.0,126.9,126.7\left(\mathrm{~d}, J_{\mathrm{CP}}=9.3 \mathrm{~Hz}\right), 125.9(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=12.4 \mathrm{~Hz}\right), 125.5,124.1\left(\mathrm{~d}, J_{\mathrm{CP}}=126.9 \mathrm{~Hz}\right), 121.0,107.7 ;{ }^{\mathbf{3 1} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)} \delta$ 18.77; HRMS (ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}$: 445.1464, found: 445.1466.

Synthetic Procedure and Characterization of 3p

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne $2 \mathbf{p}$ ($0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$, $(\mathrm{S})-\mathrm{L} 1(15 \mathrm{~mol} \%)$, NaOPiv (0.2 mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3.0: 1.0)$. Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 p}(67.4 \mathrm{mg})$ in 71% yield as a lightyellow foam with 98% ee. Product exists as a $10: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.
(S)-3-(4-Methoxyphenyl)-1-phenyl-2-(quinolin-8-yl)-2H-benzo $[c][1,2]$ azaphosphini-ne 1oxide (3p)

M.p.: $120-122{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+272.5\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right), 98 \%$ ee. lit ${ }^{1 \mathrm{~d}}:[\alpha]_{\mathrm{D}}{ }^{20}=$ $+381.5\left[\mathrm{c}=0.5, \mathrm{CHCl}_{3},>99 \%\right.$ ee $\left.(S)\right]$. The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (minor) $=$ $12.800 \mathrm{~min}, \mathrm{t}$ (major) $=24.482 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.72-8.75$ $(\mathrm{m}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=6.4,1 \mathrm{H}), 7.77-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.51$ $(\mathrm{m}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H})$, 7.16-7.09 (m, 2H), 7.01-6.96 (m, 2H), $6.45(\mathrm{dd}, J=8.8,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ $\underline{\text { MR (100 MHz, CDCl }} \mathbf{3}$) $\delta 158.8,149.2,144.9,144.1(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 138.2(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 137.8$ $\left(\mathrm{d}, J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right), 135.4,132.9\left(\mathrm{~d}, J_{\mathrm{CP}}=10.6 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{CP}}=2.3 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right)$, $131.0\left(\mathrm{~d}, J_{\mathrm{CP}}=4.5 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{CP}}=141.5 \mathrm{~Hz}\right), 130.7\left(\mathrm{~d}, J_{\mathrm{CP}}=12.2 \mathrm{~Hz}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right)$, $130.2,128.4,127.2\left(\mathrm{~d}, J_{\mathrm{CP}}=9.5 \mathrm{~Hz}\right), 127.0,126.5\left(\mathrm{~d}, J_{\mathrm{CP}}=9.3 \mathrm{~Hz}\right), 125.7\left(\mathrm{~d}, J_{\mathrm{CP}}=14.3 \mathrm{~Hz}\right), 125.4$, $123.3\left(\mathrm{~d}, J_{\mathrm{CP}}=127.6 \mathrm{~Hz}\right), 121.0,112.5,107.2\left(\mathrm{~d}, J_{\mathrm{CP}}=7.6 \mathrm{~Hz}\right), 55.0 ;{ }^{\mathbf{3 1} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)}$ $\delta 19.11$; HRMS (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 475.1570$, found: 475.1568 .

Synthetic Procedure and Characterization of 3q

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$. $)$, alkyne $2 q\left(0.3 \mathrm{mmol}, 1.5 \mathrm{eq}\right.$) , $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=5: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 q}(78.3 \mathrm{mg})$ in 82% yield as a lightyellow foam with $>99 \%$ ee. Product exists as a $10: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3-(4-Chlorophenyl)-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphinine 1oxide (3q)

M.p.: $126-127^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+381.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right),>99 \%$ ee, $\mathrm{lit}^{1 \mathrm{dd}}:[\alpha]_{\mathrm{D}}{ }^{20}=$ $+327.2\left[\mathrm{c}=0.5, \mathrm{CHCl}_{3},>99 \%\right.$ ee $\left.(S)\right]$. The ee was determined by Daicel Chiralcel IC, Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ minor $)=$ $29.534 \mathrm{~min}, \mathrm{t}$ (major) $=34.476 \mathrm{~min}$. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} \mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.71(\mathrm{dd}$, $J=4.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.72-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{td}, J$ $\left.=8.0,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 149.4,144.1,143.9\left(\mathrm{~d}, J_{\mathrm{CP}}=3.2 \mathrm{~Hz}\right), 137.8\left(\mathrm{~d}, J_{\mathrm{CP}}=5.0 \mathrm{~Hz}\right), 137.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 1367.0(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=4.4 \mathrm{~Hz}\right), 135.6,133.3,133.0,132.9,131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 131.4(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=197.0 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{CP}}=12.4 \mathrm{~Hz}\right), 130.2\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 130.2,128.5,127.5,127.3,127.2$ $\left(\mathrm{d}, J_{\mathrm{CP}}=3.6 \mathrm{~Hz}\right), 126.7\left(\mathrm{~d}, J_{\mathrm{CP}}=9.3 \mathrm{~Hz}\right), 126.1\left(\mathrm{~d}, J_{\mathrm{CP}}=14.4 \mathrm{~Hz}\right), 125.5,123.6\left(\mathrm{~d}, J_{\mathrm{CP}}=127.8 \mathrm{~Hz}\right)$, $121.2,107.8\left(\mathrm{~d}, J_{\mathrm{CP}}=7.8 \mathrm{~Hz}\right) ; \underline{\mathbf{3 1} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)} \delta 18.83$; $\underline{\text { HRMS (ESI) }}$ calculated for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 479.1075$, found: 479.1076 .

Synthetic Procedure and Characterization of 3r

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$. $)$, alkyne $2 \mathbf{r}\left(0.30 \mathrm{mmol}, 1.5 \mathrm{eq}\right.$.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathrm{L} 1(15 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.2 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=4: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 r}(98.4 \mathrm{mg})$ in 94% yield as a lightyellow foam with $>99 \%$ ee. Product exists as a $10: 1$ mixture of atropisomers due to the hindered rotation about the N -quinoline bond and the structure of major isomer was shown.
(S)-3-(4-Methoxyphenyl)-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphini-ne 1oxide (3r)

M.p.: $122-124{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+336.6\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right),>99 \%$ ee; The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ nm, t (minor) $=12.950 \mathrm{~min}, \mathrm{t}$ (major) $=36.406 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 8.70(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65(\mathrm{dd}, J=13.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 2 \mathrm{H})$, $7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J$ $\left.=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right)^{2} \delta 149.4,144.0,143.8$ $\left(\mathrm{d}, J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 137.7\left(\mathrm{~d}, J_{\mathrm{CP}}=5.0 \mathrm{~Hz}\right), 137.5\left(\mathrm{~d}, J_{\mathrm{CP}}=4.0 \mathrm{~Hz}\right), 137.4,135.6,133.0\left(\mathrm{~d}, J_{\mathrm{CP}}=11.0\right.$ $\mathrm{Hz}), 131.9\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 130.9,130.8\left(\mathrm{~d}, J_{\mathrm{CP}}=117.5 \mathrm{~Hz}\right), 130.5,130.2$, $130.1\left(\mathrm{~d}, J_{\mathrm{CP}}=2.0 \mathrm{~Hz}\right), 128.4,127.5,127.2\left(\mathrm{~d}, J_{\mathrm{CP}}=13.0 \mathrm{~Hz}\right), 126.8\left(\mathrm{~d}, J_{\mathrm{CP}}=11.0 \mathrm{~Hz}\right), 126.2(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=14.0 \mathrm{~Hz}\right), 125.5,124.2\left(\mathrm{~d}, J_{\mathrm{CP}}=126.0 \mathrm{~Hz}\right), 121.6,121.2,107.9\left(\mathrm{~d}, J_{\mathrm{CP}}=8.0 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P} \mathbf{~ N M R}$
 523.0569.

Synthetic Procedure and Characterization of 3s

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne $2 \mathrm{~s}\left(0.30 \mathrm{mmol}, 1.5 \mathrm{eq}\right.$) , $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathrm{L} 1(15 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.2 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=4: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $3 \mathrm{~s}(85.8 \mathrm{mg})$ in 82% yield as a lightyellow foam with 99% ee. Product exists as a $11: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.
(S)-3-([1,1'-Biphenyl]-4-yl)-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphi-nine 1-oxide (3s)

M.p.: $132-135{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+255.2\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right), 99 \%$ ee; The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ nm, t (major) $=26.506 \mathrm{~min}, \mathrm{t}($ minor $)=33.678 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 8.73(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.7 .47(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 4 \mathrm{H})$, 7.33-7.26 (m, 3H), 7.24-7.16(m, 4H), $7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.03$ $(\mathrm{m}, 2 \mathrm{H}), 6.96(\mathrm{td}, J=7.6,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 149.3,144.9$, $144.1\left(\mathrm{~d}, J_{\mathrm{CP}}=3.3 \mathrm{~Hz}\right), 140.2,139.9,138.0\left(\mathrm{~d}, J_{\mathrm{CP}}=5.0 \mathrm{~Hz}\right), 137.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right), 137.5\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=4.3 \mathrm{~Hz}), 135.5,133.0\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{CP}}=135.2 \mathrm{~Hz}\right), 131.5$ $\left(\mathrm{d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{CP}}=12.1 \mathrm{~Hz}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right), 129.3,128.6,128.5,127.4,127.3$, $127.2,127.1,126.7,126.0\left(\mathrm{~d}, J_{\mathrm{CP}}=14.3 \mathrm{~Hz}\right), 125.6,125.5,124.2\left(\mathrm{~d}, J_{\mathrm{CP}}=126.7 \mathrm{~Hz}\right), 121.1,107.9$ $\left(\mathrm{d}, J_{\mathrm{CP}}=7.8 \mathrm{~Hz}\right) ; \underline{{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)} \delta 19.00 ; \underline{\text { HRMS (ESI) calculated for } \mathrm{C}_{35} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OP}}$ $[\mathrm{M}+\mathrm{H}]^{+}: 521.1777$, found: 521.1716 .

Synthetic Procedure and Characterization of 3t

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$. $)$, alkyne $2 \mathrm{t}\left(0.30 \mathrm{mmol}, 1.5 \mathrm{eq}\right.$.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathrm{L} 1(15 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.2 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=2: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $3 \mathrm{t}(84.4 \mathrm{mg})$ in 90% yield as a lightyellow foam with 98% ee. Product exists as a $10: 1$ mixture of atropisomers due to the hindered rotation about the N -quinoline bond and the structure of major isomer was shown.

(S)-4-(1-Oxido-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphinin-3yl)benzonitrile (3t)

M.p.: 133-135 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+486.0\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right), 98 \%$ ee; The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}, \mathrm{t}($ minor $)=23.237 \mathrm{~min}, \mathrm{t}($ mjaor $)=42.853 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 8.70(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65(\mathrm{dd}, J=13.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 3 \mathrm{H})$, $7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{t}, J$ $=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 0 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{td}, J=7.6,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.34$ $(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ MR ($\left.100 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 149.4,143.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 143.4,143.1\left(\mathrm{~d}, J_{\mathrm{CP}}=4.4 \mathrm{~Hz}\right)$, $137.3\left(\mathrm{~d}, J_{\mathrm{CP}}=4.7 \mathrm{~Hz}\right), 137.2\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 135.7,133.0\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{\mathrm{CP}}=2.4\right.$ $\mathrm{Hz}), 131.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{\mathrm{CP}}=12.4 \mathrm{~Hz}\right), 130.8,130.0\left(\mathrm{~d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right), 129.7\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=118.7 \mathrm{~Hz}), 129.4,128.5,127.6,127.2\left(\mathrm{~d}, J_{\mathrm{CP}}=13.6 \mathrm{~Hz}\right), 126.96\left(\mathrm{~d}, J_{\mathrm{CP}}=9.1 \mathrm{~Hz}\right), 126.60\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=14.4 \mathrm{~Hz}), 125.6,123.9\left(\mathrm{~d}, J_{\mathrm{CP}}=126.9 \mathrm{~Hz}\right), 121.3,118.5,110.9,108.7\left(\mathrm{~d}, J_{\mathrm{CP}}=7.7 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P} \mathbf{N M R}$ ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 18.58$; HRMS (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 470.1417$, found: 470.1412.

Synthetic Procedure and Characterization of 3u
The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne $2 \mathbf{2 u}\left(0.30 \mathrm{mmol}, 1.5 \mathrm{eq}\right.$.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathrm{L} 1(15 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.2$ mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=1: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 u}(86.1 \mathrm{mg})$ in 84% yield as a lightyellow foam with 99% ee. Product exists as a $9: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-1-Phenyl-2-(quinolin-8-yl)-3-(4-(trifluoromethyl)phenyl)-2H-benzo[c][1,2]azaphosphinine 1-oxide (3u)

M.p.: $112-113{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+559.0\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right), 99 \%$ ee; The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ minor $)=11.318 \mathrm{~min}, \mathrm{t}($ mjaor $)=28.646 \mathrm{~min} . \underline{\mathbf{H} \mathbf{~ N M R ~}(\mathbf{4 0 0} \mathbf{~ M H z},}$ $\left.\mathbf{C D C l}_{3}\right) \delta 8.72(\mathrm{dd}, J=4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 7.77(\mathrm{dd}, J=8.4$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 4 \mathrm{H})$, $7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{td}, J=7.6,3.6$ $\left.\mathrm{Hz}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 149.4,143.9,143.81\left(\mathrm{~d}, J_{\mathrm{CP}}=3.3\right.$ $\mathrm{Hz}), 142.1,137.6\left(\mathrm{~d}, J_{\mathrm{CP}}=4.9 \mathrm{~Hz}\right), 137.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 135.7,133.0\left(\mathrm{~d}, J_{\mathrm{CP}}=10.6 \mathrm{~Hz}\right), 132.0$ $\left(\mathrm{d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 131.60\left(\mathrm{~d}, J_{\mathrm{CP}}=136.1 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{\mathrm{CP}}=12.2 \mathrm{~Hz}\right), 130.2$ $\left(\mathrm{d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 129.2,128.5,127.6,127.3,127.1,126.9\left(\mathrm{~d}, J_{\mathrm{CP}}=9.3 \mathrm{~Hz}\right), 126.5\left(\mathrm{~d}, J_{\mathrm{CP}}=14.5\right.$ $\mathrm{Hz}), 125.6,123.9\left(\mathrm{q}, J_{\mathrm{CF}}=270.5\right), 123.8\left(\mathrm{~d}, J_{\mathrm{CP}}=126.7\right), 124.0\left(\mathrm{q}, J_{\mathrm{CF}}=3.7 \mathrm{~Hz}\right), 121.3,108.5(\mathrm{~d}$,
 (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 513.1338$, found: 513.1340.

Synthetic Procedure and Characterization of 3v

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne $2 \mathbf{v}$ ($0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(15 \mathrm{~mol} \%)$, NaOPiv (0.2 mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 v}(86.4 \mathrm{mg})$ in 91% yield as a lightyellow foam with 99% ee. Product exists as a $8: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.
(S)-3-(3-Methoxyphenyl)-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphini-ne 1oxide (3v)

M.p.: $93-94{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+310.4\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right), 99 \%$ ee; The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $210 \mathrm{~nm}, \mathrm{t}($ minor $)=19.378 \mathrm{~min}, \mathrm{t}($ mjaor $)=57.867 \mathrm{~min} .{ }^{1} \mathbf{H} \mathbf{N M R}(400$ $\underline{\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right)} \delta 8.71(\mathrm{dd}, J=4.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-$ $7.66(\mathrm{~m}, 3 \mathrm{H}), 7.56-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.17-$ $7.03(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $\left.6.36(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 158.23,149.3,145.0,144.2\left(\mathrm{~d}, J_{\mathrm{CP}}=3.2\right.$ $\mathrm{Hz}), 139.6\left(\mathrm{~d}, J_{\mathrm{CP}}=4.3 \mathrm{~Hz}\right), 138.0\left(\mathrm{~d}, J_{\mathrm{CP}}=5.0 \mathrm{~Hz}\right), 137.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.1 \mathrm{~Hz}\right), 135.5,132.9\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $10.5 \mathrm{~Hz}), 131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.3 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.7 \mathrm{~Hz}\right), 130.8\left(\mathrm{~d}, J_{\mathrm{CP}}=11.9 \mathrm{~Hz}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $2.7 \mathrm{~Hz}), 128.4,128.0,127.3,127.2\left(\mathrm{~d}, J_{\mathrm{CP}}=13.6 \mathrm{~Hz}\right), 126.7\left(\mathrm{~d}, J_{\mathrm{CP}}=9.3 \mathrm{~Hz}\right), 126.3\left(\mathrm{~d}, J_{\mathrm{CP}}=75.9\right.$ $\mathrm{Hz}), 126.0\left(\mathrm{~d}, J_{\mathrm{CP}}=14.4 \mathrm{~Hz}\right), 125.4,124.1\left(\mathrm{~d}, J_{\mathrm{CP}}=126.5 \mathrm{~Hz}\right), 121.6,121.0,114.8\left(\mathrm{~d}, J_{\mathrm{CP}}=175.2\right.$ $\mathrm{Hz}), 114.1\left(\mathrm{~d}, J_{\mathrm{CP}}=15.5 \mathrm{~Hz}\right), 107.9\left(\mathrm{~d}, J_{\mathrm{CP}}=7.7 \mathrm{~Hz}\right), 55.0 ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 19.12$; HRMS (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 475.1570$, found: 475.1569 .

Synthetic Procedure and Characterization of 3w

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne $2 \mathbf{w}\left(0.3 \mathrm{mmol}, 1.5 \mathrm{eq}\right.$), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=5: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 w}(78.3 \mathrm{mg})$ in 82% yield as a lightyellow foam with 99% ee. Product exists as a $9: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3-(3-Chlorophenyl)-1-Phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphinine 1oxide (3w)

M.p.: $108-110{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+461.6\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right), 99 \%$ ee. The ee was determined by Daicel Chiralcel IC, Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$, $\mathrm{t}($ major $)=29.257 \mathrm{~min}, \mathrm{t}($ minor $)=55.974 \mathrm{~min}$. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 8.73 (dd, $J=4.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.72-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.44-$ $7.34(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{dd}, J=8.2,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.06(\mathrm{~m}$, $1 \mathrm{H}), 6.97(\mathrm{td}, J=7.2,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.32(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{\mathbf{1 3} \mathbf{C}} \mathbf{C}$ NMR (100 $\left.\underline{\mathbf{M H z}, \mathbf{C D C l}_{3}}\right)^{2} 149.4,143.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.4 \mathrm{~Hz}\right), 143.8,140.2\left(\mathrm{~d}, J_{\mathrm{CP}}=4.5 \mathrm{~Hz}\right), 137.7\left(\mathrm{~d}, J_{\mathrm{CP}}=4.8\right.$ $\mathrm{Hz}), 137.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 135.5,133.1,133.0,132.8,131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.8\right.$ Hz), 131.0, 130.8, 130.3 (d, $\left.J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 129.1,128.5,128.1,127.5,127.2,127.1,126.8\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $9.3 \mathrm{~Hz}), 126.2\left(\mathrm{~d}, J_{\mathrm{CP}}=14.4 \mathrm{~Hz}\right), 125.5,123.7\left(\mathrm{~d}, J_{\mathrm{CP}}=127.8 \mathrm{~Hz}\right), 121.2,108.0\left(\mathrm{~d}, J_{\mathrm{CP}}=7.8 \mathrm{~Hz}\right) ;$ ${ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 18.67$; $\underline{\text { HRMS (ESI) calculated for } \mathrm{C}_{29} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+} \text {: }}$ 479.1075, found: 479.1075.

Synthetic Procedure and Characterization of 3x

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne $2 \mathbf{x}$ ($0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$, $(S)-\mathbf{L 1}(15 \mathrm{~mol} \%)$, $\mathrm{NaOPiv}(0.2$ mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was proformed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=2: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 x}(88.3 \mathrm{mg})$ in 93% yield as a lightyellow foam with 99% ee. Product exists as a $7: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.
(S)-3-(2-Methoxyphenyl)-1-phenyl-2-(quinolin-8-yl)-2H-benzo [c][1,2]azaphosphini-ne 1oxide (3x)

M.p.: $117-119{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+208.0\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right), 99 \%$ ee; The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210$ nm, t (minor) $=9.050 \mathrm{~min}, \mathrm{t}($ mjaor $\left.)=15.528 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 8.76(\mathrm{dd}, J=4.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.65(\mathrm{~m}, 3 \mathrm{H})$, $7.56-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.25-7.14 (m, 2H), $7.12(\mathrm{dd}, J=8.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{td}, J=7.6,3.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.86(\mathrm{td}, J=7.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48-6.33(\mathrm{~m}, 2 \mathrm{H}), 6.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ M R}$ $\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 156.2,149.2,144.4\left(\mathrm{~d}, J_{\mathrm{CP}}=3.7 \mathrm{~Hz}\right), 143.3,138.2\left(\mathrm{~d}, J_{\mathrm{CP}}=4.7 \mathrm{~Hz}\right), 137.2(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right), 135.3,133.3\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5 \mathrm{~Hz}\right), 131.7,131.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9\right.$ $\mathrm{Hz}), 130.9\left(\mathrm{~d}, J_{\mathrm{CP}}=11.0 \mathrm{~Hz}\right), 130.8,129.5,127.9,127.5,127.1\left(\mathrm{~d}, J_{\mathrm{CP}}=4.1 \mathrm{~Hz}\right), 127.0\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $13.5 \mathrm{~Hz}), 126.6\left(\mathrm{~d}, J_{\mathrm{CP}}=9.2 \mathrm{~Hz}\right), 125.6\left(\mathrm{~d}, J_{\mathrm{CP}}=14.4 \mathrm{~Hz}\right), 124.9,124.1\left(\mathrm{~d}, J_{\mathrm{CP}}=128.3 \mathrm{~Hz}\right), 121.1$ $\left(\mathrm{d}, J_{\mathrm{CP}}=180.5 \mathrm{~Hz}\right), 120.7,119.0,109.3,106.6\left(\mathrm{~d}, J_{\mathrm{CP}}=7.3 \mathrm{~Hz}\right), 54.9$, ${ }^{\mathbf{3 1} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)}$ $\delta 17.38$; HRMS (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 475.1570$, found: 475.1574 .

Synthetic Procedure and Characterization of 3y

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$. $)$, alkyne 2 y ($0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathrm{L} 1(15 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.2$ mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=4: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 y}(88.1 \mathrm{mg})$ in 92% yield as a lightyellow foam with 99% ee. Product exists as a $8: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.
(S)-3-(2-Chlorophenyl)-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphini-ne 1oxide (3y)

M.p.: $113-115{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+224.0\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right), 99 \%$ ee; The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ nm, t (minor) $=48.684 \mathrm{~min}, \mathrm{t}($ mjaor $)=67.002 \mathrm{~min} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 8.79(\mathrm{dd}, J=4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=8.4,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.71-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.37-$ $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=8.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.02(\mathrm{~m}$, $1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{td}, J=8.0,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{t}$, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 149.3,144.3\left(\mathrm{~d}, J_{\mathrm{CP}}=3.5\right.$ $\mathrm{Hz}), 142.5,137.7\left(\mathrm{~d}, J_{\mathrm{CP}}=4.7 \mathrm{~Hz}\right), 136.6\left(\mathrm{~d}, J_{\mathrm{CP}}=4.1 \mathrm{~Hz}\right), 136.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 135.4,133.7$, $133.3\left(\mathrm{~d}, J_{\mathrm{CP}}=10.6 \mathrm{~Hz}\right), 132.0,131.7\left(\mathrm{~d}, J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{\mathrm{CP}}=12.6\right.$ $\mathrm{Hz}), 130.7\left(\mathrm{~d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right), 129.2\left(\mathrm{~d}, J_{\mathrm{CP}}=132.2\right), 129.1,128.7,128.0,127.8,127.0\left(\mathrm{~d}, J_{\mathrm{CP}}=13.5\right.$ $\mathrm{Hz}), 126.8\left(\mathrm{~d}, J_{\mathrm{CP}}=9.3 \mathrm{~Hz}\right), 126.1\left(\mathrm{~d}, J_{\mathrm{CP}}=14.4 \mathrm{~Hz}\right), 125.4,125.0,123.78\left(\mathrm{~d}, J_{\mathrm{CP}}=127.9 \mathrm{~Hz}\right)$, $121.0,107.5\left(\mathrm{~d}, J_{\mathrm{CP}}=7.5 \mathrm{~Hz}\right) ;{ }^{\mathbf{3 1} \mathbf{P}} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 17.51$; $\underline{\text { HRMS (ESI) calculated for }}$ $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 479.1075$, found: 479.1071.

Synthetic Procedure and Characterization of $\mathbf{3 z}$

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$. $)$, alkyne $\mathbf{2 z}$ ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}.), \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L} \mathbf{1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=5: 1 \mathrm{v} / \mathrm{v})$ to give the mixured $\mathbf{3 z}$ and $\mathbf{3 z}{ }^{\prime}(8: 1,76.2 \mathrm{mg})$ in 87% yield as a yellow oil with $>99 \%$ ee. Major product exists as a $17: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3-Pentyl-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphinine 1-oxide (3z)

$[\alpha]]^{20}=+399.9\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right),>99 \%$ ee. The ee was determined by Daicel Chiralcel IA, Hexanes $/$ IPA $=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}, \mathrm{t}_{1}$ (major) $=$ $47.527 \mathrm{~min}, \mathrm{t}_{1}($ minor $)=52.206 \mathrm{~min}, \mathrm{t}_{2}($ major $)=23.138 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=$ $34.071 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.82(\mathrm{dd}, J=4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.14(\mathrm{~m}, 9 \mathrm{H}), 7.12-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 4 \mathrm{H}), 6.56-6.53(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 149.3,144.4\left(\mathrm{~d}, J_{\mathrm{CP}}=3.6 \mathrm{~Hz}\right), 142.6,139.3\left(\mathrm{~d}, J_{\mathrm{CP}}=3.6 \mathrm{~Hz}\right)$, $138.7\left(\mathrm{~d}, J_{\mathrm{CP}}=1.4 \mathrm{~Hz}\right), 137.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.3 \mathrm{~Hz}\right), 136.6\left(\mathrm{~d}, J_{\mathrm{CP}}=3.9 \mathrm{~Hz}\right), 135.5,133.4\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5\right.$ $\mathrm{Hz}), 132.4,131.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=1.6 \mathrm{~Hz}\right), 131.0,131.0$, $130.2\left(\mathrm{~d}, J_{\mathrm{CP}}=124.8 \mathrm{~Hz}\right), 128.2,127.7,127.4,127.0\left(\mathrm{~d}, J_{\mathrm{CP}}=13.6 \mathrm{~Hz}\right), 126.5,126.4,126.3,125.8$, $125.7\left(\mathrm{~d}, J_{\mathrm{CP}}=14.6 \mathrm{~Hz}\right), 125.4,123.7\left(\mathrm{~d}, J_{\mathrm{CP}}=129.3 \mathrm{~Hz}\right), 121.0,117.7\left(\mathrm{~d}, J_{\mathrm{CP}}=7.3 \mathrm{~Hz}\right) ;{ }^{31 \mathbf{P} \mathbf{N M R}}$ ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 18.12,16.30$; HRMS (ESI) calculated for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 439.1934$, found: 439.1932 .

Synthetic Procedure and Characterization of 3aa

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 2aa ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%$), (S)-L1 (20 mol \%), NaOPiv (0.4 mmol , 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(P E /$ Acetone $=5: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 a a}(70.4 \mathrm{mg})$ in 80% yield as a yellow oil with 99% ee.

Ethyl (S)-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphinine-3-carboxylate 1oxide (3aa)

$[\alpha]_{\mathrm{D}}{ }^{20}=+431.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right), 99 \%$ ee. The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}$ (minor) $=$ $19.663 \mathrm{~min}, \mathrm{t}$ (major) $=31.789 \mathrm{~min}$. $\mathbf{1}^{\mathbf{H}} \mathbf{~ N M R ~ (~} \mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.76(\mathrm{dd}, J=$ $4.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.96$ (dd, $J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 4 \mathrm{H})$, $7.53-7.42$ (m, 2H), $7.38-7.29$ (m, 2H), $7.28-7.25$ (m, 1H), 7.22 (s, 1H), 7.14 $-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.68(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}$ $\left.\mathbf{C D C l}_{3}\right) \delta 164.0\left(\mathrm{~d}, J_{\mathrm{CP}}=6.5 \mathrm{~Hz}\right), 149.4,144.1\left(\mathrm{~d}, J_{\mathrm{CP}}=1.4 \mathrm{~Hz}\right), 138.3,135.8,135.7\left(\mathrm{~d}, J_{\mathrm{CP}}=4.5\right.$ $\mathrm{Hz}), 135.01,132.8\left(\mathrm{~d}, J_{\mathrm{CP}}=10.6 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{\mathrm{CP}}=2.3 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 131.02(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=11.6 \mathrm{~Hz}\right), 128.3,128.1,128.0,127.9,127.3,127.2,126.4,125.9\left(\mathrm{~d}, J_{\mathrm{CP}}=125.7 \mathrm{~Hz}\right), 125.9$, $121.1,60.9,13.4 ;{ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 18.02 ;$ HRMS (ESI) calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$ $[\mathrm{M}+\mathrm{H}]^{+}: 441.1363$, found: 441.1364 .

Synthetic Procedure and Characterization of 3ab

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 2ab ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ ($10 \mathrm{~mol} \%$), (S) $\mathbf{- L 1}$ ($20 \mathrm{~mol} \%$), NaOPiv (0.4 mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel ($\mathrm{PE} /$ Acetone $=5: 1 \mathrm{v} / \mathrm{v}$) to give the desired product 3ab $(67.7 \mathrm{mg})$ in 77% yield as a colorless oil with $>99 \%$ ee. Product exists as a $10: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-1-Phenyl-2-(quinolin-8-yl)-3-(trimethylsilyl)-2H-benzo[c]|1,2]azaphosphinine 1-oxide (3ab)

$[\alpha]_{\mathrm{D}}{ }^{20}=+462.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right),>99 \% \mathrm{ee}, \mathrm{lit}^{1 \mathrm{~d}}:[\alpha]_{\mathrm{D}}{ }^{20}=+537.7\left[\mathrm{c}=0.5, \mathrm{CHCl}_{3},>99 \%\right.$ ee $(S)]$. The ee was determined by Daicel Chiralcel IA, Hexanes/IPA $=80 / 20,1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}$ (minor) $=12.995 \mathrm{~min}, \mathrm{t}($ major $)=14.463 \mathrm{~min}$. ${ }^{\mathbf{1} H} \mathbf{N M R}(400$ MHz, CDCl $\mathbf{C D}_{3}$) $\delta 8.76(\mathrm{dd}, J=4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J$ $=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 2 \mathrm{H})$, $7.04(\mathrm{td}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{td}, J=7.6,3.2 \mathrm{~Hz}, 2 \mathrm{H}),-0.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 149.9,148.4\left(\mathrm{~d}, J_{\mathrm{CP}}=4.6 \mathrm{~Hz}\right), 146.1\left(\mathrm{~d}, J_{\mathrm{CP}}=3.4 \mathrm{~Hz}\right), 138.0\left(\mathrm{~d}, J_{\mathrm{CP}}=2.2 \mathrm{~Hz}\right), 137.1(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=3.6 \mathrm{~Hz}\right), 135.6,133.4,133.3,132.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $2.3 \mathrm{~Hz}), 130.4\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 128.7,128.3,126.7,126.6,126.5,126.2\left(\mathrm{~d}, J_{\mathrm{CP}}=14.4 \mathrm{~Hz}\right), 125.6$, $123.9\left(\mathrm{~d}, J_{\mathrm{CP}}=128.6 \mathrm{~Hz}\right), 121.2,115.1\left(\mathrm{~d}, J_{\mathrm{CP}}=11.3 \mathrm{~Hz}\right), 0.0 ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 16.27; HRMS (ESI) calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OPSi}[\mathrm{M}+\mathrm{H}]^{+}: 441.1547$, found: 441.1551.

Synthetic Procedure and Characterization of 3ac

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 2ac ($0.30 \mathrm{mmol}, 1.5 \mathrm{eq}.), \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$, (S) $-\mathrm{L} 1(15 \mathrm{~mol} \%$), NaOPiv (0.2 mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 a c}(88.0 \mathrm{mg})$ in 89% yield as a lightyellow foam with 98% ee. Product exists as a $8: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3-(Naphthalen-2-yl)-1-phenyl-2-(quinolin-8-yl)-2H-benzo $[c][1,2]$ azaphosphini-ne 1oxide (3ac)

M.p.: $120-122{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+288.0\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right), 99 \%$ ee. The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}, \mathrm{t}($ minor $)=22.125 \mathrm{~min}, \mathrm{t}($ mjaor $)=40.811 \mathrm{~min} . \mathbf{H}^{\mathbf{H}} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 8.74(\mathrm{dd}, J=4.41 .6 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.76-7.65 (m, 2H), $7.66(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.47$ $(\mathrm{m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.14-7.08 (m, 1H), 7.08-7.05 (m, 1H), $6.98(\mathrm{td}, J=7.8,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ MR (100 MHz, CDCl $\mathbf{C l}_{3}$) $\delta 149.2,145.1,144.1\left(\mathrm{~d}, J_{\mathrm{CP}}=3.1 \mathrm{~Hz}\right), 138.0\left(\mathrm{~d}, J_{\mathrm{CP}}=5.1 \mathrm{~Hz}\right), 137.7(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 136.0\left(\mathrm{~d}, J_{\mathrm{CP}}=4.4 \mathrm{~Hz}\right), 135.4,133.03132 .9,132.4\left(\mathrm{~d}, J_{\mathrm{CP}}=5.4 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $2.4 \mathrm{~Hz}), 131.6\left(\mathrm{~d}, J_{\mathrm{CP}}=135.8 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{CP}}=12.4 \mathrm{~Hz}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=2.8 \mathrm{~Hz}), 128.4,128.2\left(\mathrm{~d}, J_{\mathrm{CP}}=20.5 \mathrm{~Hz}\right), 127.3,127.2,127.1\left(\mathrm{~d}, J_{\mathrm{CP}}=13.6 \mathrm{~Hz}\right), 126.8,126.7$, $126.6,126.4,126.1,125.9,125.7,125.4,124.2\left(\mathrm{~d}, J_{\mathrm{CP}}=126.7 \mathrm{~Hz}\right), 1201.0,108.4\left(\mathrm{~d}, J_{\mathrm{CP}}=7.7 \mathrm{~Hz}\right)$; ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 18.98$; HRMS (ESI) calculated for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 495.1621$, found: 495.1618.

Synthetic Procedure and Characterization of 3ad

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$. $)$, alkyne 2ad ($0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathrm{L} 1(15 \mathrm{~mol} \%)$, NaOPiv (0.2 mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=4: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $3 \mathrm{ad}(63.1 \mathrm{mg})$ in 70% yield as a lightyellow foam with 99% ee. Product exists as a $8: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.
(S)-1-Phenyl-2-(quinolin-8-yl)-3-(thiophen-2-yl)-2H-benzo[c][1,2]azaphosphinine 1-oxide (3ad)

M.p.: $105-107{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+378.7\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right), 99 \%$ ee; The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ nm, t (minor) $=12.915 \mathrm{~min}, \mathrm{t}($ mjaor $)=38.326 \mathrm{~min} .{ }^{\mathbf{1} \mathbf{H} \mathbf{N M R}(400 ~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 8.69(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=13.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ MR ($\left.100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 149.6,144.5\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 140.4 \mathrm{z}\left(\mathrm{d}, J_{\mathrm{CP}}=4.9 \mathrm{~Hz}\right), 138.3,137.7$ $\left(\mathrm{d}, J_{\mathrm{CP}}=5.4 \mathrm{~Hz}\right), 137.42\left(\mathrm{~d}, J_{\mathrm{CP}}=1.8 \mathrm{~Hz}\right), 135.5,133.0\left(\mathrm{~d}, J_{\mathrm{CP}}=10.6 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.2 \mathrm{~Hz}\right)$, $131.56\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 130.8\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 130.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 130.1\left(\mathrm{~d}, J_{\mathrm{CP}}=135.8\right.$ $\mathrm{Hz}), 128.4,127.8,127.6,127.2\left(\mathrm{~d}, J_{\mathrm{CP}}=13.7 \mathrm{~Hz}\right), 126.9\left(\mathrm{~d}, J_{\mathrm{CP}}=9.1 \mathrm{~Hz}\right), 126.3\left(\mathrm{~d}, J_{\mathrm{CP}}=14.0 \mathrm{~Hz}\right)$, $125.9,125.6\left(\mathrm{~d}, J_{\mathrm{CP}}=12.4 \mathrm{~Hz}\right), 1234.1\left(\mathrm{~d}, J_{\mathrm{CP}}=126.3 \mathrm{~Hz}\right), 121.2,111.7\left(\mathrm{~d}, J_{\mathrm{CP}}=7.2 \mathrm{~Hz}\right), 108.5(\mathrm{~d}$, $J_{\mathrm{CP}}=7.5 \mathrm{~Hz}$); ${ }^{\mathbf{3 1} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2 ~ M H z}, \mathbf{C D C l}_{3}\right)} \delta 19.30$; $\underline{\text { HRMS (ESI) calculated for } \mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OPS}}$ $[\mathrm{M}+\mathrm{H}]^{+}: 451.1028$, found: 451.1025.

Synthetic Procedure and Characterization of 3ae

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$. $)$, alkyne 2ae ($0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathrm{L} 1(15 \mathrm{~mol} \%)$, $\mathrm{NaOPiv}(0.2$ mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3.0: 1.0)$. Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=5: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 a e}(79.8 \mathrm{mg})$ in 89% yield as a lightyellow foam with 99% ee. Product exists as a $7: 1$ mixture of atropisomers due to the hindered rotation about the N -quinoline bond and the structure of major isomer was shown.

(S)-3-(Cyclohex-1-en-1-yl)-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphi-nine 1-oxide (3ae)

M.p.: $85-86^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+331.6\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right), 99 \%$ ee; The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (minor) $=9.760 \mathrm{~min}, \mathrm{t}(\mathrm{mjaor})=16.425 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.76(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=13.2$, $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ $(\mathrm{dd}, J=8.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{td}, J=7.8,3.2 \mathrm{~Hz}, 2 \mathrm{H})$, $6.18(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.17-$ $0.96(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ MR (100 MHz, CDCl $\mathbf{C l}_{3}$) $\delta 149.3,147.4,144.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.4 \mathrm{~Hz}\right), 138.3\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $5.0 \mathrm{~Hz}), 138.0\left(\mathrm{~d}, J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right), 135.5,135.3\left(\mathrm{~d}, J_{\mathrm{CP}}=4.0 \mathrm{~Hz}\right), 133.1\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5 \mathrm{~Hz}\right), 131.6(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=121.2 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{\mathrm{CP}}=2.7 \mathrm{~Hz}\right), 130.7\left(\mathrm{~d}, J_{\mathrm{CP}}=12.2 \mathrm{~Hz}\right), 130.4$, $130.3\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 128.5,127.1,126.9,126.4\left(\mathrm{~d}, J_{\mathrm{CP}}=9.4 \mathrm{~Hz}\right), 125.5,125.4,124.0\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ 127.5 Hz), $121.0,104.8\left(\mathrm{~d}, J_{\mathrm{CP}}=7.7 \mathrm{~Hz}\right), 28.1,25.0,22.3,21.6 ;{ }^{\mathbf{3 1} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) ~ \delta}$ 18.61; HRMS (ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 449.1777$, found: 449.1776.

Synthetic Procedure and Characterization of 3af

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 2af ($0.30 \mathrm{mmol}, 1.5 \mathrm{eq}.), \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathrm{L} 1(15 \mathrm{~mol} \%)$, NaOPiv (0.2 mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=5: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{3 a f}(60.9 \mathrm{mg})$ in 65% yield as a lightyellow foam with 99% ee. Product exists as a $9: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3-(4-Ethynylphenyl)-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphini-ne 1oxide (3af)

M.p.: $197-200{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+341.2\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right), 99 \%$ ee; The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ minor $)=12.108 \mathrm{~min}, \mathrm{t}($ mjaor $)=28.882 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0}$ MHz, $\mathbf{C D C l}_{3}$) $\delta 8.70(\mathrm{dd}, J=4.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=13.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{td}, J=7.8,3.2 \mathrm{~Hz}$, $\left.2 \mathrm{H}), 6.32(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right) ~ \delta 149.3,144.4,143.8(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=3.2 \mathrm{~Hz}\right), 139.0\left(\mathrm{~d}, J_{\mathrm{CP}}=4.3 \mathrm{~Hz}\right), 137.8\left(\mathrm{~d}, J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right), 137.5,135.5,133.0\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5\right.$ $\mathrm{Hz}), 131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.1 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{CP}}=136.0 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 130.9,130.8,130.2$ $\left(\mathrm{d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right), 128.8,128.4,127.4,127.2\left(\mathrm{~d}, J_{\mathrm{CP}}=13.5 \mathrm{~Hz}\right), 126.8\left(\mathrm{~d}, J_{\mathrm{CP}}=9.1 \mathrm{~Hz}\right), 126.2(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=14.4 \mathrm{~Hz}\right), 125.5,124.3\left(\mathrm{~d}, J_{\mathrm{CP}}=127.3 \mathrm{~Hz}\right), 121.1,120.9,108.0\left(\mathrm{~d}, J_{\mathrm{CP}}=7.6 \mathrm{~Hz}\right), 83.3,77.6$; ${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl $_{3}$) $\delta 18.76$; $\mathbf{H R M S}(E S I)$ calculated for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 469.1464$, found: 469.1465 .

Synthetic Procedure and Characterization of 3ag

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 b}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$. $)$, alkyne 21 ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}.), \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L} 1(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=1: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S)-\mathbf{3 a g}(68.7 \mathrm{mg})$ in 76% yield as a white solid with 99% ee. Product exists as a 9:1 mixture of atropisomers due to the hindered rotation about the N -quinoline bond and the structure of major isomer was shown.

(S)-3,4-Diethyl-6-methyl-2-(quinolin-8-yl)-1-(p-tolyl)-2H-benzo[c][1,2]azaphosphinine 1oxide (3ag)

M.p.: 65-71 ${ }^{\circ} \mathrm{C}, 99 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{20}=+397.1 \quad\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$, lit ${ }^{1 \mathrm{~d}}:[\alpha]_{\mathrm{D}}{ }^{20}=$ $+399.9\left[\mathrm{c}=0.5, \mathrm{CHCl}_{3}, 99 \%\right.$ ee $\left.(S)\right]$. The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=27.783 \mathrm{~min}, \mathrm{t}$ $($ minor $)=7.150 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.76(\mathrm{dd}, J=4.1,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=8.4$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{dd}, J=14.4,8.0$
$\mathrm{Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.0,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.43$ $(\mathrm{m}, 4 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{dq}, J=14.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 150.0,145.4\left(\mathrm{~d}, J_{\mathrm{CP}}=3.5 \mathrm{~Hz}\right), 142.3,141.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right)$, $141.3\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 139.0\left(\mathrm{~d}, J_{\mathrm{CP}}=4.5 \mathrm{~Hz}\right), 137.7\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 135.8,133.3\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5\right.$ $\mathrm{Hz}), 130.8\left(\mathrm{~d}, J_{\mathrm{CP}}=13.0 \mathrm{~Hz}\right), 130.5\left(\mathrm{~d}, J_{\mathrm{CP}}=3.4 \mathrm{~Hz}\right), 128.5,127.7\left(\mathrm{~d}, J_{\mathrm{CP}}=13.6 \mathrm{~Hz}\right), 127.5\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=137.9 \mathrm{~Hz}), 127.2,125.9\left(\mathrm{~d}, J_{\mathrm{CP}}=15.0 \mathrm{~Hz}\right), 125.8,123.8\left(\mathrm{~d}, J_{\mathrm{CP}}=9.8 \mathrm{~Hz}\right), 122.4\left(\mathrm{~d}, J_{\mathrm{CP}}=132.0\right.$ $\mathrm{Hz}), 121.2,114.0\left(\mathrm{~d}, J_{\mathrm{CP}}=8.4 \mathrm{~Hz}\right), 24.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 22.4,22.2,21.3,15.0,13.2 ;{ }^{31} \mathbf{P} \mathbf{~ N M R}$ ($162 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 16.70$; HRMS (ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 453.2090$, found: 453.2091 .

Synthetic Procedure and Characterization of 3ah

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $1 \mathbf{c}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$. $)$, alkyne 21 ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathrm{L} 1(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=2: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S) \mathbf{- 3 a h}(101.8 \mathrm{mg})$ in 95% yield as a yellow foam with 99% ee. Product exists as a $10: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-6-(tert-Butyl)-1-(4-(tert-butyl)phenyl)-3,4-diethyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]a zaphosphinine 1-oxide (3ah)

M.p.: $87-91{ }^{\circ} \mathrm{C}, 99 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{20}=+204.4\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}, \mathrm{t}($ major $)=9.047 \mathrm{~min}, \mathrm{t}($ minor $)=5.387 \mathrm{~min} .{ }^{\mathbf{1} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)}$ $\delta 8.74(\mathrm{dd}, J=4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dt}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=$ $8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41(\mathrm{dd}, J=12.4,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H})$, $6.88(\mathrm{dd}, J=8.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.83-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.43(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.38$ ($\mathrm{s}, 9 \mathrm{H}$), $1.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)}$ $\delta 154.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 154.3\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 150.0,145.4\left(\mathrm{~d}, J_{\mathrm{CP}}=3.4 \mathrm{~Hz}\right), 142.2,138.7(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=4.5 \mathrm{~Hz}\right), 137.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.3 \mathrm{~Hz}\right), 135.7,133.1\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{CP}}=3.3 \mathrm{~Hz}\right), 130.6$ $\left(\mathrm{d}, J_{\mathrm{CP}}=13.0 \mathrm{~Hz}\right), 128.6,127.4\left(\mathrm{~d}, J_{\mathrm{CP}}=138.0 \mathrm{~Hz}\right), 127.3,125.8,123.6\left(\mathrm{~d}, J_{\mathrm{CP}}=13.6 \mathrm{~Hz}\right), 122.4$ $\left(\mathrm{d}, J_{\mathrm{CP}}=14.6 \mathrm{~Hz}\right), 121.5\left(\mathrm{~d}, J_{\mathrm{CP}}=131.2 \mathrm{~Hz}\right), 121.1,120.2\left(\mathrm{~d}, J_{\mathrm{CP}}=9.7 \mathrm{~Hz}\right), 113.7\left(\mathrm{~d}, J_{\mathrm{CP}}=8.2 \mathrm{~Hz}\right)$, $35.2,34.6,31.3,30.9,24.9\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 22.4,15.0,13.4$; ${ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 16.85; HRMS (ESI) calculated for $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 537.3029$, found: 537.3027.

Synthetic Procedure and Characterization of 3ai

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $1 \mathbf{d}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 21 ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}.), \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathrm{L} 1(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=1: 2 \mathrm{v} / \mathrm{v})$ to give the desired product $(S) \mathbf{- 3 a i}(83.3 \mathrm{mg})$ in 86% yield as a white solid with $>99 \%$ ee. Product exists as a $10: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3,4-Diethyl-6-methoxy-1-(4-methoxyphenyl)-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaph osphinine 1-oxide (3ai)

M.p.: 67-72 ${ }^{\circ} \mathrm{C} ;>99 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{20}=+499.5\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$, lit ${ }^{1 \mathrm{dd}}:[\alpha]_{\mathrm{D}}{ }^{20}=$ $+502.4\left[\mathrm{c}=0.5, \mathrm{CHCl}_{3},>99 \%\right.$ ee $\left.(S)\right]$ The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=$ $43.437 \mathrm{~min}, \mathrm{t}$ (minor) $=12.067 \mathrm{~min}$. ${ }^{\mathbf{1} H} \mathbf{~ N M R ~ (~} \mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.75$ (dd, $J=4.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=12.4,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=$ $8.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{dd}, J=4.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dt}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.40(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.41(\mathrm{~m}, 1 \mathrm{H})$, $1.75(\mathrm{dq}, J=14.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{\mathbf{1 3} \mathbf{C}} \mathbf{~ N M R ~ (1 0 0}$ $\underline{\mathbf{M H z}, \mathbf{C D C l}_{3}}$) $\delta 162.0\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 161.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 150.0,145.3\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right)$, $142.9,141.0\left(\mathrm{~d}, J_{\mathrm{CP}}=5.3 \mathrm{~Hz}\right), 137.5\left(\mathrm{~d}, J_{\mathrm{CP}}=1.4 \mathrm{~Hz}\right), 135.8,135.1\left(\mathrm{~d}, J_{\mathrm{CP}}=11.6 \mathrm{~Hz}\right), 132.6\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=13.9 \mathrm{~Hz}), 130.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 128.5,127.4,125.8,122.0\left(\mathrm{~d}, J_{\mathrm{CP}}=143.0 \mathrm{~Hz}\right), 121.2,117.7(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=135.9 \mathrm{~Hz}\right), 113.4\left(\mathrm{~d}, J_{\mathrm{CP}}=8.0 \mathrm{~Hz}\right), 112.4\left(\mathrm{~d}, J_{\mathrm{CP}}=14.5 \mathrm{~Hz}\right), 111.3\left(\mathrm{~d}, J_{\mathrm{CP}}=15.3 \mathrm{~Hz}\right), 108.2$ $\left.\left(\mathrm{d}, J_{\mathrm{CP}}=10.4 \mathrm{~Hz}\right), 55.2,55.0,24.9,22.5,14.9,13.3 . ;{ }^{31} \mathbf{P} \mathbf{~ N M R ~ (1 6 2 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 16.54 ; \underline{\mathbf{H R M S}}$ (ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 485.1989$, found: 485.1976;

Synthetic Procedure and Characterization of 3aj

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathrm{e}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) ,$ alkyne 2 l ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}.), \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathrm{L} 1(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 8 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=1: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S) \mathbf{- 3 a j}(89.3 \mathrm{mg})$ in 97% yield as a white foam with 99% ee. Product exists as a $12: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3,4-Diethyl-6-fluoro-1-(4-fluorophenyl)-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosph inine 1-oxide (3ai)

M. p.: $164-166{ }^{\circ} \mathrm{C} ; 99 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{20}=+451.2\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$, lit ${ }^{1 \mathrm{ld}}:[\alpha]_{\mathrm{D}}{ }^{20}=$ $+472.8\left[\mathrm{c}=0.5, \mathrm{CHCl}_{3},>99 \%\right.$ ee $\left.(S)\right]$. The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=11.955$ min, t (minor) $\left.=6.673 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.77(\mathrm{dd}, J=4.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.06(\mathrm{dt}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-$ $7.51(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 4 \mathrm{H}), 6.90(\mathrm{tt}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{td}, J=8.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.77$ $-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{ddd}, J=14.8,7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{dq}, J=14.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.; ${ }^{13} \mathbf{C}$ NMR ($100 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 165.2\left(\mathrm{dd}, J_{\mathrm{CF}}=247.7, J_{\mathrm{CP}}\right.$ $=3.2 \mathrm{~Hz}), 164.7\left(\mathrm{dd}, J_{\mathrm{CF}}=251.4, J_{\mathrm{CP}}=3.4 \mathrm{~Hz}\right), 150.3,145.2\left(\mathrm{~d}, J_{\mathrm{CP}}=3.6 \mathrm{~Hz}\right), 143.9,142.1(\mathrm{dd}$, $\left.J_{\mathrm{CF}}=8.4, J_{\mathrm{CP}}=5.5 \mathrm{~Hz}\right), 137.0\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 136.0,135.7\left(\mathrm{dd}, J_{\mathrm{CF}}=11.7, J_{C P}=8.8 \mathrm{~Hz}\right), 133.3$ $\left(\mathrm{dd}, J_{\mathrm{CF}}=13.8, J_{\mathrm{CP}}=9.5 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{CP}}=3.1 \mathrm{~Hz}\right), 128.7,127.9,126.5\left(\mathrm{dd}, J_{\mathrm{CP}}=140.4, J_{\mathrm{CF}}=\right.$ $3.0 \mathrm{~Hz}), 125.8,121.5,120.5\left(\mathrm{dd}, J_{\mathrm{CP}}=133.2, J_{\mathrm{CF}}=2.3 \mathrm{~Hz}\right), 114.3\left(\mathrm{dd}, J_{\mathrm{CF}}=21.2, J_{\mathrm{CP}}=14.6 \mathrm{~Hz}\right)$, $113.3\left(\mathrm{dd}, J_{\mathrm{CF}}=7.8, J_{\mathrm{CP}}=2.3 \mathrm{~Hz}\right), 112.8\left(\mathrm{dd}, J_{\mathrm{CF}}=22.5, J_{\mathrm{CP}}=14.7 \mathrm{~Hz}\right), 110.0\left(\mathrm{dd}, J_{\mathrm{CF}}=22.3, J_{\mathrm{CP}}\right.$
 $107.52\left(\mathrm{~d}, J_{F P}=1.5 \mathrm{~Hz}\right),{ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 14.66$; HRMS (ESI) calculated for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 461.1589$, found: 461.1591;

Synthetic Procedure and Characterization of 3ak

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathbf{f}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) ,$ alkyne $2 \mathbf{l}$ ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$, (S) $\mathbf{- L} \mathbf{L}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S) \mathbf{- 3 a k}(74.2 \mathrm{mg})$ in 82% yield as a light-yellow foam with 99% ee. Product exists as a 10:1 mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3,4-Diethyl-7-methyl-2-(quinolin-8-yl)-1-(m-tolyl)-2H-benzo[c][1,2]azaphosphinine 1-oxi de (3ak)

M. p.: 189-190 ${ }^{\circ} \mathrm{C} ; 99 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{20}=+620.9\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. The ee was determined by Daicel Chiralcel IC, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $210 \mathrm{~nm}, \mathrm{t}$ (major) $=14.940 \mathrm{~min}, \mathrm{t}($ minor $)=11.165 \mathrm{~min} .{ }^{1} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 8.78(\mathrm{dd}, J=4.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.88-6.80(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H})$, $\left.1.93-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 149.9,145.5,141.3,137.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 136.4\left(\mathrm{~d}, J_{\mathrm{CP}}=18.3 \mathrm{~Hz}\right), 136.4,135.8,134.5\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=14.6 \mathrm{~Hz}), 133.7\left(\mathrm{~d}, J_{\mathrm{CP}}=10.3 \mathrm{~Hz}\right), 132.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 130.7\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=8.1 \mathrm{~Hz}), 130.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.3 \mathrm{~Hz}\right), 130.5\left(\mathrm{~d}, J_{\mathrm{CP}}=135.0 \mathrm{~Hz}\right), 130.4\left(\mathrm{~d}, J_{\mathrm{CP}}=10.1 \mathrm{~Hz}\right), 128.5,127.3$, $126.68\left(\mathrm{~d}, J_{\mathrm{CP}}=14.0 \mathrm{~Hz}\right), 125.8,124.7\left(\mathrm{~d}, J_{\mathrm{CP}}=128.7 \mathrm{~Hz}\right), 123.5\left(\mathrm{~d}, J_{\mathrm{CP}}=10.0 \mathrm{~Hz}\right), 121.1,114.0$ $\left(\mathrm{d}, J_{\mathrm{CP}}=8.2 \mathrm{~Hz}\right), 24.7,22.4,20.9,20.8,14.9,13.4 . ;{ }^{\left.\mathbf{3 1} \mathbf{P} \mathbf{~ N M R ~ (1 6 2 ~ M H z}, \mathbf{C D C l}_{3}\right)} \delta 16.72 ; \underline{\mathbf{H R M S}}$ (ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 453.2090$, found: 453.2081;

Synthetic Procedure and Characterization of 3al
The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ mm) and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathrm{~g}(0.2 \mathrm{mmol}, 1.0$ eq. $)$, alkyne 21 ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}.), \mathrm{Co}(\mathrm{OAc}) 2 \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$, (S)-L1 ($20 \mathrm{~mol} \%$), NaOPiv (0.4 mmol , 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 8 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel ($\mathrm{PE} /$ Acetone $=1: 1 \mathrm{v} / \mathrm{v}$) to give the desired product (S)-3al $(90.0 \mathrm{mg})$ in 93% yield as a light-yellow foam with 97% ee. Product exists as a 11:1 mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3,4-Diethyl-7-methoxy-1-(3-methoxyphenyl)-2-(quinolin-8-yl)-2H-benzo[c]|1,2]azaphosphinine 1-oxide (3al)

M. p.: $154-156{ }^{\circ} \mathrm{C} ; 97 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{20}=+530.7\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. The ee was determined by Daicel Chiralcel IA, Hexanes $/$ IPA $=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $210 \mathrm{~nm}, \mathrm{t}$ (major) $=24.625 \mathrm{~min}, \mathrm{t}($ minor $)=11.565 \mathrm{~min}$. ${ }^{1} \mathbf{H N M R}(400 \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right) \delta 8.79(\mathrm{dd}, J=4.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.96$ $-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}$, 2H), $7.15-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{td}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=15.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J$ $=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{dq}, J$ $\left.=14.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right)$ $158.4\left(\mathrm{~d}, J_{\mathrm{CP}}=16.3 \mathrm{~Hz}\right), 157.1\left(\mathrm{~d}, J_{\mathrm{CP}}=17.6 \mathrm{~Hz}\right), 150.0,145.6\left(\mathrm{~d}, J_{\mathrm{CP}}=3.7 \mathrm{~Hz}\right), 139.8,137.6(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 136.0,132.4\left(\mathrm{~d}, J_{\mathrm{CP}}=4.1 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d}, J_{\mathrm{CP}}=133.8 \mathrm{~Hz}\right), 130.4\left(\mathrm{~d}, J_{\mathrm{CP}}=3.5 \mathrm{~Hz}\right)$, $128.7,128.2\left(\mathrm{~d}, J_{\mathrm{CP}}=15.9 \mathrm{~Hz}\right), 127.3,126.1\left(\mathrm{~d}, J_{\mathrm{CP}}=10.3 \mathrm{~Hz}\right), 126.0\left(\mathrm{~d}, J_{\mathrm{CP}}=128.8 \mathrm{~Hz}\right) 125.9$, $125.4\left(\mathrm{~d}, J_{\mathrm{CP}}=11.5 \mathrm{~Hz}\right), 121.2,119.1\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 118.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right), 116.6\left(\mathrm{~d}, J_{\mathrm{CP}}=11.4\right.$ Hz), $115.2\left(\mathrm{~d}, J_{\mathrm{CP}}=8.2 \mathrm{~Hz}\right), 113.6\left(\mathrm{~d}, J_{\mathrm{CP}}=13.6 \mathrm{~Hz}\right), 55.5,55.1,24.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 22.5,15.0$, 13.4.; ${ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 16.61 ; \underline{\text { HRMS (ESI) calculated for } \mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} \text {: }}$ 485.1989, found: 485.1995;

Synthetic Procedure and Characterization of 3am

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 h}(0.2 \mathrm{mmol}, 1.0$ equiv), alkyne 21 ($0.3 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$, $(S)-\mathrm{L} 1(20 \mathrm{~mol} \%)$, NaOPiv (0.4 mmol , 2.0 equiv) were placed in a 15 mL cell and dissolved in 4.0 mL of $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3.0: 1.0)$. Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 20 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product (S)-3am $(61.5 \mathrm{mg})$ in 68% yield as a white foam with $>99 \%$ ee. Product exists as a $16: 1$ mixture of atropisomers due to the hindered rotation about the N -quinoline bond and the structure of major isomer was shown.

(S)-3,4-Diethyl-8-methyl-2-(quinolin-8-yl)-1-(o-tolyl)-2H-benzo[c][1,2]azaphosphinine 1-oxi de (3am)

M. p.: $188-190{ }^{\circ} \mathrm{C} ;>99 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{20}=+459.6\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$, lit ${ }^{1 \mathrm{ld}}:[\alpha]_{\mathrm{D}}{ }^{20}=$ $+452.4\left[\mathrm{c}=0.5, \mathrm{CHCl}_{3},>99 \%\right.$ ee $\left.(S)\right]$. The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ single peak $)=11.497 \mathrm{~min}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.64(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.89-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=7.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 149.4,145.3\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6\right.$ $\mathrm{Hz}), 142.1\left(\mathrm{~d}, J_{\mathrm{CP}}=2.2 \mathrm{~Hz}\right), 141.9\left(\mathrm{~d}, J_{\mathrm{CP}}=10.2 \mathrm{~Hz}\right), 140.4\left(\mathrm{~d}, J_{\mathrm{CP}}=11.7 \mathrm{~Hz}\right), 139.6\left(\mathrm{~d}, J_{\mathrm{CP}}=4.7\right.$ $\mathrm{Hz}), 137.1\left(\mathrm{~d}, J_{\mathrm{CP}}=3.3 \mathrm{~Hz}\right), 135.6,134.7\left(\mathrm{~d}, J_{\mathrm{CP}}=9.5 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{CP}}=2.3 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $2.0 \mathrm{~Hz}), 130.9\left(\mathrm{~d}, J_{\mathrm{CP}}=130.5 \mathrm{~Hz}\right), 130.8,130.4\left(\mathrm{~d}, J_{\mathrm{CP}}=12.4 \mathrm{~Hz}\right), 128.3,127.5\left(\mathrm{~d}, J_{\mathrm{CP}}=12.9 \mathrm{~Hz}\right)$, $127.2,125.5,124.3\left(\mathrm{~d}, J_{\mathrm{CP}}=13.0 \mathrm{~Hz}\right), 124.1\left(\mathrm{~d}, J_{\mathrm{CP}}=128.1 \mathrm{~Hz}\right), 122.0\left(\mathrm{~d}, J_{\mathrm{CP}}=9.6 \mathrm{~Hz}\right), 121.0$, $\left.112.6\left(\mathrm{~d}, J_{\mathrm{CP}}=8.4 \mathrm{~Hz}\right), 25.0,23.0,21.5,21.4,15.1,13.3 ;{ }^{31} \mathbf{P} \mathbf{~ N M R ~ (1 6 2 ~ M H z}, \mathbf{C D C l}_{3}\right) ~ \delta 11.81$; HRMS (ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 453.2090$, found: 453.2099;

Synthetic Procedure and Characterization of 3an

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathbf{1}(0.2 \mathrm{mmol}, 1.0$ equiv), alkyne 21 ($0.3 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathrm{L} 1(20 \mathrm{~mol} \%), \mathrm{NaOPiv}$ ($0.4 \mathrm{mmol}, 2.0$ equiv) were placed in a 15 mL cell and dissolved in 4.0 mL of $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3.0: 1.0)$. Electrocatalysis was performed at $60^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=2: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S)-3 \mathrm{an}(80.6 \mathrm{mg})$ in 84% yield as a light-yellow foam with $>99 \%$ ee. Product exists as a $10: 1$ mixture of atropisomers due to the hindered rotation about the N -quinoline bond and the structure of major isomer was shown.

(S)-1-(3,4-Dimethylphenyl)-3,4-diethyl-6,7-dimethyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]-azap hosphinine 1-oxide (3an)

M. p.: $89-90^{\circ} \mathrm{C} ;>99 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{20}=+390.2\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right), \mathrm{lit}^{1 \mathrm{dd}}:[\alpha]_{\mathrm{D}}{ }^{20}=$ $+377.4\left[\mathrm{c}=0.5, \mathrm{CHCl}_{3},>99 \%\right.$ ee $\left.(S)\right]$. The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=$ $22.235 \mathrm{~min}, \mathrm{t}$ (minor) $=6.969 \mathrm{~min}$. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.77(\mathrm{dd}$, $J=4.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{dt}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dt}, J=8.4,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 4 \mathrm{H})$, $7.08(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.42(\mathrm{~m}, 1 \mathrm{H})$, $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{t}, J=7 . \mathrm{Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.9,145.5\left(\mathrm{~d}, J_{\mathrm{CP}}=3.6 \mathrm{~Hz}\right), 141.3,140.2\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5\right.$ $\mathrm{Hz}), 140.0\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 137.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 136.7\left(\mathrm{~d}, J_{\mathrm{CP}}=4.1 \mathrm{~Hz}\right), 135.7,135.2\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $13.6 \mathrm{~Hz}), 134.2\left(\mathrm{~d}, J_{\mathrm{CP}}=10.7 \mathrm{~Hz}\right), 133.6\left(\mathrm{~d}, J_{\mathrm{CP}}=14.9 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{CP}}=13.0 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=10.0 \mathrm{~Hz}), 130.5\left(\mathrm{~d}, J_{\mathrm{CP}}=3.2 \mathrm{~Hz}\right), 128.4,128.2\left(\mathrm{~d}, J_{\mathrm{CP}}=14.0 \mathrm{~Hz}\right), 127.7\left(\mathrm{~d}, J_{\mathrm{CP}}=137.3 \mathrm{~Hz}\right), 127.2$, $125.8,124.4\left(\mathrm{~d}, J_{\mathrm{CP}}=10.0 \mathrm{~Hz}\right), 122.6\left(\mathrm{~d}, J_{\mathrm{CP}}=130.9 \mathrm{~Hz}\right), 121.0,113.6\left(\mathrm{~d}, J_{\mathrm{CP}}=8.1 \mathrm{~Hz}\right), 24.7(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 22.4,20.7,19.7,19.3,19.0,15.1,13.4 ;{ }^{\mathbf{3 1} \mathbf{P} \mathbf{N M R}\left(162 \mathbf{M H z}, \mathbf{C D C l}_{3}\right)} \delta 16.97$; $\underline{\text { HRMS }}$ (ESI) calculated for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 481.2403$, found: 481.2401;

Synthetic Procedure and Characterization of 3ao

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $1 \mathbf{j}(0.2 \mathrm{mmol}, 1.0$ equiv), alkyne 21 ($0.3 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$, $(S)-\mathrm{L} 1(20 \mathrm{~mol} \%)$, NaOPiv (0.4 mmol , 2.0 equiv) were placed in a 15 mL cell and dissolved in 4.0 mL of $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3.0: 1.0)$. Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=1: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S) \mathbf{3 a o}(79.6 \mathrm{mg})$ in 76% yield as a white foam with $>99 \%$ ee. Product exists as a $8: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3,4-Diethyl-1-(naphthalen-2-yl)-2-(quinolin-8-yl)-2H-naphtho[2,3-c][1,2]azaphosphi-nine 1-oxide (3ao)

M.p.: $106-107{ }^{\circ} \mathrm{C} ;>99 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{20}=+523.3\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$, lit ${ }^{1 \mathrm{dd}}:[\alpha]_{\mathrm{D}}{ }^{20}$ $=+518.7\left[\mathrm{c}=0.5, \mathrm{CHCl}_{3},>99 \%\right.$ ee $\left.(S)\right]$. Daicel Chiralcel IC, Hexanes/IPA $=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}$ (major) $=23.110 \mathrm{~min}, \mathrm{t}($ minor $)=31.939$ min. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.84(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=14.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.89(\mathrm{~m}, 4 \mathrm{H}), 7.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66-7.32(\mathrm{~m}, 9 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.46$ (dd, $J=14.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{dd}, J=14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3} \mathbf{C}} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 150.0,145.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.3 \mathrm{~Hz}\right), 142.1$, $137.7,135.8,135.5\left(\mathrm{~d}, J_{\mathrm{CP}}=10.0 \mathrm{~Hz}\right), 135.1,135.0\left(\mathrm{~d}, J_{\mathrm{CP}}=3.6 \mathrm{~Hz}\right), 134.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 131.9$, $131.9\left(\mathrm{~d}, J_{\mathrm{CP}}=28.3 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{CP}}=15.1 \mathrm{~Hz}\right), 130.1\left(\mathrm{~d}, J_{\mathrm{CP}}=2.0 \mathrm{~Hz}\right), 128.8,128.6,128.5(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=135.6 \mathrm{~Hz}\right), 128.3,128.1,127.8,127.7,127.6,127.5,127.2,126.6\left(\mathrm{~d}, J_{\mathrm{CP}}=10.2 \mathrm{~Hz}\right), 126.2$, $125.8,125.7\left(\mathrm{~d}, J_{\mathrm{CP}}=127.8 \mathrm{~Hz}\right), 125.5,121.9\left(\mathrm{~d}, J_{\mathrm{CP}}=9.1 \mathrm{~Hz}\right), 121.2,116.6\left(\mathrm{~d}, J_{\mathrm{CP}}=7.2 \mathrm{~Hz}\right), 24.9$, $22.8,14.9,13.3 ;{ }^{\left.\mathbf{3 1} \mathbf{P ~ N M R ~ (1 6 2 ~ M H z}, \mathbf{C D C l}_{3}\right)} \delta 16.91$; $\boldsymbol{\text { HRMS (ESI) calculated for } \mathrm { C } _ { 3 5 } \mathrm { H } _ { 3 0 } \mathrm { N } _ { 2 } \mathrm { OP }}$ [M + H] ${ }^{+}$: 525.2090, found: 525.2075;

Synthetic Procedure and Characterization of 3ap

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $1 \mathrm{k}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 21 ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}.), \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L} 1(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=1: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S) \mathbf{- 3 a p}(68.2 \mathrm{mg})$ in 78% yield as a white foam with $>99 \%$ ee. Product exists as a 13:1 mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3,4-Diethyl-2-(quinolin-8-yl)-1-(thiophen-2-yl)-2H-thieno[2,3-c][1,2]azaphosphinine 1-ox ide (3ap)

M.p.: $226-227{ }^{\circ} \mathrm{C}$; $>99 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{20}=+685.6\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, t (major) $=11.041 \mathrm{~min}, \mathrm{t}($ minor $\left.)=7.826 \mathrm{~min} . \mathbf{H}^{\mathbf{1}} \mathbf{~ N M R (4 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.76$ (dd, $J=4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.68-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=8.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.58(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.40(\mathrm{~m}$, $1 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 150.2,148.3\left(\mathrm{~d}, J_{\mathrm{CP}}=6.7 \mathrm{~Hz}\right), 145.4\left(\mathrm{~d}, J_{\mathrm{CP}}=3.3 \mathrm{~Hz}\right), 142.4,137.5\left(\mathrm{~d}, J_{\mathrm{CP}}=12.1 \mathrm{~Hz}\right)$, $136.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 135.8,133.9\left(\mathrm{~d}, J_{\mathrm{CP}}=6.5 \mathrm{~Hz}\right), 133.0\left(\mathrm{~d}, J_{\mathrm{CP}}=163.4 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{\mathrm{CP}}=11.9\right.$ $\mathrm{Hz}), 132.1,128.6,128.3,126.8\left(\mathrm{~d}, J_{\mathrm{CP}}=16.5 \mathrm{~Hz}\right), 125.9,124.7\left(\mathrm{~d}, J_{\mathrm{CP}}=12.4 \mathrm{~Hz}\right), 121.3,118.7(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=148.9 \mathrm{~Hz}\right), 111.7\left(\mathrm{~d}, J_{\mathrm{CP}}=6.4 \mathrm{~Hz}\right), 24.0\left(\mathrm{~d}, J_{\mathrm{CP}}=3.3 \mathrm{~Hz}\right), 23.8,15.2,13.9 ;{ }^{31} \mathbf{P}$ NMR (162 $\underline{\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right)} \delta 4.34$; $\underline{\mathbf{H R M S}(E S I)}$ calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OPS}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 437.0906$, found: 437.0901;

Synthetic Procedure and Characterization of 4a

The electrocatalysis was carried out in an undivided cell, with a GF anode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 2aq ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$.), $\mathrm{Co}(\mathrm{OAc})_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathrm{L} 1(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4$ mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=4: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S)-4 \mathrm{a}(47.7 \mathrm{mg})$ in 78% yield as a yellow solid with 99% ee. Product exists as a $10: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3-(3-chloro-4-(4-ethoxybenzyl)phenyl)-1-phenyl-2-(quinolin-8-yl)-2H-benzo-[1,2]-aza-

 phosphinine 1-oxide (4a)
M.p.: $89-90^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+389.8\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right)$; The 99% ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=210 \mathrm{~nm}, \mathrm{t}($ major $)=19.211 \mathrm{~min}, \mathrm{t}($ minor $)=11.625 \mathrm{~min} . \underline{\mathbf{H} \mathbf{N M R}}$ $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.61(\mathrm{dd}, J=4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=13.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=$ 8.4, 4.4 Hz, 1H), $7.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dt}, J=7.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.27(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.73(\mathrm{~s}, 2 \mathrm{H}), 1.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 157.3,149.3,144.2,143.7$ $\left(\mathrm{d}, J_{\mathrm{CP}}=2.0 \mathrm{~Hz}\right), 137.8\left(\mathrm{~d}, J_{\mathrm{CP}}=4.0 \mathrm{~Hz}\right), 137.5,137.5,137.3\left(\mathrm{~d}, J_{\mathrm{CP}}=4.0 \mathrm{~Hz}\right), 135.5,133.3,133.0$ $\left(\mathrm{d}, J_{\mathrm{CP}}=11.0 \mathrm{~Hz}\right), 131.8,131.7,131.5,131.0,131.0\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 130.2,130.0,129.6,129.0$, $128.4,128.3\left(\mathrm{~d}, J_{\mathrm{CP}}=6.0 \mathrm{~Hz}\right), 127.3,127.2\left(\mathrm{~d}, J_{\mathrm{CP}}=14.0 \mathrm{~Hz}\right), 126.8\left(\mathrm{~d}, J_{\mathrm{CP}}=9.0 \mathrm{~Hz}\right), 126.1\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=15.0 \mathrm{~Hz}), 125.6,124.1\left(\mathrm{~d}, J_{\mathrm{CP}}=128.0 \mathrm{~Hz}\right), 121.1,114.3,107.5\left(\mathrm{~d}, J_{\mathrm{CP}}=8.0 \mathrm{~Hz}\right), 63.4,38.1,15.0 . ;$ ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 18.71$; $\underline{\text { HRMS (ESI) calculated for } \mathrm{C}_{38} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: ~}$ 613.1806, found: 613.1816.

Processed Channel Descr.: W2489 ChB 210nm

Processed					
Channel Descr.	RT	Area	\% Area	Height	
1	W2489 ChB 210nm	11.546	230622661	50.38	862346
2	W2489 ChB 210nm	19.218	22713074	49.62	498655

Processed Channel Descr.: W2489 ChB 210nm

Processed				
Chaneel Desccr.	RT	Area	$\%$ Area	Height
1	W2489 ChB 210nm	11.625	833505	0.67
23049				
2	W2489 ChB 210nm	19.211	123022189	99.33

Synthetic Procedure and Characterization of 4b

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) ,$ alkyne 2ar ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathrm{L} 1(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S) \mathbf{- 4 b}(52.3 \mathrm{mg})$ in 81% yield as a light-yellow solid with 99% ee. Product exists as a $10: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3-(3-chloro-4-(4-(((S)-tetrahydrofuran-3-yl)oxy)benzyl)phenyl)-1-phenyl-2-(quinolin-8-yl)$\underline{\mathbf{2 H} \text {-benzo }[c][1,2] \text { azaphosphinine } 1 \text {-oxide (4b) }}$

M.p.: $105-106{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+326.0\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right)$; The 99% ee was determined by Daicel Chiralcel IA, Hexanes/IPA $=70 / 30,1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ major $)=44.030 \mathrm{~min}, \mathrm{t}($ minor $)=19.239$ $\min .{ }^{\mathbf{1} \mathbf{H}} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.61(\mathrm{dd}, J=4.4,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}$, $J=12.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.21$ (d, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{dt}, J=8.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=8.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.89(\mathrm{~m}$, $3 \mathrm{H}), 6.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.27(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-4.87(\mathrm{~m}$, $1 \mathrm{H}), 4.00-3.95(\mathrm{~m}, 3 \mathrm{H}), 3.91-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 155.7,149.3,144.1,143.7\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 137.7\left(\mathrm{~d}, J_{\mathrm{CP}}=5.0 \mathrm{~Hz}\right), 137.4\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=1.0 \mathrm{~Hz}), 137.3,137.2\left(\mathrm{~d}, J_{\mathrm{CP}}=4.0 \mathrm{~Hz}\right), 135.4,133.2,132.9\left(\mathrm{~d}, J_{\mathrm{CP}}=10.0 \mathrm{~Hz}\right), 131.8,131.6,131.4$, $130.9\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 130.1,129.7,128.3,128.2,128.2,127.3,127.1,127.0,126.7\left(\mathrm{~d}, J_{\mathrm{CP}}=9.0\right.$ $\mathrm{Hz}), 126.1\left(\mathrm{~d}, J_{\mathrm{CP}}=14.0 \mathrm{~Hz}\right), 125.5,124.0\left(\mathrm{~d}, J_{\mathrm{CP}}=137.0 \mathrm{~Hz}\right), 121.1,115.1,115.0,107.5\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$
 for $\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 655.1912$, found: 655.1921 .

Synthetic Procedure and Characterization of $4 \mathbf{c}$

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) ,$ alkyne 2as($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$.), $\mathrm{Co}(\mathrm{OAc})_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S)-4 \mathrm{c}(46.5 \mathrm{mg})$ in 75% yield as a light-yellow solid with $>99: 1$ ee. Product exists as a 7:1 mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

($8 \mathrm{R}, 9 \mathrm{~S}, 13 \mathrm{~S}, 14 \mathrm{~S}$)-13-methyl-2-((S)-1-oxido-1-phenyl-2-(quinolin-8-yl)-2H-

benzo $[c][1,2]$ azaphosphinin-3-yl)-6,7,8,9,11,12,13,14,15,16-decahydro-17Hcyclopenta $[a]$ phenanthren-17-one (4c)

M.p.: $178-179{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+273.4\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$, lit $^{1 \mathrm{~d} .}[\alpha]_{\mathrm{D}}{ }^{20}=+266.5$
$\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$ The $>99 \%$ ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ single peak $)=30.316$ $\min .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.73(\mathrm{dd}, J=4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=13.2,7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.08(\mathrm{~m}, 5 \mathrm{H}), 6.97$ (td, $J=7.6,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.58(\mathrm{~m}, 2 \mathrm{H})$, $2.44(\mathrm{dd}, J=19.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.84(\mathrm{dd}, J=9.2,3.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.23(\mathrm{~m}, 1 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 149.2,145.1,144.4\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 139.0,138.2\left(\mathrm{~d}, J_{\mathrm{CP}}=5.0 \mathrm{~Hz}\right), 138.0\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=2.0 \mathrm{~Hz}), 135.9\left(\mathrm{~d}, J_{\mathrm{CP}}=5.0 \mathrm{~Hz}\right), 135.4,135.0,132.9\left(\mathrm{~d}, J_{\mathrm{CP}}=11.0 \mathrm{~Hz}\right), 132.0,131.7\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0\right.$ $\mathrm{Hz}), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 130.8\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 129.5,128.5\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=130.0 \mathrm{~Hz}), 127.1,127 ., 126.6\left(\mathrm{~d}, J_{\mathrm{CP}}=9.0 \mathrm{~Hz}\right), 126.2,125.9\left(\mathrm{~d}, J_{\mathrm{CP}}=14.0 \mathrm{~Hz}\right), 125.4,124.6(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=177.0 \mathrm{~Hz}\right), 124.1,121.0,107.9\left(\mathrm{~d}, J_{\mathrm{CP}}=8.0 \mathrm{~Hz}\right), 50.5,47.9,44.1,37.8,35.8,31.5,29.0,26.3$, $25.4,21.5,13.8 ;{ }^{\left.\mathbf{3 1} \mathbf{P ~ N M R ~ (1 6 2 ~ M H z}, \mathbf{C D C l}_{3}\right)} \delta 19.08$; HRMS (ESI) calculated for $\mathrm{C}_{41} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}$ $[\mathrm{M}+\mathrm{H}]^{+}: 621.2665$, found: 621.2675 .

Synthetic Procedure and Characterization of 4d

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 2at ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$), $\mathrm{Co}(\mathrm{OAc})_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=4: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S) \mathbf{- 4 d}(52.8 \mathrm{mg})$ in 73% yield as a light-yellow solid with 97% ee. Product exists as a $7: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.
(8R,9S,13S,14S)-13-methyl-2-((S)-1-oxido-1-phenyl-2-(quinolin-8-yl)-2H-
benzo[c][1,2]azaphosphinin-3-yl)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-
cyclopenta $[a]$ phenanthren-17-one (4d)

M.p.: $78-79^{\circ} \mathrm{C} ;[\alpha]_{D^{20}}=+336.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The 97% ee was determined by Daicel Chiralcel IA, Hexanes/IPA $=70 / 30,1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}$ (major) $=14.052 \mathrm{~min}, \mathrm{t}($ minor $)=5.928 \mathrm{~min}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 9.68(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.53$ $(\mathrm{m}, 5 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{q}, J=8.4 \mathrm{~Hz}, 5 \mathrm{H}), 7.07(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H})$, $1.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{~s}, 21 \mathrm{H}), 0.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{6}\right) \delta$ $171.1,149.6,144.3,143.5\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 138.7,137.5,137.4,135.8,132.4\left(\mathrm{~d}, J_{\mathrm{CP}}=4.0 \mathrm{~Hz}\right)$, $132.2\left(\mathrm{~d}, J_{\mathrm{CP}}=10.0 \mathrm{~Hz}\right), 131.8,131.7,131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=10.0 \mathrm{~Hz}\right), 130.0\left(\mathrm{~d}, J_{\mathrm{CP}}=11.0 \mathrm{~Hz}\right), 129.6(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 129.4,129.1\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 128.8,128.7,128.1\left(\mathrm{~d}, J_{\mathrm{CP}}=154.0 \mathrm{~Hz}\right), 128.0,127.4$, $127.4\left(\mathrm{~d}, J_{\mathrm{CP}}=13.0 \mathrm{~Hz}\right), 125.5,124.1\left(\mathrm{~d}, J_{\mathrm{CP}}=126.0 \mathrm{~Hz}\right), 121.5,117.5,107.1\left(\mathrm{~d}, J_{\mathrm{CP}}=7.0 \mathrm{~Hz}\right)$, 36.3, 31.3, 29.1, 28.8, 28.7, 28.6, 28.6, 28.6, 28.5, 26.6, 25.0, 22.1, 13.9; ${ }^{31} \mathbf{P}$ NMR (162 MHz, DMSO-d \boldsymbol{d}_{6}) $\delta 17.43$; $\underline{\text { HRMS (ESI) }}$ calculated for $\mathrm{C}_{47} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 724.4026$, found: 724.4045.

Synthetic Procedure and Characterization of 4e

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ mm) and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 2au ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$), $\mathrm{Co}(\mathrm{OAc})_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%)$, NaOPiv (0.4 mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=2: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S)-4 \mathbf{e}(58.8 \mathrm{mg})$ in 81% yield as a light-yellow solid with 94% ee. Product exists as a $7: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-4-(N, N-dipropylsulfamoyl)- N -(4-(1-oxido-1-phenyl-2-(quinolin-8-yl)-2H-

benzo[c][1,2]azaphosphinin-3-yl)phenyl)benzamide (4e)

M.p.: $167-168{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+487.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The 94% ee was determined by Daicel Chiralcel IA, Hexanes/IPA $=$ $70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}$ (major) $=42.725 \mathrm{~min}, \mathrm{t}$ (minor) $=13.999 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) $\delta 10.29(\mathrm{~s}, 1 \mathrm{H})$, $8.81(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{t}, J=10.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.64(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.30(\mathrm{~m}$, $5 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 3.02(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.50-1.42(\mathrm{~m}$, 4H), $0.79(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO- $\boldsymbol{d}_{\mathbf{6}}$) $\delta 164.3,149.7,144.2,144.0,143.5$ $\left(\mathrm{d}, J_{\mathrm{CP}}=4.0 \mathrm{~Hz}\right), 141.9,138.3\left(\mathrm{~d}, J_{\mathrm{CP}}=13.0 \mathrm{~Hz}\right), 137.4\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 136.7\left(\mathrm{~d}, J_{\mathrm{CP}}=60.0 \mathrm{~Hz}\right)$, $135.9,133.5\left(\mathrm{~d}, J_{\mathrm{CP}}=4.0 \mathrm{~Hz}\right), 132.9,132.2\left(\mathrm{~d}, J_{\mathrm{CP}}=11.0 \mathrm{~Hz}\right), 131.9,131.7\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 131.6$, $131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=10.0 \mathrm{~Hz}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{CP}}=6.0 \mathrm{~Hz}\right), 130.0\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 129.5,129.1\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $13.0 \mathrm{~Hz}), 128.7,128.6,128.1,127.4,127.3,126.8,126.1\left(\mathrm{~d}, J_{\mathrm{CP}}=13.0 \mathrm{~Hz}\right), 124.2\left(\mathrm{~d}, J_{\mathrm{CP}}=126.0\right.$ $\mathrm{Hz}), 121.5,118.9,107.4\left(\mathrm{~d}, J_{\mathrm{CP}}=8.0 \mathrm{~Hz}\right), 49.6,21.6,10.9$; $\left.{ }^{31} \mathbf{P} \mathbf{~ N M R ~ (1 6 2 ~ M H z}, \mathbf{D M S O}-d_{6}\right) ~ \delta$ 17.34; HRMS (ESI) calculated for $\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{PS}[\mathrm{M}+\mathrm{H}]^{+}: 727.2502$, found: 727.2514.

Synthetic Procedure and Characterization of $4 f$

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 2av ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%$), (S)-L1 (20 mol \%), NaOPiv (0.4 mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(P E /$ Acetone $=4: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S)-\mathbf{4 f}(38.0 \mathrm{mg})$ in 55% yield as a lightyellow solid with 97% ee. Product exists as a $6: 1$ mixture of atropisomers due to the hindered rotation about the N -quinoline bond and the structure of major isomer was shown.

(S)-5-(2,5-dimethylphenoxy)-2,2-dimethyl- N -(4-(1-oxido-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphinin-3-yl)phenyl)pentanamide (4f)

M.p.: $135-137^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+289.2\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The 97% ee was determined by Daicel Chiralcel IA, Hexanes/IPA = $70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}$ (major) $=33.826 \mathrm{~min}, \mathrm{t}$ (minor) $=9.854 \mathrm{~min} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{\mathbf{6}}\right) \delta 9.04$ (s, 1H), $8.80(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.88 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.58-$ $7.54(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}$, 3H), 1.67 - $1.53(\mathrm{~m}, 4 \mathrm{H}), 1.12(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO-d \mathbf{d}_{6}) $\delta 175.5,156.4,149.7$, $144.3,143.6\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 138.6,137.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.0 \mathrm{~Hz}\right), 136.0,135.8,132.8\left(\mathrm{~d}, J_{\mathrm{CP}}=5.0 \mathrm{~Hz}\right)$, $132.1\left(\mathrm{~d}, J_{\mathrm{CP}}=11.0 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=14.0 \mathrm{~Hz}\right), 130.4,130.0,129.4,128.4,128.1,127.9,127.4$ $\left(\mathrm{d}, J_{\mathrm{CP}}=5.0 \mathrm{~Hz}\right), 127.3,126.7\left(\mathrm{~d}, J_{\mathrm{CP}}=5.0 \mathrm{~Hz}\right), 126.1\left(\mathrm{~d}, J_{\mathrm{CP}}=15.0 \mathrm{~Hz}\right), 125.5,124.1\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $125.0 \mathrm{~Hz}), 122.4,121.5,120.4,119.3,119.0,111.9,107.4\left(\mathrm{~d}, J_{\mathrm{CP}}=8.0 \mathrm{~Hz}\right), 67.4,42.2,36.5,25.0$,
 $\mathrm{C}_{44} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 692.3037$, found: 692.3045

_Channel: W2489 ChB; Processed Channel: W2489 ChB 210 nm; Result ld: 3550; Processing Method:
Processed Channel Descr.: W2489 ChB 210nm

	Processed Channel Descr.	RT	Area	$\%$ Area	Height
1	W2489 ChB 210nm	10.575	32958500	50.71	607642
2	W2489 ChB 210nm	34.803	32034463	49.29	254510

Processed Channel Descr.: W2489 ChB 210 nm
Processed Channel Descr.: W2489 ChB 210nm

	Processed Chanese Descr.	RT	Area	\%Area	Height
1	W2489 ChB 210nm	9.854	1115651	0.79	45060
2	W2489 ChB 210nm	33.826	139232095	99.21	1052431

Synthetic Procedure and Characterization of $\mathbf{4 g}$

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 2aw ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}.), \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L} 1(20 \mathrm{~mol} \%)$, NaOPiv (0.4 mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3.0: 1.0)$. Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=2: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S)-\mathbf{4 g}(37.5 \mathrm{mg})$ in 47% yield as a yellow solid with $>99 \%$ ee. Product exists as a $6: 1$ mixture of atropisomers due to the hindered rotation about the N -quinoline bond and the structure of major isomer was shown.

(S)-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)- N -(4-(1-oxido-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2] azaphosphinin-3-yl)phenyl)acetamide (4g)

M.p.: $165-166{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+236.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The $>99 \%$ ee was determined by Daicel Chiralcel IA, Hexanes/IPA $=70 / 30,1.0$ $\mathrm{mL} / \mathrm{min}, \boldsymbol{\lambda}=210 \mathrm{~nm}, \mathrm{t}($ single peak $)=120.294 \mathrm{~min} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0}$ MHz, DMSO- $\boldsymbol{d}_{\mathbf{6}}$) $\delta 10.08(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 7 \mathrm{H}), 7.54(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 8 \mathrm{H}), 7.20(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.63$ ($\mathrm{s}, 2 \mathrm{H}$), $2.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO- $\mathbf{d}_{\mathbf{6}}$) δ 168.2, 167.7, 155.4, 149.5, 144.1, 143.3 $\left(\mathrm{d}, J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 138.3,137.5,137.3,137.3,135.7,135.2\left(\mathrm{~d}, J_{\mathrm{CP}}=120.0 \mathrm{~Hz}\right), 132.7\left(\mathrm{~d}, J_{\mathrm{CP}}=4.0\right.$ $\mathrm{Hz}), 132.1\left(\mathrm{~d}, J_{\mathrm{CP}}=11.0 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{CP}}=14.0 \mathrm{~Hz}\right), 131.0,130.7,130.2,130.1,129.9\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $11.0 \mathrm{~Hz}), 129.3,128.9,128.6,128.4,127.9,127.3\left(\mathrm{~d}, J_{\mathrm{CP}}=5.0 \mathrm{~Hz}\right), 127.2,126.5\left(\mathrm{~d}, J_{\mathrm{CP}}=9.0 \mathrm{~Hz}\right)$, $126.0\left(\mathrm{~d}, J_{\mathrm{CP}}=14.0 \mathrm{~Hz}\right), 125.3,124.0\left(\mathrm{~d}, J_{\mathrm{CP}}=125.0 \mathrm{~Hz}\right), 121.3,117.9,117.6,114.4,113.7,111.0$, $107.0\left(\mathrm{~d}, J_{\mathrm{CP}}=8.0 \mathrm{~Hz}\right), 101.7,55.2,31.8,13.2 ;{ }^{\left.\mathbf{3 1} \mathbf{P} \text { NMR (} \mathbf{1 6 2} \mathbf{~ M H z}, ~ D M S O-d_{6}\right)} \delta 17.67$; HRMS (ESI) calculated for $\mathrm{C}_{48} \mathrm{H}_{37} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 799.2235$, found: 799.2246.

Synthetic Procedure and Characterization of 4h

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ mm) and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) ,$ alkyne 2ax ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%$), (S) $\mathbf{- L 1}$ ($20 \mathrm{~mol} \%$), NaOPiv (0.4 mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S)-\mathbf{4 h}(50.3 \mathrm{mg})$ in 75% yield as a yellow solid with >99 : 1 dr. Product exists as a $6: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-2-(6-methoxynaphthalen-2-yl)-N-(4-((S)-1-oxido-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphinin-3-yl)phenyl)propenamide (4h)

M.p.: $102-103{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+268.4\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The $>99: 1$ dr was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30$, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}$ (major) $=77.326 \mathrm{~min}, \mathrm{t}($ minor $)=$ 15.326 min ; ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO-d $\mathbf{d}_{6} \delta 9.97(\mathrm{~s}, 1 \mathrm{H})$, $8.78(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.61-7.51(\mathrm{~m}, 5 \mathrm{H}), 7.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.19(\mathrm{~m}$, $10 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 4 \mathrm{H}), 1.40(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO- d_{6}) $\delta 172.3,157.1,149.7,144.2,143.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.0 \mathrm{~Hz}\right), 138.5,137.4\left(\mathrm{~d}, J_{\mathrm{CP}}=5.0 \mathrm{~Hz}\right)$, 136.7, 135.9, 133.2, $132.8\left(\mathrm{~d}, J_{\mathrm{CP}}=4.0 \mathrm{~Hz}\right), 132.4,132.2\left(\mathrm{~d}, J_{\mathrm{CP}}=10.0 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{\mathrm{CP}}=13.0\right.$ $\mathrm{Hz}), 131.6,131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=10.0 \mathrm{~Hz}\right), 131.1,130.3,130.0\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 129.5,129.1,128.7$, $128.1,127.5,127.3,126.8\left(\mathrm{~d}, J_{\mathrm{CP}}=153.0 \mathrm{~Hz}\right), 126.7\left(\mathrm{~d}, J_{\mathrm{CP}}=9.0 \mathrm{~Hz}\right), 126.2,125.5,125.4,124.2$ $\left(\mathrm{d}, J_{\mathrm{CP}}=125.0 \mathrm{~Hz}\right), 121.5,118.7,117.8,107.2\left(\mathrm{~d}, J_{\mathrm{CP}}=7.0 \mathrm{~Hz}\right), 105.6,55.1,45.8,18.5 .{ }^{31} \mathbf{P} \mathbf{~ N M R}$ ($\mathbf{1 6 2} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) δ 17.43; HRMS (ESI) calculated for $\mathrm{C}_{43} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 672.2411$, found: 672.2420.

Synthetic Procedure and Characterization of 5a

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne $\mathbf{2 a z}\left(0.3 \mathrm{mmol}, 1.5 \mathrm{eq}\right.$.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=4: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S)-5 \mathrm{a}(90.9 \mathrm{mg})$ in 82% yield as a white solid with $>99 \%$ ee. Product exists as a $16: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-1,4-diphenyl-3-(phenylethynyl)-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphinine 1oxide (5a)

M.p.: $104-105{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+32.0\left(\mathrm{c}=0.65, \mathrm{CHCl}_{3}\right),>99 \%$ ee, lit ${ }^{1 \mathrm{~d}}:[\alpha]_{\mathrm{D}}{ }^{20}=$ $+76.5\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. The ee was determined by Daicel Chiralcel IA, Hexanes $/$ IPA $=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ major $)=14.028 \mathrm{~min}, \mathrm{t}$ $($ minor $)=18.105 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.84(\mathrm{dd}, J=4.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.77$ $(\mathrm{m}, 2 \mathrm{H}), 7.66(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.32-7.21(\mathrm{~m}$, 2H), $7.20-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{td}, J=7.6,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 2H), $6.16-6.09(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 150.0,145.3\left(\mathrm{~d}, J_{\mathrm{CP}}=3.9 \mathrm{~Hz}\right), 138.8$, $138.3\left(\mathrm{~d}, J_{\mathrm{CP}}=4.4 \mathrm{~Hz}\right), 137.8\left(\mathrm{~d}, J_{\mathrm{CP}}=1.5 \mathrm{~Hz}\right), 135.6,133.7\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5 \mathrm{~Hz}\right), 131.9,131.7\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=3.0 \mathrm{~Hz}), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 131.1,131.0,130.9,130.8\left(\mathrm{~d}, J_{\mathrm{CP}}=139.0 \mathrm{~Hz}\right), 130.7,128.5,128.2$, $128.0\left(\mathrm{~d}, J_{\mathrm{CP}}=12.8 \mathrm{~Hz}\right), 127.8,127.4,127.3\left(\mathrm{~d}, J_{\mathrm{CP}}=13.7 \mathrm{~Hz}\right), 126.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.0 \mathrm{~Hz}\right), 126.7(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=8.9 \mathrm{~Hz}\right), 126.4\left(\mathrm{~d}, J_{\mathrm{CP}}=14.5 \mathrm{~Hz}\right), 125.9,125.5\left(\mathrm{~d}, J_{\mathrm{CP}}=127.9 \mathrm{~Hz}\right), 123.7\left(\mathrm{~d}, J_{\mathrm{CP}}=6.9 \mathrm{~Hz}\right)$, 122.1, 121.2, $97.4,87.0\left(\mathrm{~d}, J_{\mathrm{CP}}=6.5 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(162 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 15.51 ; \underline{\text { HRMS (ESI) }}$ calculated for $\mathrm{C}_{37} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}$: 545.1777 , found: 545.1776.

Synthetic Procedure and Characterization of 5b

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathrm{a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) ,$ alkyne 2ba ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%)$, NaOPiv (0.4 mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=4: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S) \mathbf{5 b}(97.3 \mathrm{mg})$ in 85% yield as a white solid with 98% ee. Product exists as a $17: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-1-Phenyl-2-(quinolin-8-yl)-4-(p-tolyl)-3-(p-tolylethynyl)-2H-benzo $[c][1,2]$ azaphosphi nine 1-oxide (5b)

M.p.: $113-115{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+68.9\left(\mathrm{c}=0.65, \mathrm{CHCl}_{3}\right), 97 \%$ ee. The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $210 \mathrm{~nm}, \mathrm{t}$ (minor) $=37.528 \mathrm{~min}, \mathrm{t}($ mjaor $)=41.931 \mathrm{~min} . \underline{\mathbf{1}} \mathbf{~ H M R (4 0 0}$ MHz, CDCl $\mathbf{C D}_{3}$) $8.83(\mathrm{dd}, J=4.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98$ $(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (td, $J=8.0,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}$, $3 \mathrm{H}) . ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.9,148.1,145.3\left(\mathrm{~d}, J_{\mathrm{CP}}=3.6 \mathrm{~Hz}\right), 138.6\left(\mathrm{~d}, J_{\mathrm{CP}}=4.5 \mathrm{~Hz}\right)$, $138.1,138.0\left(\mathrm{~d}, J_{\mathrm{CP}}=1.5\right), 136.8,135.8,135.6,133.7\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{\mathrm{CP}}=10.2 \mathrm{~Hz}\right)$, $131.8,131.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 131.0,130.9,130.6$, $129.5\left(\mathrm{~d}, J_{\mathrm{CP}}=56.6 \mathrm{~Hz}\right), 128.8,128.5,127.8\left(\mathrm{~d}, J_{\mathrm{CP}}=182,7 \mathrm{~Hz}\right), 127.2\left(\mathrm{~d}, J_{\mathrm{CP}}=13.5 \mathrm{~Hz}\right), 126.7(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=9.1 \mathrm{~Hz}\right), 126.2\left(\mathrm{~d}, J_{\mathrm{CP}}=14.6 \mathrm{~Hz}\right), 125.5\left(\mathrm{~d}, J_{\mathrm{CP}}=128.0 \mathrm{~Hz}\right), 123.3\left(\mathrm{~d}, J_{\mathrm{CP}}=6.9 \mathrm{~Hz}\right), 121.1$, $119.2,97.5,86.6\left(\mathrm{~d}, J_{\mathrm{CP}}=6.5 \mathrm{~Hz}\right), 21.3,21.3 ;{ }^{\mathbf{3 1} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)} \delta 15.49$; HRMS (ESI) calculated for $\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 573.2090$, found: 573.2090.

Synthetic Procedure and Characterization of 5c

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathrm{a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne $2 \mathbf{b b}$ ($0.3 \mathrm{mmol}, 1.5$ eq.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathrm{L} 1(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4$ mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=1: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S)-5 \mathbf{c}(105.2 \mathrm{mg})$ in 87% yield as a white solid with $>99 \%$ ee. Product exists as a $14: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.
(S)-4-(4-Methoxyphenyl)-3-((4-methoxyphenyl)ethynyl)-1-phenyl-2-(quinolin-8-yl)-2H-b enzo[c][1,2]azaphosphinine 1-oxide (5c)

M.p.: $120-122{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+32.0\left(\mathrm{c}=1.5, \mathrm{CHCl}_{3}\right),>99 \%$ ee. The ee was determined by Daicel Chiralcel IA, Hexanes/IPA $=80 / 20,1$. $0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}$ (major) $=28.160 \mathrm{~min}, \mathrm{t}($ minor $)=32.163$ $\min .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{t}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62$
$(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.08(\mathrm{~m}, 4 \mathrm{H}), 7.0$ 8-6.94 (m, 4H), 6.43 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3$ H).; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 159.4,158.9,149.9\left(\mathrm{~d}, J_{\mathrm{CP}}=2.7 \mathrm{~Hz}\right), 145.3\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $3.4 \mathrm{~Hz}), 138.7\left(\mathrm{~d}, J_{\mathrm{CP}}=7.7 \mathrm{~Hz}\right), 138.0,135.6,133.6\left(\mathrm{~d}, J_{\mathrm{CP}}=11.8 \mathrm{~Hz}\right), 133.1\left(\mathrm{~d}, J_{\mathrm{CP}}=7.3\right.$ $\mathrm{Hz}), 132.2,131.7\left(\mathrm{~d}, J_{\mathrm{CP}}=4.7 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{\mathrm{CP}}=7.4 \mathrm{~Hz}\right), 131.0,129.6\left(\mathrm{~d}, J_{\mathrm{CP}}=114.3 \mathrm{H}\right.$ z), 128.5, $127.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.3 \mathrm{~Hz}\right), 127.2,127.1\left(\mathrm{~d}, J_{\mathrm{CP}}=4.6 \mathrm{~Hz}\right), 126.6\left(\mathrm{~d}, J_{\mathrm{CP}}=11.0 \mathrm{~Hz}\right)$, $126.2\left(\mathrm{~d}, J_{\mathrm{CP}}=8.7 \mathrm{~Hz}\right), 125.9\left(\mathrm{~d}, J_{\mathrm{CP}}=9.7 \mathrm{~Hz}\right), 125.5\left(\mathrm{~d}, J_{\mathrm{CP}}=123.8 \mathrm{~Hz}\right), 124.8,122.5,12$ $1.2,114.3,113.75\left(\mathrm{~d}, J_{\mathrm{CP}}=3.6 \mathrm{~Hz}\right), 97.5,86.1\left(\mathrm{~d}, J_{\mathrm{CP}}=5.9 \mathrm{~Hz}\right), 97.5,86.1,55.3,55.1 ;{ }^{31} \mathbf{P}$
 1989, found: 605.1986.

Synthetic Procedure and Characterization of 5d

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $1 \mathrm{a}(0.2 \mathrm{mmol}, 1.0$ equiv), alkyne 2 bc ($0.3 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ ($10 \mathrm{~mol} \%$), (S) $\mathbf{- L 1}(20 \mathrm{~mol} \%)$, NaOPiv ($0.4 \mathrm{mmol}, 2.0$ equiv) were placed in a 15 mL cell and dissolved in $4.0 \mathrm{~mL}^{\mathrm{m}}{ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=1: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S)-5 d(117.0 \mathrm{mg})$ in 86% yield as a white solid with 99% ee. Product exists as a $14: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-1-Phenyl-2-(quinolin-8-yl)-4-(4-(trifluoromethyl)phenyl)-3-((4-(trifluoromethyl)phen yl)ethynyl)-2H-benzo[c] [1,2]azaphosphinine 1-oxide (5d)

M.p.: $114.8-116.5^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+45.0\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right), 99 \%$ ee. T he ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30$, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=4.884 \mathrm{~min}, \mathrm{t}($ major $)=6.246$ $\left.\min . \mathbf{H}^{\mathbf{1}} \mathbf{~ N M R ~ (4 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.89(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.34$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.70(\mathrm{~m}, 7 \mathrm{H}), 7$. $52-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.08(\mathrm{~m}, 6 \mathrm{H}), 6.20(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3} \mathbf{C}} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 150.1,145.1(\mathrm{~d}, J$ $=3.5 \mathrm{~Hz}), 142.7,137.5\left(\mathrm{~d}, J_{\mathrm{CP}}=3.4 \mathrm{~Hz}\right), 137.4\left(\mathrm{~d}, J_{\mathrm{CP}}=4.2 \mathrm{~Hz}\right), 135.7,133.6\left(\mathrm{~d}, J_{\mathrm{CP}}=10.6 \mathrm{H}\right.$ z), $132.0\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{CP}}=1.7 \mathrm{~Hz}\right), 131.3,131.2,130.9,130.9,130.7,130.3,13$ $0.0\left(\mathrm{~d}, J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right), 129.7\left(\mathrm{~d}, J_{\mathrm{CP}}=4.5 \mathrm{~Hz}\right), 128.5,128.1,127.4,127.3,127.0\left(\mathrm{~d}, J_{\mathrm{CP}}=14.7 \mathrm{H}\right.$ z), $126.7\left(\mathrm{q}, J_{C P}=128.0 \mathrm{~Hz}\right), 126.4\left(\mathrm{~d}, J_{\mathrm{CP}}=9.0 \mathrm{~Hz}\right), 126.0,125.8\left(\mathrm{~d}, J_{\mathrm{CP}}=13.0 \mathrm{~Hz}\right), 125.6(\mathrm{q}$, $\left.J_{C F}=220.6 \mathrm{~Hz}\right), 125.2,124.9\left(\mathrm{q}, J_{\mathrm{CP}}=7.2 \mathrm{~Hz}\right), 123.2\left(\mathrm{q}, J_{\mathrm{CP}}=6.8 \mathrm{~Hz}\right), 123.1,123.0,121.4,9$ $6.1,88.7\left(\mathrm{~d}, J_{\mathrm{CP}}=6.4 \mathrm{~Hz}\right) ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 62.44,63.08 ;{ }^{\mathbf{3 1} \mathbf{P}} \mathbf{N M R}(\mathbf{1 6 2} \mathbf{M}$
$\underline{\mathbf{H z}, \mathbf{C D C l}_{3} \text {) } \delta 15.51 \text {; } \underline{\text { HRMS (ESI) }} \text { calculated for } \mathrm{C}_{39} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 681.1525 \text {, found: }}$ 681.1523 .

Synthetic Procedure and Characterization of 5e

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 2bd ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}.), \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$, $(S)-\mathrm{L} \mathbf{1}(20 \mathrm{~mol} \%)$, $\mathrm{NaOPiv}(0.4$ mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=1: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S)-5 e(81.0 \mathrm{mg})$ in 67% yield as a white solid with $>99 \%$ ee. Product exists as a $20: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-4-(3-Methoxyphenyl)-3-((3-methoxyphenyl)ethynyl)-1-phenyl-2-(quinolin-8-yl)-2H-b enzo [c][1,2]azaphosphinine 1-oxide (5e)

M.p.: $98-100^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+44.5\left(\mathrm{c}=1.5, \mathrm{CHCl}_{3}\right),>99 \%$ ee. The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}, \mathrm{t}$ (minor) $=9.323 \mathrm{~min}, \mathrm{t}($ major $)=10.273 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R ~ (4 0 0}$ MHz, $\left.\mathbf{C D C l}_{3}\right)^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=13.2,7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.63(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.09(\mathrm{~m}, 5 \mathrm{H}), 7.04$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 159.6$, $158.8,150.0,145.3\left(\mathrm{~d}, J_{\mathrm{CP}}=3.2 \mathrm{~Hz}\right), 140.1,138.2\left(\mathrm{~d}, J_{\mathrm{CP}}=4.2 \mathrm{~Hz}\right), 137.8,135.6,133.7\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $10.5 \mathrm{~Hz}), 131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right), 131.4,131.1,131.0,130.9,129.1,128.9,128.5,127.9,127.3(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=11.6 \mathrm{~Hz}\right), 127.2,126.7\left(\mathrm{~d}, J_{\mathrm{CP}}=3.5 \mathrm{~Hz}\right), 126.6,126.4\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5 \mathrm{~Hz}\right), 126.3,125.9,125.5$ $\left(\mathrm{d}, J_{\mathrm{CP}}=114.6 \mathrm{~Hz}\right), 124.3,123.5\left(\mathrm{~d}, J_{\mathrm{CP}}=6.8 \mathrm{~Hz}\right), 123.1,123.1,121.3,115.3,114.9,113.6,97.4$, $86.8\left(\mathrm{~d}, J_{\mathrm{CP}}=6.2 \mathrm{~Hz}\right), 55.3,55.0 ;{ }^{\mathbf{3 1} \mathbf{P}} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 15.53$; $\boldsymbol{\text { HRMS (ESI) }}$ calculated for $\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 605.1989$, found: 605.1991 .

Synthetic Procedure and Characterization of $\mathbf{5 f}$

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 2be ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathrm{L} 1(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S) \mathbf{- 5 f}(38.0 \mathrm{mg})$ in 31% yield as a white solid with 99% ee. Product exists as a $10: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-4-(3-Chlorophenyl)-3-((3-chlorophenyl)ethynyl)-1-phenyl-2-(quinolin-8-yl)-2H-benzo [c][1,2]azaphosphinine 1-oxide (5f)

M.p.: $100-103{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+111.0\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right), 99 \%$ ee. The e e was determined by Daicel Chiralcel IC, Hexanes $/$ IPA $=95 / 5,1.0 \mathrm{~m}$ $\mathrm{L} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ minor $)=90.564 \mathrm{~min}, \mathrm{t}($ major $)=97.838 \mathrm{~min}$. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.85(\mathrm{dd}, J=4.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.29$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.79(\mathrm{~m}$, $2 \mathrm{H}), 7.69(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.33-7.2$ $4(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{td}, J=8.0,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{t}$, $\left.J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 1$ $50.1,145.1\left(\mathrm{~d}, J_{\mathrm{CP}}=3.6 \mathrm{~Hz}\right), 140.4,137.6\left(\mathrm{~d}, J_{\mathrm{CP}}=4.4 \mathrm{~Hz}\right), 137.6\left(\mathrm{~d}, J_{\mathrm{CP}}=1.5 \mathrm{~Hz}\right), 135.7$, $133.6,133.5,131,9\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 131,8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.7 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.3 \mathrm{~Hz}\right), 131$. 2 , $131.1\left(\mathrm{~d}, J_{\mathrm{CP}}=4.9 \mathrm{~Hz}\right), 131.0,130.5,130.4,130.1,129.5,129.1,128.7,128.5,128.4,128$. $0,127.7,127.4\left(\mathrm{~d}, J_{\mathrm{CP}}=13.7 \mathrm{~Hz}\right), 126.8\left(\mathrm{~d}, J_{\mathrm{CP}}=13.4 \mathrm{~Hz}\right), 126,8\left(\mathrm{~d}, J_{\mathrm{CP}}=4.7 \mathrm{~Hz}\right), 126.7$ $\left(\mathrm{d}, J_{\mathrm{CP}}=2.2 \mathrm{~Hz}\right), 126.4\left(\mathrm{~d}, J_{\mathrm{CP}}=9.1 \mathrm{~Hz}\right), 126.0,125.7\left(\mathrm{~d}, J_{\mathrm{CP}}=127,7 \mathrm{~Hz}\right), 123.5,122.7(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=6.9 \mathrm{~Hz}\right), 121.3,96.2,87.6\left(\mathrm{~d}, J_{\mathrm{CP}}=7.2 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 15.47$;
HRMS (ESI) calculated for $\mathrm{C}_{37} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 613.0998$, found: 613.0993

Synthetic Procedure and Characterization of 5g

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne $2 \mathbf{b h}(0.3 \mathrm{mmol}, 1.5 \mathrm{eq}),. \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%)$, NaOPiv (0.4 $\mathrm{mmol}, 2.0$ eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S)-5 \mathrm{~g}(112.2 \mathrm{mg})$ in 99% yield as a white solid with 99% ee. Product exists as a $48: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-1-Phenyl-2-(quinolin-8-yl)-4-(thiophen-2-yl)-3-(thiophen-2-ylethynyl)-2H-benzo[c][1, 2]azaphosphinine 1-oxide (5g)

M.p.: $120-122{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+39.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right), 99 \%$ ee. The ee was determined by Daicel Chiralcel IC, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}$ (major) $=8.198 \mathrm{~min}, \mathrm{t}($ minor $)=9.720 \mathrm{~min} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 8.79(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=13.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-$ $7.33(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{td}, J=7.2,3.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.93(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right)^{\boldsymbol{M}} \delta 150.0,145.1\left(\mathrm{~d}, J_{\mathrm{CP}}=3.4 \mathrm{~Hz}\right), 139.3,138.7\left(\mathrm{~d}, J_{\mathrm{CP}}=4.3 \mathrm{~Hz}\right), 137.3,135.7,133.6$ $\left(\mathrm{d}, J_{\mathrm{CP}}=10.6 \mathrm{~Hz}\right), 131.8,131.8,131.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.3 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $12.3 \mathrm{~Hz}), 130.6\left(\mathrm{~d}, J_{\mathrm{CP}}=138.6 \mathrm{~Hz}\right), 129.9,128.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.2 \mathrm{~Hz}\right), 128.6,128.2,127.9,127.3(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=13.8 \mathrm{~Hz}\right), 127.0\left(\mathrm{~d}, J_{\mathrm{CP}}=3.3 \mathrm{~Hz}\right), 126.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 126.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.0 \mathrm{~Hz}\right), 126.5,126.4$ $\left(\mathrm{d}, J_{\mathrm{CP}}=3.1 \mathrm{~Hz}\right), 125.9,124.9\left(\mathrm{~d}, J_{\mathrm{CP}}=127.1 \mathrm{~Hz}\right), 121.8,121.2,115.2\left(\mathrm{~d}, J_{\mathrm{CP}}=6.9 \mathrm{~Hz}\right), 91.8,90.1$ $\left(\mathrm{d}, J_{\mathrm{CP}}=6.4 \mathrm{~Hz}\right) ;{ }^{\left.\mathbf{3 1} \mathbf{P N M R ~ (1 6 2 ~ M H z}, \mathbf{C D C l}_{3}\right)} \delta 15.78$; HRMS (ESI) calculated for $\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OPS}_{2}$ [M + H] : 557.0906, found: 557.0901.

Synthetic Procedure and Characterization of 5h

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.), alkyne 2bh ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%)$, NaOPiv (0.4 mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3.0: 1.0)$. Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=4: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S)-\mathbf{5 h}(47.9 \mathrm{mg})$ in 45% yield as a white solid with 99% ee. Product exists as a $16: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3-(Hept-1-yn-1-yl)-4-pentyl-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphini ne 1 -oxide (5 h)

M.p.: $75-76{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+208.5\left(\mathrm{c}=1.5, \mathrm{CHCl}_{3}\right), 99 \%$ ee. The ee was determined by Daicel Chiralcel IA, Hexanes/IPA $=70 / 30,1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=5.072 \mathrm{~min}, \mathrm{t}($ minor $)=6.195 \mathrm{~min}$. $\left.{ }^{1} \mathbf{H} \mathbf{N M R ~ (4 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right) ~ \delta 8.77(\mathrm{dd}, J=4.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.69(\mathrm{~m}, 2 \mathrm{H})$, $7.65(\mathrm{dd}, J=8.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.31(\mathrm{~m}$, $2 \mathrm{H}), 7.24(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dt}, J=7.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{td}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96(\mathrm{td}, J=7.8,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.33(\mathrm{~m}, 5 \mathrm{H})$, $0.98(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.77-0.67(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 149.6,145.5\left(\mathrm{~d}, J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 138.2\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 137.5\left(\mathrm{~d}, J_{\mathrm{CP}}=4.7 \mathrm{~Hz}\right), 135.5,133.5(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=10.4 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=3.1 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0\right), 131.2\left(\mathrm{~d}, J_{\mathrm{CP}}=12.6 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=138.1 \mathrm{~Hz}), 130.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.1 \mathrm{~Hz}\right), 128.4,127.4,127.1\left(\mathrm{~d}, J_{\mathrm{CP}}=13.5 \mathrm{~Hz}\right), 125.9\left(\mathrm{~d}, J_{\mathrm{CP}}=128.0\right.$ $\mathrm{Hz}), 125.9\left(\mathrm{~d}, J_{\mathrm{CP}}=2.0 \mathrm{~Hz}\right), 125.8,125.6,124.0\left(\mathrm{~d}, J_{\mathrm{CP}}=9.5 \mathrm{~Hz}\right), 120.9,119.8\left(\mathrm{~d}, J_{\mathrm{CP}}=6.8 \mathrm{~Hz}\right)$,
 15.24; HRMS (ESI) calculated for $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 533.2716$, found: 533.2715.

Synthetic Procedure and Characterization of 5i

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$. $)$, alkyne 2bi ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}.), \mathrm{Co}(\mathrm{OAc})_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}$, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=4: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S)-5 i(66.3 \mathrm{mg})$ in 60% yield as a white solid with $>99 \%$ ee. Product exists as a $16: 1$ mixture of atropisomers due to the hindered rotation about the N -quinoline bond and the structure of major isomer was shown.

(S)-4-(Cyclohex-1-en-1-yl)-3-(cyclohex-1-en-1-ylethynyl)-1-phenyl-2-(quinolin-8-yl)-2H-

 benzo[c][1,2]azaphosphinine 1-oxide (5i)
M.p.: $138-140{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+63.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right),>99 \%$ ee. The ee was determined by Daicel Chiralcel IA, Hexanes/IPA $=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}, \mathrm{t}$ (major) $=15.570 \mathrm{~min}, \mathrm{t}$ (minor) $=18.825 \mathrm{~min} . \underline{\mathbf{1} H} \mathbf{~ N M R ~ (4 0 0}$ $\underline{\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right)} \delta 8.77(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 7.95(\mathrm{dd}, J$ $=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=13.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 2 \mathrm{H})$, $7.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.18(\mathrm{td}, J=7.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{td}, J=8.0,3.6$ $\mathrm{Hz}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 5.30-5.23(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=36.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.85-1.66(\mathrm{~m}, 6 \mathrm{H}), 1.38-$ $1.22(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.7,145.3\left(\mathrm{~d}, J_{\mathrm{CP}}=3.9 \mathrm{~Hz}\right), 137.9\left(\mathrm{~d}, J_{\mathrm{CP}}=1.1\right.$ $\mathrm{Hz}), 135.4,134.7,133.6\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 131.1$ $\left(\mathrm{d}, J_{\mathrm{CP}}=138.4 \mathrm{~Hz}\right), 131.0,131.0,130.9,129.6,128.4,127.5,127.1\left(\mathrm{~d}, J_{\mathrm{CP}}=13.7 \mathrm{~Hz}\right), 125.9,125.8$, $125.7\left(\mathrm{~d}, J_{\mathrm{CP}}=9.2 \mathrm{~Hz}\right), 125.5\left(\mathrm{~d}, J_{\mathrm{CP}}=139.7 \mathrm{~Hz}\right), 124.6\left(\mathrm{~d}, J_{\mathrm{CP}}=4.6 \mathrm{~Hz}\right), 121.0,120.2,84.4\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=6.1 \mathrm{~Hz}$), 31.6, 29.4, 28.0, 25.8, 25.5, 23.4, 22.6, 22.3, 21.9, 21.2, 14.1; ${ }^{31}$ P NMR (162 MHz, $\underline{\mathbf{C D C l}_{3}}$) $\delta 15.42 ; \underline{\text { HRMS (ESI) calculated for } \mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 553.2403 \text {, found: 553.2406. }}$

Kinetic Resolution of (rac)-11

Kinetic Resolution of (rac)-11 with 6a

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide rac $-11(0.2 \mathrm{mmol}, 1.0$ eq.), alkyne 2 o ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(15 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4$ mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 1 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $6 \mathbf{6}(31.3 \mathrm{mg})$ in 41% yield as a lightyellow foam with 97% ee. $\mathbf{6 a}$ exists as a $8: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown and recovered the $(R)-\mathbf{1 1}$ in 44% yield with $>99 \%$ ee.

(S)-1-Methyl-3-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphinine 1-oxide (6a)

M.p.: 115-117 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=-99.3\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right), 97 \% \mathrm{ee}, \operatorname{lit}^{1 \mathrm{~d}}[\alpha]_{\mathrm{D}}{ }^{20}=-97.9[\mathrm{c}=$ $0.5, \mathrm{CHCl}_{3}, 98 \%$ ee $\left.(S)\right]$. The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}$ (major) $=12.747 \mathrm{~min}, \mathrm{t}$ (minor) $=16.379 \mathrm{~min} .{ }^{\mathbf{1} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)} \delta 8.96(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{t}, J=12.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.35(\mathrm{~m}$, $4 \mathrm{H}), 7.28(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.87(\mathrm{~m}, 3 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3} \mathbf{C}} \mathbf{~ N M R}$ ($\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 149.9,145.3,144.5\left(\mathrm{~d}, J_{\mathrm{CP}}=1.3 \mathrm{~Hz}\right), 137.8,137.8\left(\mathrm{~d}, J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right), 137.1(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=6.7 \mathrm{~Hz}\right), 135.9,131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=10.6 \mathrm{~Hz}\right), 130.1\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 129.1$, $129.0,128.8,128.0,127.6,126.9\left(\mathrm{~d}, J_{\mathrm{CP}}=13.0 \mathrm{~Hz}\right), 126.8,126.4\left(\mathrm{~d}, J_{\mathrm{CP}}=9.3 \mathrm{~Hz}\right), 126.0,124.1(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=117.7 \mathrm{~Hz}\right), 121.4,110.6\left(\mathrm{~d}, J_{\mathrm{CP}}=8.1 \mathrm{~Hz}\right), 16.3\left(\mathrm{~d}, J_{\mathrm{CP}}=96.1 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 16.27$; HRMS (ESI) calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 383.1308$, found: 383.1311.

(R)-P-Methyl-P-phenyl- N-(quinolin-8-yl)phosphinic amide [(R)-11]

$[\alpha]_{\mathrm{D}}{ }^{20}=+198.3\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right), \quad \operatorname{lit}^{1 \mathrm{~d}}[\alpha]_{\mathrm{D}}{ }^{20}=+172\left[\mathrm{c}=0.25, \mathrm{CHCl}_{3}, 99 \%\right.$ ee $(R)]$. The ee was determined by Daicel Chiralcel IA, Hexanes/IPA $=70 / 30,1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=7.977 \mathrm{~min}, \mathrm{t}($ major $)=15.518 \mathrm{~min} .{ }^{1} \mathbf{H} \mathbf{~ N M R}$ $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.78(\mathrm{dd}, J=4.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95$ $-7.85(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 2 \mathrm{H})$, $1.95(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 147.9,138.6\left(\mathrm{~d}, J_{\mathrm{CP}}=6.9 \mathrm{~Hz}\right), 137.7$, $136.4,132.1\left(\mathrm{~d}, J_{\mathrm{CP}}=125.2 \mathrm{~Hz}\right), 131.5,131.4,128.9\left(\mathrm{~d}, J_{\mathrm{CP}}=12.9 \mathrm{~Hz}\right), 128.8,127.2,121.7,119.2$, $113.2\left(\mathrm{~d}, J_{\mathrm{CP}}=3.9 \mathrm{~Hz}\right), 18.0\left(\mathrm{~d}, J_{\mathrm{CP}}=92.2 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl ${ }_{3}$) $\delta 25.65$; $\mathbf{H R M S}(\mathbf{E S I})$ calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}$: 283.0995, found: 283.0994.

Kinetic Resolution of (rac)-11 with 6b

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide rac $-11(0.2 \mathrm{mmol}, 1.0$ equiv), alkyne $\mathbf{2 r}$ ($0.3 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$, $(S)-\mathbf{L 1}(15 \mathrm{~mol} \%)$, NaOPiv (0.4 mmol , 2.0 equiv) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3.0: 1.0)$. Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 1 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on
silica gel $(P E /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{6 b}(40.6 \mathrm{mg})$ in 44% yield as a lightyellow foam with 91% ee. $\mathbf{6 b}$ exists as a $10: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown and recovered the $(R)-\mathbf{1 1}$ in 39% yield with $>99 \%$ ee.

(S)-3-(4-Bromophenyl)-1-methyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphinine 1-oxide (6b)

M.p.: $123-125{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=-100.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right), 91 \%$ ee. The ee was determined by Daicel Chiralcel IC, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220$ nm, t (major) $=27.289 \mathrm{~min}, \mathrm{t}($ minor $)=38.005 \mathrm{~min} .{ }^{\mathbf{1} \mathbf{H} \mathbf{N M R}(400 ~ \mathbf{~ M H z}}$, $\left.\mathbf{C D C l}_{3}\right) \delta 8.94(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=12.0$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 1 \mathrm{H})$, $7.27(\mathrm{~d}, J=7.6,2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 150.1,145.2,143.5,137.6,136.9\left(\mathrm{~d}, J_{\mathrm{CP}}=1.6 \mathrm{~Hz}\right), 136.8\left(\mathrm{~d}, J_{\mathrm{CP}}=4.5 \mathrm{~Hz}\right), 136.0,131.9$ $\left(\mathrm{d}, J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right), 130.9,130.1\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 129.6,129.1\left(\mathrm{~d}, J_{\mathrm{CP}}=9.9 \mathrm{~Hz}\right), 128.1\left(\mathrm{~d}, J_{\mathrm{CP}}=169.7\right.$ $\mathrm{Hz}), 127.1\left(\mathrm{~d}, J_{\mathrm{CP}}=6.3 \mathrm{~Hz}\right), 126.6\left(\mathrm{~d}, J_{\mathrm{CP}}=9.2 \mathrm{~Hz}\right), 126.1,124.3\left(\mathrm{~d}, J_{\mathrm{CP}}=117.8 \mathrm{~Hz}\right), 122.2,121.6$, $110.7\left(\mathrm{~d}, J_{\mathrm{CP}}=8.2 \mathrm{~Hz}\right), 16.3\left(\mathrm{~d}, J_{\mathrm{CP}}=96.3 \mathrm{~Hz}\right) ; \underline{ }{ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 28.76$; $\underline{\text { HRMS (ESI) }}$ calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 461.0418$, found: 461.0422 .

HPLC Condition The enantiomeric excess was determined by Daicel Chiralcel IA, Hexanes/IPA $=$ $70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=7.468 \mathrm{~min}, \mathrm{t}($ major $)=14.668 \mathrm{~min}$.

Kinetic Resolution of ($\mathbf{r a c}$)-11 with $6 \mathbf{c}$

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide rac $-\mathbf{1 1}(0.2 \mathrm{mmol}, 1.0$ eq.), alkyne 2ap ($0.3 \mathrm{mmol}, 1.5 \mathrm{eq}$.), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(\mathrm{S})-\mathrm{L} 1(15 \mathrm{~mol} \%)$, $\mathrm{NaOPiv}(0.4$ mmol, 2.0 eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3.0: 1.0)$. Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 1 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(P E /$ Acetone $=3: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $\mathbf{6 c}(29.3 \mathrm{mg})$ in 37% yield as a lightyellow foam with 95% ee. $\mathbf{6 c}$ exists as a $12: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown and recovered the $(R)-\mathbf{1 l}$ in 41% yield with $>99 \%$ ee.

(S)-1-Methyl-2-(quinolin-8-yl)-3-(p-tolyl)-2H-benzo[c][1,2]azaphosphinine 1-oxide (6c)

M.p.: $110-113{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=-140.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right), 95 \%$ ee. The ee was determined by Daicel Chiralcel IC, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $220 \mathrm{~nm}, \mathrm{t}$ (major) $=30.270 \mathrm{~min}, \mathrm{t}($ minor $)=39.990 \mathrm{~min} .{ }^{1} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 8.97(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=12.0$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=8.4,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35$ $(\mathrm{m}, 3 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 149.9,145.4,144.5,138.0\left(\mathrm{~d}, J_{\mathrm{CP}}=7.0 \mathrm{~Hz}\right), 137.2\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=6.9 \mathrm{~Hz}), 135.9,135.0\left(\mathrm{~d}, J_{\mathrm{CP}}=4.7 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.3 \mathrm{~Hz}\right), 130.0\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 129.0(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=9.6 \mathrm{~Hz}\right), 128.8,128.4,127.8,126.8\left(\mathrm{~d}, J_{\mathrm{CP}}=12.7 \mathrm{~Hz}\right), 126.7,126.3\left(\mathrm{~d}, J_{\mathrm{CP}}=9.4 \mathrm{~Hz}\right), 126.0$, $124.2\left(\mathrm{~d}, J_{\mathrm{CP}}=117.6 \mathrm{~Hz}\right), 121.4,110.4\left(\mathrm{~d}, J_{\mathrm{CP}}=8.2 \mathrm{~Hz}\right), 21.1,16.2\left(\mathrm{~d}, J_{\mathrm{CP}}=95.8 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P} \mathbf{N M R}$ (162 MHz, $\mathbf{C D C l}_{3}$) $\delta 29.49$; HRMS (ESI) calculated for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 397.1470$, found: 397.1475.

HPLC Condition The enantiomeric excess was determined by Daicel Chiralcel IA, Hexanes/IPA= $70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=7.468 \mathrm{~min}, \mathrm{t}$ (major) $=14.668 \mathrm{~min}$.

Synthetic Procedure and Characterization of 7af

An oven-dried Schlenk flask was charged with CuI ($0.04 \mathrm{mmol}, 0.02$ equiv.), $\mathrm{PPh}_{3}(0.004 \mathrm{mmol}$, 0.02 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}_{2}$ ($0.004 \mathrm{mmol}, 0.02$ equiv.) and p-iodoanisole ($0.2 \mathrm{mmol}, 1.0$ equiv.). The vessel was evacuated and backfilled with argon three times. Subsequently, dry THF (2 ml), 3af (0.2 mmol, 1.0 equiv.), and dry $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{ml})$ were added and the mixture was stirred at $60{ }^{\circ} \mathrm{C}$. After completion of the reaction, which was indicated by TLC, the mixture was quenched with water and the aqueous phase was extracted three times with $\operatorname{AcOEt}(3 \times 5 \mathrm{ml})$. The combined extracts were dried over MgSO 4 and the solvents were evaporated under reduced pressure. Then the mixture was subjected to column chromatography on silica gel ($\mathrm{PE} /$ Acetone $=1: 1 \mathrm{v} / \mathrm{v}$) to give the desired product 7af $(95.4 \mathrm{mg})$ in 83% yield as a light-yellow foam with 99% ee. Product exists as a $8: 1$ mixture of atropisomers due to the hindered rotation about the N-quinoline bond and the structure of major isomer was shown.

(S)-3-(4-((4-methoxyphenyl)ethynyl)phenyl)-1-phenyl-2-(quinolin-8-yl)-2Hbenzo[c]

[1,2]azaphosphinine 1-oxide (7af)

M.p.: $125-127^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+385.3\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right), 99 \%$ ee. The ee was determined by Daicel Chiralcel IA, Hexanes/IPA=70/30, 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=19.803 \mathrm{~min}, \mathrm{t}($ mjaor $)=52.796$ $\min .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=12.8,7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.59-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.11$ (m, 2H), $7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-6,95(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 159.6,149.3,144.6,143.8(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=3.1 \mathrm{~Hz}\right), 138.1\left(\mathrm{~d}, J_{\mathrm{CP}}=4.2 \mathrm{~Hz}\right), 137.8\left(\mathrm{~d}, J_{\mathrm{CP}}=5.0 \mathrm{~Hz}\right), 137.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right), 135.6,133.0$, $132.9,132.9,131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 131.5,131.5,130.9,130.8,130.1,128.8,128.4,128.2\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=30.7 \mathrm{~Hz}), 127.4,127.1\left(\mathrm{~d}, J_{\mathrm{CP}}=13.8 \mathrm{~Hz}\right), 126.8\left(\mathrm{~d}, J_{\mathrm{CP}}=9.0 \mathrm{~Hz}\right), 126.1\left(\mathrm{~d}, J_{\mathrm{CP}}=14.5 \mathrm{~Hz}\right), 125.5$,
$123.6\left(\mathrm{~d}, J_{\mathrm{CP}}=126.8 \mathrm{~Hz}\right), 122.4,121.1,115.1,114.0,107.8\left(\mathrm{~d}, J_{\mathrm{CP}}=7.9 \mathrm{~Hz}\right), 90.1,87.9,55.3 ;{ }^{31} \mathbf{P}$
 found: 575.1884.

Synthetic Procedure and Characterization of 8ab

Adding TBAF ($2.4 \mathrm{mmol}, 627.5 \mathrm{mg}, 4$ equiv.) into a THF solution of $\mathbf{3 a b}(0.51 \mathrm{mmol}, 225 \mathrm{mg}$) under a nitrogen atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 18 h and cooled to room temperature. Next, adding water to the mixture, add separating the phases and washing the aqueous phase with diethyl ether $(3 \times 25 \mathrm{~mL})$. Then, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were evaporated under reduced pressure. The mixture was subjected to column chromatography on silica gel ($\mathrm{PE} /$ Acetone $=2: 1 \mathrm{v} / \mathrm{v}$) to give the desired product $\mathbf{8 a b}(156.0 \mathrm{mg})$ in 83% yield as a white solid with $>99 \%$ ee.
(S)-1-phenyl-2-(quinolin-8-yl)-2H-benzo[c][1,2]azaphosphinine 1-oxide (8ab)

M.p.: $77-79^{\circ} \mathrm{C},>99 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{20}=+394.4\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right), \mathrm{lit}^{1 \mathrm{~d}}[\alpha]_{\mathrm{D}}{ }^{20}=+400.9$ $\left[\mathrm{c}=0.5, \mathrm{CHCl}_{3},>99 \%\right.$ ee $\left.(S)\right]$. The ee was determined by Daicel Chiralcel IA, Hexanes $/ \mathrm{IPA}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ single $)=43.874 \mathrm{~min} ; \quad \underline{\mathbf{4 0 0}}$ MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ $-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 2 \mathrm{H}), 6.82(\mathrm{dd}, J=16.0,8.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 150.0,143.7\left(\mathrm{~d}, J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right)$, $137.9,137.5\left(\mathrm{~d}, J_{\mathrm{CP}}=4.3 \mathrm{~Hz}\right), 136.1\left(\mathrm{~d}, J_{\mathrm{CP}}=4.6 \mathrm{~Hz}\right), 132.8\left(\mathrm{~d}, J_{\mathrm{CP}}=10.7 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5\right.$ $\mathrm{Hz}), 131.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{\mathrm{CP}}=136.5 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{CP}}=12.0 \mathrm{~Hz}\right), 129.2,129.0,127.6$, $127.4\left(\mathrm{~d}, J_{\mathrm{CP}}=13.7 \mathrm{~Hz}\right), 126.0,125.9,125.9,125.6\left(\mathrm{~d}, J_{\mathrm{CP}}=14.4 \mathrm{~Hz}\right), 123.3\left(\mathrm{~d}, J_{\mathrm{CP}}=125.6 \mathrm{~Hz}\right)$, $121.3,102.2\left(\mathrm{~d}, J_{\mathrm{CP}}=8.8 \mathrm{~Hz}\right) ;{ }^{\mathbf{3 1} \mathbf{P}} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 16.80 ; \underline{\text { HRMS (ESI) calculated for }}$ $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 369.1151$, found: 369.1159.

—— Sample Name: LT-220916-A; Date Acquired: 20229130 $8.56: 55$ CST; Vial: 99; njection
Processed Channel: W2489 ChB 210 nm

Gram-Scale Synthesis of (S)-3o with Reduced Catalyst Loading

1a, 3.0 mmol

The electrocatalysis was carried out in an undivided cell, with a GF anode ($20 \mathrm{~mm} \times 30 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(20 \mathrm{~mm} \times 30 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amid $1 \mathrm{a}(3.0 \mathrm{mmol})$, phenylacetylene $20(4.5 \mathrm{mmol}), \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mol} \%)$, (S)-L1 ($3.0 \mathrm{~mol} \%$), NaOPiv (6 mmol), ${ }^{t} \mathrm{BuOH}(15 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ were added to an oven dried vial equipped with stirring bars. Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 12 mA maintained for 10 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel $(\mathrm{PE} /$ Acetone $=1: 1 \mathrm{v} / \mathrm{v})$ to give the desired product $(S) \mathbf{- 3 0}(1.19 \mathrm{~g})$ in 89% yield as a lightyellow foam with 99% ee. The enantiomeric excess was determined by Daicel Chiralcel IA, Hexanes $/$ IPA $=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=11.037 \mathrm{~min}, \mathrm{t}($ major $)=24.349 \mathrm{~min}$.

Processed Channel Descr.: W2489 ChA 254nm

Frocessed Channel Descr.	RT	Area	\% Area	Height
1	W2489 ChA 254 mm	11.037	147293	0.61
2747				
2	W2489 ChA 254 mm	24.349	23937109	99.39

Mechanistic Studies

Synthesis of Octahedral Co(III)-Complex via Stoichiometric Reaction of $\mathbf{C o (a c a c})_{2}$ and L1

The reaction was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6 \mathrm{~mm}$) and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. $(S)-\mathbf{L 1}(0.2 \mathrm{mmol}), \mathrm{Co}(\mathrm{acac})_{2}(0.2 \mathrm{mmol})$ were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). The reaction was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 3 h . Every reaction mixture was diluted with DCM and concentrated in vacuo. After the reaction was completed, the reaction mixture was cooled to room temperature, diluted with DCM and concentrated in vacuo.Then the mixture was subjected to column chromatography on silica gel ($\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=10: 1: 2 \mathrm{v} / \mathrm{v} / \mathrm{v}$) to give the desired complex Co-1.

Co-1: dark green solid, ($74.3 \mathrm{mg}, 75 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.66(\mathrm{dd}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 2 \mathrm{H})$, 6.52 (ddd, J = 8.4, 6.8, 1.6 Hz, 1H), $5.42-5.38(\mathrm{~m}, 2 \mathrm{H}), 5.04-4.99(\mathrm{~m}, 1 \mathrm{H})$, $4.83(\mathrm{~s}, 1 \mathrm{H}), 4.42-4.38(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.64$ (s, 3H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 190.8,189.0,188.4,187.7,169.6$, $165.7,141.3,133.6,128.5,128.3,127.6,126.7,124.0,113.9,108.8,98.2,97.1$, 75.9, 66.7, 26.1, 26.0, 25.7, 25.6.; HRMS (MALDI-TOF) calculated for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{CoNO}_{6}[\mathrm{M}]{ }^{+}$: 495.1092, found: 495.1091. The data was in accordance with refer 1d.
응
0
0
0

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{C o - 1}$
$\stackrel{\infty}{\circ} \stackrel{\circ}{\circ} \stackrel{\circ}{\circ}$

$\underbrace{\text { だ }}$

[^0]
Cobalt-based Intermediate Co-1 Used as a Catalyst in [4+2] Annulation of 1a and 2a

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ mm) and a platinum cathode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm}$). Phosphinic amide $1 \mathrm{a}(0.2 \mathrm{mmol}, 1.0$ eq.), alkyne $\mathbf{2 a}(0.3 \mathrm{mmol}, 1.5 \mathrm{eq}),. \mathbf{C o - 1}(10 \mathrm{~mol} \%), \mathrm{NaOPiv}(0.4 \mathrm{mmol}, 2.0$ eq.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{\dagger} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel ($\mathrm{PE} /$ Acetone $=2: 1 \mathrm{v} / \mathrm{v}$) to give the desired product $(S)-\mathbf{3 a}(37.5 \mathrm{mg})$ in 75% yield with 99% ee.

Kinetic Isotope Effect

D/H Exchange Experiment of 1a

$1 a$

$D<5 \%$

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $1 \mathrm{a}(0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%)$, $\mathrm{NaOPiv}(0.4 \mathrm{mmol}, 2.0$ equiv) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOD} / \mathrm{D}_{2} \mathrm{O}(3.0: 1.0)$. Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel ($\mathrm{PE} /$ Acetone $=1: 1$ v / v) to give the recovered starting material. No obvious H/D exchange was observed.

 $\infty \infty \infty$

1a

${ }^{1} \mathrm{H}$-NMR of recovered $\mathbf{1 a}$ from the D / H exchange experiment

1a
 1

$\begin{array}{llllllllllllllllllllllllllllllllll}11.0 & 10.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4 & 1.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0.5 & -1.0\end{array}$

D/H Exchange Experiment of 1a-d d_{10}

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide 1a- $\boldsymbol{d}_{10}(0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathbf{L 1}(20 \mathrm{~mol} \%)$, $\mathrm{NaOPiv}(0.4 \mathrm{mmol}, 2.0$ equiv) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3.0: 1.0)$. Electrocatalysis was performed at $70{ }^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 6 h . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel ($\mathrm{PE} /$ Acetone $=1: 1$ v / v) to give the recovered deuterium labelling starting material. No obvious D/H exchange was observed.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of recovered $\mathbf{1 a}-\boldsymbol{d}_{10}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of recovered $\mathbf{1 a}-\boldsymbol{d}_{10}$ from the D/H exchange experiment

Competing Experiment

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $1 \mathbf{1 a}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$. $)$, $\mathbf{1 a}-\boldsymbol{d}_{\mathbf{1 0}}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , alkyne \mathbf{2 x}(0.3 \mathrm{mmol}, 1.5 \mathrm{eq}),. \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(S)-\mathrm{L} \mathbf{1}(20$ $\mathrm{mol} \%$), NaOPiv ($0.2 \mathrm{mmol}, 2.0 \mathrm{eq}$.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (3.0:1.0). Electrocatalysis was proformed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA maintained for 15 min . After the reaction was completed, the reaction mixture was cooled to room temperature, quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then the mixture was subjected to column chromatography on silica gel ($\mathrm{PE} /$ Acetone $=4: 1 \mathrm{v} / \mathrm{v}$) to give the desired product (35.2 mg) in 17% yield. $\left(k_{\mathrm{H}} / k_{\mathrm{D}}=1.22\right)$. The ratio of product $\mathbf{3 x} / \mathbf{3 x} \mathbf{x} \boldsymbol{d} 9$ was analyzed by ${ }^{1} \mathrm{H}$ NMR.

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of mixtured $\mathbf{3 x}$ and $\mathbf{3 x}-\boldsymbol{d}_{9}$ from the competing experiment

Parallel Experiments

The electrocatalysis was carried out in an undivided cell, with a GF anode ($10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 6$ $\mathrm{mm})$ and a platinum cathode $(10 \mathrm{~mm} \times 20 \mathrm{~mm} \times 0.25 \mathrm{~mm})$. Phosphinic amide $\mathbf{1 a}$ or $\mathbf{1 a}-\boldsymbol{d}_{\mathbf{1 0}}(0.2 \mathrm{mmol}$, 1.0 eq.), alkyne $2 \times(0.3 \mathrm{mmol}, 1.5 \mathrm{eq}),. \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%),(\mathrm{S})-\mathrm{L} 1(20 \mathrm{~mol} \%)$, NaOPiv ($0.2 \mathrm{mmol}, 2.0 \mathrm{eq}$.) were placed in a 15 mL cell and dissolved in 4.0 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(3.0: 1.0)$. Electrocatalysis was performed at $70^{\circ} \mathrm{C}$ with a constant current of 3 mA for $10 \mathrm{~min}, 12 \mathrm{~min}, 14 \mathrm{~min}$, $16 \mathrm{~min}, 18 \mathrm{~min}$, and immediately quenched with EA and monitored by HPLC (Figure S1). The KIE was determined as $k_{\mathrm{H}} / k_{\mathrm{D}}=1.86 / 1.81=1.03$.

Figure S1 Parallel KIE experiments

Linear Effects between ee of 3a and ee of L1

The results were obtained using general procedure with a mixture of (rac)- $\mathbf{L} \mathbf{1}$ and (S)-L1 in different ratio (Table S1 and Figure S2). The mixtures were prepared using mother solution ($\mathrm{C}=10$ $\mathrm{mg} / \mathrm{mL}$ in ${ }^{t} \mathrm{BuOH}$) of (rac)-L1 and (S)-L1. And the ee value of the mixtures and alkynylation product 3a were determined by chiral HPLC.

Table S1 Linear Effects Studies

Entry	Ee value of ligand $\mathbf{L}(\%)$	Ee value of $\mathbf{3 a}(\%)$
1	-2.30	7.92
2	28.24	31.54
3	34.32	37.10
4	46.54	49.32
5	56.68	58.56
6	61.90	64.94

7	78.74	79.52
8	88.78	96.62
9	99.90	99.90

Figure S2 Linear effects between ee of 3a and ee of $\mathbf{L} \mathbf{1}$

Cyclic Voltammetry (C-V) Studies

The cyclic voltammograms were recorded on a CHI 600E instrument using a glassy-carbon working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and an $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode, with electrolyte solution of $n-\mathrm{Bu}_{4} \mathrm{NBF}_{4}(1 \mathrm{mmol}, 329 \mathrm{mg})$ in $\mathrm{MeCN}(6 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(4$ mL) at room temperature. A scan rate of $100 \mathrm{mV} / \mathrm{s}$ (Figure S3).

 adding \boldsymbol{S}-L1 ($0.3 \mathrm{mmol}, 72 \mathrm{mg}$) into background; d) adding $\mathbf{C o (O A c})_{\mathbf{2}}^{\mathbf{4}} \mathbf{4} \mathbf{H}_{\mathbf{2}} \mathbf{O}(0.3 \mathrm{mmol}, 75 \mathrm{mg})$ and \boldsymbol{S}-L1 $(0.3 \mathrm{mmol}, 72 \mathrm{mg})$ into background; e) adding $\mathbf{1 a}(0.3 \mathrm{mmol}, 103 \mathrm{mg})$ into background; f) adding $\mathbf{2 a}(0.3 \mathrm{mmol}, 53 \mathrm{mg})$ into background; $\mathbf{g})$ adding $\mathbf{C o}(\mathbf{O A c})_{\mathbf{2}}^{\mathbf{2}} \mathbf{4} \mathbf{H}_{\mathbf{2}} \mathbf{O}(0.3 \mathrm{mmol}, 75 \mathrm{mg})$, $\boldsymbol{S} \mathbf{- L 1}(0.3 \mathrm{mmol}, 72 \mathrm{mg}), \mathbf{1 a}(0.3 \mathrm{mmol}, 103 \mathrm{mg})$ and $\mathbf{2 a}(0.3 \mathrm{mmol}, 53 \mathrm{mg})$ into background.

A mixture of $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ in a solution of $\mathrm{H}_{2} \mathrm{O}$ and MeCN (red curve) showed an oxidation peak of 1.60 V for the oxidation of $\mathrm{Co}(\mathrm{II})$ species to $\mathrm{Co}(\mathrm{III})$ species. Dipenylphosphinamide 1a featured a higher onset potential of 1.76 V , while no obviously oxidative peak of ligand $\mathbf{L} 1$ or alkyne 2a (green curve) was found, suggesting the preferential oxidation of Co-catalyst over substrates and ligand. Notably, the combination of $\mathrm{Co}(\mathrm{OAc})_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}$ with ligand $\mathbf{~} \mathbf{1} 1$ (pink curve) highlighted a shift forward of the oxidation wave with a potential of 1.51 V , might owing to the in situ coordination of $\mathrm{Co}(\mathrm{II})$ salt with L1. Besides, an oxidation potential of 1.31 V was observed when mixturing $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, 1a and $\mathbf{L 1}$ together (Fig. 6d, blue curve), being indicative of an oxidation of cobalt(II) to cobalt(III) in the presence of the substrate at significantly lower potential.

DFT Calculations ${ }^{3}$

Computational Details

Density functional theory (DFT) calculations were performed with Gaussian 09. ${ }^{1}$ The geometry of each species was optimized using the B3LYP/\{[6-31G(d)] (for C, H, N, O, P) + sdd (for Co) SCRF $=(S M D$, solvent $=$ dimethylbenzene $)\}$ level of theory with the corresponding effective core potential for Co. Frequency calculations were also conducted at the same level of theory to obtain vibrational frequencies to determine the identity of stationary points as intermediates or transition states, as well as obtaining the thermal corrections to enthalpy ($\mathrm{H}_{\text {correction }}$) and free energy $\left(\mathrm{G}_{\text {correction }}\right)$ at the temperature of 298 K . All DFT calculations were with an ultrafine integration grid. All structural figures were generated with CYLview ${ }^{4}$. Distances in structural figures are shown in \AA and energies are in $\mathrm{kcal} / \mathrm{mol}$.

IRC Scan Data

TS-S-1-Start

TS-S-1-End

Figure S4. IRC scan of TS-S-1.

TS-R-1-Start

TS-R-1-End

Figure S5. IRC scan of TS-R-1.

Cartesian Coordinates and Energies of Calculated Structures

1 L 1			
$\mathrm{E}=-1336.613473$			
Zero-point correction $=0.331423$			
Thermal correction to Energy $=0.351648$			
Thermal correction to Enthalpy=0.352592			
Thermal correction to Gibbs Free Energy= 0.280722			
P	-2.1060710	1.2263540	0.5175640
O	-1.9572770	0.7589540	1.9421980
C	-3.0259360	0.0531440	-0.5263120
C	-3.1394700	-1.2752860	-0.0913650
C	-3.5627070	0.4205300	-1.7695290
C	-3.7843170	-2.2228350	-0.8874670
H	-2.7310520	-1.5614660	0.8730350
C	-4.2085260	-0.5293220	-2.5621130
H	-3.4886380	1.4467840	-2.1162250
C	-4.3194420	-1.8512500	-2.1231500
H	-3.8702640	-3.2491580	-0.5417450
H	-4.6273360	-0.2359810	-3.5206850

H	-4.8230400	-2.5888440	-2.7418520
C	-0.4520980	1.4343010	-0.2399970
C	-0.2675650	1.9164890	-1.5462330
C	0.6673830	1.0677780	0.5203060
C	1.0171740	2.0366860	-2.0762720
H	-1.1236170	2.1958570	-2.1540540
C	1.9522570	1.1887240	-0.0126930
H	0.5266090	0.6940170	1.5294150
C	2.1284400	1.6734450	-1.3100790
H	1.1504890	2.4119650	-3.0870050
H	2.8135280	0.9055570	0.5859660
H	3.1281810	1.7668730	-1.7251040
N	-2.7328230	2.7820810	0.2185550
H	-2.0127090	3.4312830	-0.0842080
C	-4.0207590	3.3380170	0.1395430
C	-5.1699620	2.7090090	0.7173370
C	-4.1785090	4.5616700	-0.4985710
C	-6.4469690	3.3476110	0.6008850
C	-5.4396090	5.1860410	-0.5934160
H	-3.3084100	5.0459620	-0.9347540
C	-6.0672070	0.9441220	1.8976230
C	-7.5576880	2.6807460	1.1817480
C	-6.5647680	4.5945870	-0.0624040
H	-5.5119490	6.1435200	-1.1013710
C	-7.3737510	1.4810220	1.8269160
H	-5.8975300	0.0002510	2.4126450
H	-8.5427180	3.1343690	1.1079380
N	-7.5404760	5.0657870	-0.1392150
	-8.2022030	0.9473970	2.2817130
	-5.0058300	1.5258570	1.3700560

$2 \mathbf{C o}(\mathrm{OAc})_{2} \mathbf{0 4 H}_{\mathbf{2}} \mathrm{O}$

$\mathrm{E}=-1386.945951$
Zero-point correction $=0.344475$
Thermal correction to Energy $=0.369175$
Thermal correction to Enthalpy=0.370119
Thermal correction to Gibbs Free Energy= 0.287856

Co	-0.5976810	-0.4556210	0.0095910
O	-2.0114840	-0.3150500	-1.3321250
O	-2.1867850	0.5068380	0.6617350
C	-2.7042840	0.3768080	-0.5040230
C	-3.9891290	1.0267010	-0.8919840
H	-3.7568960	1.9568380	-1.4254930
H	-4.5520950	0.3766980	-1.5660910

H	-4.5812050	1.2660480	-0.0067710
O	0.2560540	1.2944730	-0.3180080
O	0.6889730	0.0227900	1.3798020
C	0.9295870	1.1206710	0.7539110
C	1.9463590	2.0972940	1.2383650
H	1.9317280	2.1463450	2.3302910
H	2.9392190	1.7524490	0.9245090
H	1.7627730	3.0837620	0.8076270
N	-1.1589400	-2.1388090	0.7377630
C	-2.4136790	-2.4291460	1.4801980
C	-2.0219840	-3.7201840	2.2376680
H	-1.7542010	-3.5272770	3.2794200
H	-2.7686330	-4.5113540	2.1791350
C	-0.3668130	-3.1730770	0.8053270
O	-0.8233490	-4.1899610	1.5566300
O	0.7102880	-1.2483970	-1.0617610
C	1.3693870	-2.3565720	-0.7701820
C	0.9102430	-3.3394560	0.1522430
C	2.5936020	-2.6005950	-1.4389110
C	1.6782880	-4.5000410	0.3951170
C	3.3251190	-3.7507790	-1.1905010
H	2.9420100	-1.8561970	-2.1486180
C	2.8762950	-4.7104330	-0.2646050
H	1.3108800	-5.2296310	1.1087340
H	4.2641170	-3.9059980	-1.7154930
H	3.4607190	-5.6037930	-0.0697110
C	-3.6281680	-2.5903670	0.5805930
C	-4.8263440	-1.9526460	0.9244760
C	-3.5954640	-3.4108360	-0.5567040
C	-5.9751300	-2.1293200	0.1478520
H	-4.8590590	-1.3149800	1.8045390
C	-4.7405300	-3.5849090	-1.3347970
H	-2.6749490	-3.9159990	-0.8379080
C	-5.9338450	-2.9445250	-0.9849000
H	-6.8975660	-1.6276580	0.4271550
H	-4.7017750	-4.2216160	-2.2143680
H	-6.8242900	-3.0816870	-1.5920790
H	-2.6022540	-1.6212220	2.1882720

$3 \mathbf{C o}(\mathbf{O A c})_{2} \cdot \mathbf{4} \mathbf{H}_{\mathbf{2}} \mathrm{O}+\mathbf{L} 1$

$\mathrm{E}=-2494.442793$
Zero-point correction $=0.614479$
Thermal correction to Energy $=0.654930$
Thermal correction to Enthalpy=0.655874

Thermal correction to Gibbs Free Energy $=0.540515$			
Co	-0.7847020	-0.1058920	1.0191870
O	-0.5556610	-0.8383790	2.8553220
O	-2.3834250	0.1333090	2.2050210
C	-1.7225190	-0.4124780	3.1560700
C	-2.2709600	-0.5162620	4.5423490
H	-2.0362090	0.4107890	5.0798220
H	-3.3573520	-0.6318070	4.5143270
H	-1.8104800	-1.3518390	5.0744630
N	-1.4053370	0.7673300	-0.6071750
C	-2.3367720	0.2176190	-1.6289800
C	-2.0701820	1.1646330	-2.8158110
H	-1.3223010	0.7634330	-3.5059090
H	-2.9656280	1.4638380	-3.3591440
C	-1.0663450	1.9771300	-0.9702860
O	-1.5077420	2.3486390	-2.1905470
O	-0.1711910	1.5321270	1.7346020
C	0.0328150	2.6777240	1.1351430
C	-0.3396040	2.9603500	-0.2104300
C	0.6551940	3.7188220	1.8760060
C	-0.0500970	4.2223790	-0.7806980
C	0.9134980	4.9493810	1.3001910
H	0.9318450	3.5103730	2.9050410
C	0.5704410	5.2117920	-0.0414120
H	-0.3326620	4.4063480	-1.8115890
H	1.3969380	5.7218490	1.8931260
H	0.7858200	6.1778600	-0.4866040
C	-3.7926790	0.2116250	-1.1828670
C	-4.6300210	-0.8244250	-1.6187730
C	-4.3404080	1.2479110	-0.4145920
C	-5.9882440	-0.8280850	-1.2941570
H	-4.2140140	-1.6336050	-2.2139330
C	-5.6980080	1.2429840	-0.0856560
H	-3.7094750	2.0592180	-0.0630930
C	-6.5259420	0.2061720	-0.5240610
H	-6.6229130	-1.6402600	-1.6381850
H	-6.1077600	2.0510850	0.5141220
H	-7.5813650	0.2037670	-0.2662540
H	-2.0412950	-0.7963600	-1.8976740
P	2.4232070	-0.1047170	0.6532220
O	2.4957670	0.3584880	2.0903620
C	3.6519170	-1.4445070	0.4155870
C	3.4827590	-2.6363760	1.1410290
C	4.8163440	-1.2673820	-0.3448870

C	4.4521270	-3.6372380	1.0898870
H	2.5905230	-2.7842960	1.7437010
C	5.7888050	-2.2703730	-0.3911360
H	4.9690940	-0.3498670	-0.9045290
C	5.6071980	-3.4564610	0.3221000
H	4.3075180	-4.5572450	1.6494610
H	6.6871050	-2.1216800	-0.9839750
H	6.3627730	-4.2363400	0.2840000
C	2.8815040	1.2494730	-0.4854720
C	2.5302820	1.2367420	-1.8450860
C	3.6153470	2.3328550	0.0216850
C	2.9148730	2.2855270	-2.6824300
H	1.9519950	0.4145910	-2.2550130
C	3.9936310	3.3841100	-0.8160680
H	3.8768770	2.3549420	1.0747970
C	3.6468110	3.3599310	-2.1690000
H	2.6386150	2.2666910	-3.7330610
H	4.5557970	4.2212410	-0.4117270
H	3.9416680	4.1777220	-2.8208490
N	0.9109230	-0.6979860	0.1931790
C	0.6941880	-1.7838170	-0.6469680
C	-0.5575630	-2.4494170	-0.4591240
C	1.5272810	-2.3029340	-1.6417720
C	-0.8972600	-3.6486760	-1.1459680
C	1.1865280	-3.4828740	-2.3405980
H	2.4647460	-1.8169100	-1.8782780
C	-2.5900940	-2.4289500	0.6899610
C	-2.1463350	-4.2413850	-0.8297270
H	-3.9383080	-4.0752780	0.3529520
H	-2.433507070	-1.8581410	0.4199120
	-3.9780360	-2.1001050	
H	-3.6447140		

4 Complex of $\mathbf{C o}+\mathbf{1 a}+\mathbf{L} 1$

$\mathrm{E}=-2494.405804$
Zero-point correction $=0.608903$
Thermal correction to Energy $=0.648949$
Thermal correction to Enthalpy $=0.649893$
Thermal correction to Gibbs Free Energy $=0.536628$

P	-2.1494730	-0.1347780	-1.3254440

O	-2.3408120	0.6180110	-2.6291990
C	-1.2652380	-1.7067910	-1.5572960
C	-1.3375600	-2.3661190	-2.7872070
C	-0.4228230	-2.1740240	-0.5182170
C	-0.5815470	-3.5229980	-3.0002630
H	-1.9655330	-1.9730570	-3.5821610
C	0.3304050	-3.3400510	-0.7670940
H	-0.9455840	-2.3334460	0.6969540
C	0.2490670	-4.0123090	-1.9878350
H	-0.6407840	-4.0398480	-3.9540990
H	0.9649190	-3.7417910	0.0179350
H	0.8308970	-4.9153520	-2.1519350
C	-3.7830770	-0.4791530	-0.5776670
C	-4.0357770	-0.2913960	0.7891850
C	-4.8178800	-0.9431220	-1.4079290
C	-5.3004880	-0.5634920	1.3169250
H	-3.2496580	0.0791220	1.4381480
C	-6.0771310	-1.2237030	-0.8771670
H	-4.6411040	-1.0799680	-2.4711360
C	-6.3202040	-1.0340830	0.4865290
H	-5.4883320	-0.4049780	2.3753470
H	-6.8689340	-1.5853430	-1.5272930
H	-7.3023120	-1.2487800	0.8987100
N	-1.1427220	0.5385000	-0.1805060
C	-1.2162220	1.8284250	0.3072710
C	-0.1457940	2.1935720	1.1840300
C	-2.1790660	2.8002590	0.0325770
C	-0.0433880	3.4942400	1.7508350
C	-2.0813450	4.0896810	0.6019520
H	-3.0057260	2.5773800	-0.6333430
C	1.8177100	1.4800320	2.2249590
C	1.0740480	3.7418340	2.5895560
C	-1.0447980	4.4499080	1.4411090
H	-2.8521950	4.8167620	0.3606780
C	1.9972010	2.7451850	2.8222660
H	2.5144620	0.6677110	2.3958080
H	1.1910500	4.7230070	3.0415890
H	-0.9821580	5.4466780	1.8666920
H	2.8598890	2.9102400	3.4584730
N	0.7836190	1.2248250	1.4395760
Co	0.2912300	-0.5043280	0.6198410
O	-0.8226070	-0.6586460	2.2524160
O	-1.5390890	-2.7161940	1.7667520
C	-1.4552750	-1.7140220	2.5535980

C	-2.1551350	-1.7949630	3.8835620
H	-1.8027500	-2.6791910	4.4245230
H	-1.9730680	-0.8985800	4.4780830
H	-3.2305320	-1.9158440	3.7141270
N	1.5587880	-0.2332550	-0.8479240
C	1.3809220	0.6363820	-2.0455480
C	2.4118630	0.0257360	-3.0145320
H	1.9614610	-0.7086750	-3.6886680
H	2.9827850	0.7602470	-3.5811430
C	2.6874110	-0.8751440	-0.9691150
O	3.3325660	-0.6825530	-2.1414830
O	1.5650690	-1.5064120	1.6290560
C	2.7288560	-1.9845200	1.2584340
C	3.3333620	-1.7400170	-0.0093500
C	3.4397950	-2.8061030	2.1747070
C	4.5822020	-2.3242920	-0.3256610
C	4.6640280	-3.3597050	1.8434340
H	2.9842140	-2.9926460	3.1430680
C	5.2481540	-3.1259880	0.5835230
H	5.0168040	-2.1296310	-1.3000710
H	5.1768030	-3.9875380	2.5679080
H	6.2067210	-3.5668570	0.3292480
C	1.6193540	2.1137520	-1.7692430
C	0.7097880	3.0589930	-2.2596520
C	2.7645910	2.5609640	-1.0937230
H	0.9348990	4.4260430	-2.0767570
C	-0.1840380	2.7202240	-2.7768280
H	2.9894880	3.9260080	-0.9081450
H	3.4844920	1.8443690	-0.7069250
H	2.0753330	4.8629520	-1.3999590
	0.2171300	5.1461100	-2.4599940
H	2.8797840	4.2580330	-0.3809140
H	5.9252630	-1.2544860	
H	0.5089550	-2.4432130	

5 TS-R-1

$\mathrm{E}=-2494.402146$
Zero-point correction $=0.608815$
Thermal correction to Energy= 0.648948
Thermal correction to Enthalpy $=0.649892$
Thermal correction to Gibbs Free Energy= 0.536081

P	-1.9233270	-1.6855130	0.6516910
O	-2.2404800	-2.2687220	2.0168440
C	-3.4637730	-1.6084110	-0.3368530

C	-4.6734350	-1.9170290	0.3053770
C	-3.4856340	-1.2644870	-1.6984380
C	-5.8810360	-1.8681310	-0.3942350
H	-4.6631010	-2.1950110	1.3542850
C	-4.6927010	-1.2217870	-2.3984240
H	0.9910060	-2.4063530	1.3487970
C	-5.8927070	-1.5188670	-1.7462950
H	-6.8097100	-2.1068590	0.1164910
H	-4.6950240	-0.9592150	-3.4525670
H	-6.8313480	-1.4834590	-2.2922210
C	-0.6798710	-2.6238520	-0.2816160
C	0.6679940	-2.3433300	0.0645030
C	-0.9947370	-3.5632490	-1.2661820
C	1.6777320	-3.0412180	-0.6281770
C	0.0322200	-4.2370680	-1.9359260
H	-2.0297400	-3.7697180	-1.5223810
C	1.3675520	-3.9770080	-1.6166940
H	2.7184440	-2.8739190	-0.3657760
H	-0.2125180	-4.9679480	-2.7016560
H	2.1630870	-4.5095890	-2.1307840
N	-1.1229800	-0.2115170	0.6300450
C	-1.6093730	0.9750510	1.1580340
C	-0.6118540	1.9654470	1.4282660
C	-2.9351310	1.3255310	1.4143320
C	-0.9433500	3.2700090	1.8904600
C	-3.2651470	2.6177480	1.8810850
H	-3.7336660	0.6130000	1.2432550
C	1.6736370	2.4441310	1.4398960
C	0.1325830	4.1691740	2.1059820
C	-2.3080450	3.5861250	2.1101470
H	-4.3127210	2.8465420	2.0581020
C	1.4292730	3.7614180	1.8798550
H	2.6806290	2.0804810	1.2733770
H	-0.0801420	5.1765800	2.4532330
H	-2.5775230	4.5766720	2.4634120
H	2.2691270	4.4286840	2.0397700
N	0.6859670	1.5895960	1.2259750
Co	0.8336050	-0.3104550	0.7308540
O	0.6380030	-0.5848240	2.6725980
O	1.2319450	-2.7343970	2.5768480
C	0.9235610	-1.6860120	3.2345100
C	0.8516860	-1.7708410	4.7349390
H	-0.1340150	-2.1668840	5.0078470
H	1.6119130	-2.4583260	5.1133940

H	0.9702460	-0.7837920	5.1858220
N	1.1286620	0.1614130	-1.1420520
C	0.0947460	0.5754990	-2.1275940
C	0.8153630	0.2825630	-3.4579300
H	0.5696440	-0.7067880	-3.8550660
H	0.6708490	1.0440820	-4.2232430
C	2.2759150	0.0820420	-1.7553470
O	2.2227230	0.2750300	-3.0932920
O	2.7142980	-0.3924280	1.0681820
C	3.7158720	-0.3647100	0.2220620
C	3.5785890	-0.1625060	-1.1830490
C	5.0303920	-0.5510320	0.7296290
C	4.7193600	-0.1760620	-2.0190850
C	6.1313190	-0.5516410	-0.1088430
H	5.1411890	-0.7020810	1.7996360
C	5.9859620	-0.3669610	-1.4975030
H	4.5858850	-0.0285710	-3.0853110
H	7.1213510	-0.7020130	0.3144660
H	6.8540390	-0.3726040	-2.1488710
C	-0.3379720	2.0287630	-1.9905690
C	-1.7015790	2.3475290	-2.0056140
C	0.5998270	3.0696450	-1.9195380
C	-2.1240900	3.6782140	-1.9453910
H	-2.4378010	1.5498320	-2.0589720
C	0.1795980	4.3992610	-1.8572230
H	1.6634040	2.8460180	-1.9093770
H	-1.1841440	4.7078330	-1.8701530
H	-3.1862040	3.9071650	-1.9541520
	0.9176960	5.1947020	-1.8000620
H	-1.5099060	5.7432080	-1.8210220
H	-0.7747320	-0.0668920	-2.0106140
H	-1.0463970	-2.2258490	

6 TS-S-1			
E $=-2494.436776$			
Zero-point correction $=0.613336$			
Thermal correction to Energy $=0.653947$			
Thermal correction to Enthalpy $=0.654892$			
Thermal correction to Gibbs Free Energy $=0.538097$			
P	-2.0760390	-0.5252830	-1.3631420
O	-2.2344810	0.1461340	-2.7185530
C	-1.1260790	-2.0628950	-1.3794550
C	-1.5416580	-3.1629140	-2.1461940
C	0.0447440	-2.1074650	-0.5963150

C	-0.7929770	-4.3386730	-2.1361420
H	-2.4508880	-3.1009680	-2.7406000
C	0.7756970	-3.3051410	-0.5916380
H	1.4595320	-2.0762330	2.3696610
C	0.3629420	-4.4058630	-1.3526090
H	-1.1081370	-5.1948670	-2.7261830
H	1.6755230	-3.4010390	0.0076260
H	0.9495850	-5.3214800	-1.3303330
C	-3.7352500	-0.9050920	-0.6858990
C	-3.9005090	-1.3528550	0.6348210
C	-4.8617750	-0.7726490	-1.5108860
C	-5.1727210	-1.6597120	1.1193190
H	-3.0348080	-1.4567330	1.2823980
C	-6.1344820	-1.0816990	-1.0243410
H	-4.7393600	-0.4213970	-2.5307870
C	-6.2911790	-1.5252290	0.2906830
H	-5.2924710	-2.0021200	2.1436740
H	-7.0008610	-0.9749840	-1.6714080
H	-7.2808890	-1.7646880	0.6700480
N	-1.1788250	0.2850330	-0.2116250
C	-1.5198530	1.4807790	0.3856360
C	-0.5602580	1.9977800	1.3200820
C	-2.6735930	2.2398830	0.1721010
C	-0.7629040	3.2346480	1.9967350
C	-2.8746920	3.4604130	0.8534260
H	-3.4252240	1.9052900	-0.5344490
C	1.5061800	1.6703320	2.3376280
C	0.2634650	3.6568560	2.8813460
C	-1.9525370	3.9661440	1.7486980
H	-3.7879900	4.0149380	0.6533600
C	1.3907350	2.8824870	3.0506100
H	2.3768370	1.0315000	2.4477510
H	0.1478840	4.5954300	3.4170380
H	-2.1189610	4.9085460	2.2617410
H	2.1898820	3.1852800	3.7188920
N	0.5647620	1.2469160	1.5094330
Co	0.4680030	-0.5128760	0.4247790
O	-0.6551900	-1.2378620	1.9543740
O	0.8328000	-2.5207630	3.0561510
C	-0.3733800	-2.0443070	2.8634490
C	-1.4284020	-2.5554590	3.7956630
H	-0.9994060	-2.7885040	4.7726100
H	-2.2331240	-1.8247660	3.8938110
H	-1.8449560	-3.4784240	3.3734530

N	1.5536310	0.1587760	-1.0525580
C	1.1238450	1.1068810	-2.1220120
C	2.1723880	0.8267190	-3.2157670
H	1.8170710	0.1056080	-3.9576850
H	2.5544060	1.7194780	-3.7094140
C	2.7662030	-0.2342770	-1.3211510
O	3.2718760	0.2099490	-2.4924350
O	2.0619030	-1.2045100	1.2899280
C	3.2456400	-1.4979120	0.7713290
C	3.6464180	-1.0600720	-0.5179140
C	4.1585390	-2.2643670	1.5311930
C	4.9228110	-1.4070000	-1.0119130
C	5.4093990	-2.5885330	1.0266210
H	3.8531340	-2.5960860	2.5195290
C	5.8015880	-2.1633380	-0.2534410
H	5.2098240	-1.0690940	-2.0013220
H	6.0890040	-3.1824800	1.6320600
H	6.7797000	-2.4230690	-0.6453010
C	1.1035710	2.5598090	-1.6715880
C	0.0255740	3.3735240	-2.0425870
C	2.1669510	3.1275390	-0.9550880
C	0.0052170	4.7283780	-1.7015120
H	-0.8051330	2.9387760	-2.5922810
C	2.1457490	4.4798960	-0.6089790
H	3.0145890	2.5144630	-0.6602910
H	1.0650010	5.2846800	-0.9820720
H	-0.8405850	5.3449190	-1.9932340
	2.9748190	4.9057100	-0.0502330
	0.1311310	0.8303210	-2.4732980

7 AcO

$\mathrm{E}=-228.414651$
Zero-point correction $=0.047757$
Thermal correction to Energy $=0.052317$
Thermal correction to Enthalpy $=0.053261$
Thermal correction to Gibbs Free Energy= 0.019275

O	-0.8564770	1.9897080	0.0633550
O	-2.0383800	0.4428080	-0.6603990
C	-1.7989550	1.1870560	0.3379490
C	-2.4955390	1.1075220	1.6454850
H	-1.9584270	0.3973330	2.2855550
H	-2.4945770	2.0874250	2.1305500
H	-3.5183800	0.7481010	1.5036540

Reference

1. (a) Nguyen, T. T., Grigorjeva, L. and Daugulis, O. (2016). Cobalt-Catalyzed, AminoquinolineDirected Functionalization of Phosphinic Amide sp2 C-H Bonds. ACS Catal. 6, 551-554; (b) Yao, X., Jin, L. and Rao, Y. (2017). Synthesis of Phosphaisoquinolin-1-one by Annulation of Aryl Phosphinamides with Allenes through a Cobalt-Promoted C-H Functionalization. Asian J. Org. Chem. 6, 825-830; (c) Nallagonda, R., Thrimurtulu, N. and Volla, C. M. R. (2018). Cobalt-Catalyzed Diastereoselective [4+2] Annulation of Phosphinamides with Heterobicyclic Alkenes at Room Temperature. Adv. Synth. Catal. 360, 255-260; (d) Yao, Q.; Chen, J.; Song, H.; Huang, F. and Shi, B. (2022). Cobalt/Salox-Catalyzed Enantioselective C-H Functionalization of Arylphosphinamides. Angew. Chem. Int. Ed. 61, e202202892.
2. Enda B., Cormac T. O., Shane B. R., Eoghan M. M., Colm P. O. and Declan G. G. (2007). Synthesis of P-Stereogenic Phosphorus Compounds. Dynamic Kinetic Resolution in the Asymmetric Oxidation of Phosphines under Appel Conditions. J. Am. Chem. Soc. 129, 95669567.
3. (a) Frisch, M. J., Trucks, G. W., Schlegel, H. B., et. al. Gaussian, Inc., Wallingford CT, 2009; (b) Chai, J.-D. and Head-Gordon, M. (2008). Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615-6620; (c) Barone, V. and Cossi, M. (1998). Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A, 102, 1995-2001; (d) Cossi, M., Rega, N., Scalmani, G. and Barone, V. (2003). Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 24, 669-681; (e) Legault, C. Y. CYLview, 1.0b; Universite' de Sherbrooke, 2009; http://www.cylview.org.

NMR Spectrum

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{2 a q}$

${ }^{13} \mathrm{C}$-NMR of $\mathbf{2 a q}$

```
~~
```

\qquad $\stackrel{\text { N }}{\infty}$ $\stackrel{9}{\stackrel{\circ}{i}}$
(

[^1]
${ }^{1} \mathrm{H}$-NMR of 2ar

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 2 ar

\%	¢00		-

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{2 a u}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{2 a v}$

${ }^{13} \mathrm{C}$-NMR of 2aw

${ }^{13}$ C-NMR of 2ax

${ }^{13} \mathrm{C}$-NMR of $2 \mathbf{a y}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 a}$

$1|/ 1 / 1 / 1|$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 3a

ふす

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 a}$
$\stackrel{0}{0}$
$\stackrel{\oplus}{1}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 3b
凹

${ }^{13} \mathrm{C}$-NMR of 3b

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of 3b
$\stackrel{N}{e}$
$\stackrel{\circ}{\circ}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 c}$

0
0
0
0

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3 c}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 c}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 3d

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 3d

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of 3d

?
@

90	80	70	60	50	40	30	20	10	${ }_{0}^{1}$	-10	-20	-30	. 40	-50	-60	-70	-80	-90

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 e}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3 e}$

$180 \quad 170$
${ }_{180} 1$
${ }^{19} \mathrm{~F}-\mathrm{NMR}$ of $\mathbf{3 e}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 e}$
8
$\stackrel{8}{6}$
$\stackrel{10}{1}$

90	so	70	60	5	$\stackrel{1}{40}$	30	20	10	1	-10	.$_{-20}$	-30	. 40	$\stackrel{-50}{ }$	-60	$\stackrel{-70}{ }$	-80	-90

${ }^{1} \mathrm{H}$-NMR of $\mathbf{3 f}$

응
0
0

${ }^{13} \mathrm{C}$-NMR of $\mathbf{3 f}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 f}$
$\stackrel{\stackrel{\circ}{0}}{\stackrel{\circ}{\circ}}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 g}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3 g}$

${ }^{19} \mathrm{~F}$-NMR of $\mathbf{3 g}$
$\stackrel{\text { º }}{\stackrel{\circ}{ }}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 g}$
$\stackrel{y}{4}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 h}$
0
0
0

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3 h}$

${ }^{31}$ P-NMR of $\mathbf{3 h}$
$\stackrel{\infty}{\stackrel{\infty}{+}}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 i}$

${ }^{13}$ C-NMR of 3i

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 i}$
$\stackrel{n}{n}$

$\stackrel{\stackrel{1}{5}}{\stackrel{\circ}{5}}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 j}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3 j}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3} \mathbf{j}$
∞
$\stackrel{\infty}{\sim}$
$\stackrel{\circ}{-}$

90	80	${ }_{70}$	${ }_{60}$	50	10	10	20	10	${ }_{0}$	-10	- 20	- 30	. 40	-50	-60	${ }_{-70}$	-80	${ }_{-90}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 k}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3 k}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 k}$
\circ
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{1}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 31
응
ゆロN

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 31

かへすが

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of 31
$\stackrel{\circ}{\stackrel{\circ}{\circ}} \stackrel{-}{\stackrel{1}{1}}$

${ }^{13} \mathrm{C}-$ NMR of $\mathbf{3 m}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 m}$
$\stackrel{\substack{\infty \\ i}}{\substack{n}}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 n}$
M
O
O

2.5: 1

120	12.5	12.0	11.5	11.0	10.5	10.0
1.5	9.5					

-

${ }^{13} \mathrm{C}-$ NMR of 3 n

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 n}$
$\stackrel{\circ}{\stackrel{\circ}{\sim}} \stackrel{M}{\sim}$

2.5: 1

90	80	10	${ }_{60}$	50	40	${ }_{30}^{10}$	${ }_{20}$	10	$\stackrel{1}{0}$	-10	-20	- 30	. 40	-50	-60	-70	-80	-90	90

K \qquad Crdedulue \qquad
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $3 \mathbf{o}$

10

- $\quad 18$ 170 130 1110 ${ }_{100}^{11 \text { (ppm) }}$
${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 o}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 p}$

${ }^{13} \mathrm{C}$-NMR of 3p

 $\begin{array}{r}000 \\ 0 \\ 4-\infty \\ \hline\end{array}$
 势会
 $\stackrel{9}{5}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 p}$
$\stackrel{\Gamma}{\sigma}$
$\stackrel{\square}{1}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 q}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3 q}$

[^2]${ }^{31}$ P-NMR of $\mathbf{3 q}$

∞
∞
∞
∞

∞
∞
∞

10	90	80	${ }_{70}$	60	50	40	30	20	10	$\begin{gathered} 1 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	-10	-20	- 30	- 40	-50	${ }_{-60}$	-70	-80	-90

${ }^{1} \mathrm{H}$-NMR of $\mathbf{3 r}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3 r}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 r}$
∞
$\stackrel{\infty}{\infty}$
Γ

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 3 s

$\stackrel{n}{N}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of 3s
8
$\stackrel{\circ}{-}$
$\stackrel{\circ}{-}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 t}$

© તod To No mo oo d

${ }^{13}$ C-NMR of 3t

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 t}$
$\stackrel{\infty}{\infty}$

${ }^{13} \mathrm{C}$-NMR of $\mathbf{3 u}$

${ }^{19} \mathrm{~F}-\mathrm{NMR}$ of $\mathbf{3 u}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 u}$
$\stackrel{i}{+}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 v}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3 v}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 v}$
$\stackrel{N}{\underset{\sim}{\circ}}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 w}$

${ }^{13}$ C-NMR of 3w

${ }^{31} \mathrm{P}-$ NMR of $\mathbf{3 w}$
$\stackrel{\ominus}{\infty}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 x}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3 x}$

으으응

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 x}$
$\stackrel{\infty}{\stackrel{\infty}{\sim}}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 y}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3 y}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 y}$
$\stackrel{\stackrel{i}{n}}{\underset{1}{1}}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3 z}$

regioisormer ratio $=8: 1$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 z}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 a a}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 3aa

${ }^{31}$ P-NMR of 3aa

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 3ab

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3 a b}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 a b}$
$\stackrel{\bar{\circ}}{\stackrel{+}{+}}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 a c}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3 a c}$

\section*{| $\stackrel{m}{0}$ |
| :--- |
| M |
| O |
| O |
| O |

}

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 a c}$

$\stackrel{\infty}{\circ}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 3ad

\qquad Ω
\qquad mar \qquad
\qquad

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3 a d}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of 3ad
$\stackrel{\stackrel{\circ}{\circ}}{\stackrel{+}{+}}$

${ }^{1} \mathrm{H}$-NMR of 3ae

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3 a e}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of 3ae
$\stackrel{\bar{\sigma}}{\stackrel{\infty}{\top}}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 3af

${ }^{13}$ C-NMR of 3af

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 a f}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 a g}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 3ag

-

${ }^{31} \mathrm{P}-$ NMR of $\mathbf{3 a g}$
${ }^{2}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3 a h}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3} \mathbf{a h}$
$\check{\circ}$
$\stackrel{\circ}{\circ}$
$\stackrel{0}{1}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 3ai
M
0
0

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 3ai

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of 3ai
$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{0}}$

${ }^{13}$ C-NMR of 3aj

${ }^{19}$ F-NMR of $\mathbf{3 a j}$
ペNㅜ

${ }^{31}$ P-NMR of 3aj
$\stackrel{\bullet}{\overleftarrow{\circ}} \stackrel{+}{\overleftarrow{+}}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 a k}$
은
O

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 3ak

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of 3ak
$\stackrel{N}{N}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 a l}$
응
OU

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 3al

${ }^{31}$ P-NMR of 3al

${ }_{90}$	1	${ }_{70}$	${ }_{60}$	${ }_{50}$	10	${ }^{1}$	${ }_{20}^{1}$	10	1	-10	$\stackrel{1}{-20}$	${ }_{-30}^{1}$	${ }_{-40}$	$\stackrel{1}{-50}$	${ }_{-60}$	${ }_{-70}$	$\stackrel{1}{-80}$	$\stackrel{1}{-90}$	-1

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 3am

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3 a m}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{3 a m}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 3an

$\stackrel{0}{0}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 3an

${ }^{13}$ C-NMR of 3ao

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of 3ao
$\stackrel{5}{\stackrel{6}{6}}$

${ }^{1} \mathrm{H}$-NMR of 3ap
 응 0
 "

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 3ap

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of 3ap
草
+

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{4 a}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{4 a}$

-63.4
$\stackrel{\Gamma}{\infty}$
$\stackrel{0}{1}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{4 a}$

90	80	70	60	50	40	30	20	10	0 $\mathrm{fl}(\mathrm{ppm})$	-10	-20	-30	-40	-50	-60	-70	-80	-90

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{4 b}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 4b

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of 4b
$\stackrel{\llcorner }{\stackrel{\infty}{\infty}}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 4 c

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{4 c}$

よ⿱宀寸犬 す。

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{4 c}$

$\stackrel{\infty}{\circ}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{4 d}$

| .5 | 12.0 | 11.5 | 11.0 | 10.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 | -1.0 | -1.5 | -2 |
| :--- |

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 4 d

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{4 d}$
$\stackrel{\text { ? }}{\stackrel{\mathrm{N}}{4}}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{4 e}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{4 e}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{4 f}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{4 f}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{4 f}$
$\stackrel{\circ}{\circ}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{4 g}$

${ }^{13} \mathrm{C}$-NMR of $\mathbf{4 g}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{4 g}$

${ }^{1} \mathrm{H}$-NMR of $\mathbf{4 h}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{4 h}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{4 h}$
$\stackrel{\text { ? }}{\underset{1}{4}}$

${ }^{13} \mathrm{C}$－NMR of 5a

$\stackrel{\circ}{\infty}$

[^3]${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{5 a}$
$\stackrel{\bar{n}}{\stackrel{n}{n}}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{5 b}$

${ }^{13} \mathrm{C}$-NMR of $\mathbf{5 b}$

${ }^{31} \mathrm{P}-$ NMR of 5b
$\stackrel{?}{\stackrel{?}{6}}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{5 c}$
 Mi m

${ }^{13}$ C-NMR of 5 c

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $5 \mathbf{c}$
$\stackrel{\text { ? }}{\substack{6 \\ \hline}}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 5d

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 5 d

${ }^{19}$ F-NMR of 5d

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of id

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{5 e}$

\qquad

[^4]${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{5 e}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{5 e}$
$\stackrel{n}{1}$

${ }^{1} \mathrm{H}$-NMR of $\mathbf{5 f}$

${ }^{13}$ C-NMR of $\mathbf{5 f}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{5 f}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{5 g}$

5
r, silllllil

ف人

[^5]${ }^{13} \mathrm{C}-$ NMR of 5 g

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{5 g}$
$\stackrel{\infty}{\stackrel{\infty}{\stackrel{\circ}{\Gamma}} \stackrel{+}{\Gamma}}$

| $|1||||\mid$
$11 \|$

${ }^{13} \mathrm{C}$-NMR of $\mathbf{5 h}$

[^6]${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{5 h}$
$\stackrel{\text { N }}{\substack{4 \\ i}}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{5 i}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{5 i}$
$\stackrel{\substack{\text { N } \\ \stackrel{1}{1}}}{\square}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{6 a}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{6 a}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{6 a}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{6 b}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{6 b}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{6 b}$
$\stackrel{\circ}{\sim}$

${ }^{1} \mathrm{H}$-NMR of $\mathbf{6 c}$
응
0

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{6 c}$

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of $\mathbf{6 c}$

${ }^{1} \mathrm{H}$-NMR of 7af

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 7af

${ }^{31} \mathrm{P}-\mathrm{NMR}$ of 7af
$\stackrel{\stackrel{8}{\infty}}{\stackrel{\infty}{1}}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{8 a b}$

${ }^{31}$ P-NMR of 8ab
$\stackrel{\otimes}{\infty}$

[^0]:

[^1]:

[^2]:

[^3]:

[^4]: | 0 | 12.5 | 12.0 | 11.5 | 11.0 | 10.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0 |
 | :--- |
 | fl | (pma) | |

[^5]: | 0 | 12.5 | 12.0 | 11.5 | 11.0 | 10.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | 1 | | | | | | | | | | | | | | |

[^6]:

