Supporting Information

Improved reuse and storage performances at room temperature of a new environmental-friendly lactate oxidase biosensor made by ambient electrospray immobilization

M. C. Castrovilli*a, V. Scognamiglio ${ }^{\text {b }}$, E. Tempesta ${ }^{\text {c }}$, J. Chiarinellia ${ }^{a}$, M. Parracino ${ }^{\text {a }}$, V. Frisulli ${ }^{\text {b }}$, M.T. Giardib ${ }^{\text {b,d }}$, L. Avaldia ${ }^{\text {a }}$ D. Rossi ${ }^{\text {e }}$ and A. Cartoni ${ }^{\text {e }}$

1. Quantification of LOX immobilized during the ESD process

The amount of deposited enzyme has been evaluated by substituting the screen printed electrode (SPE) with the resonator of a quartz crystal microbalance (QCM). The custom QCM is composed of two gold electrodes with a diameter of 6 mm obtained by vapor deposition on a quartz crystal disk of 14 mm diameter [1,2] and a resonance frequency f0 $=10 \mathrm{MHz}$. The resonance frequency variation is proportional to the amount of deposited material [3]. It also depends on the viscoelastic properties of the deposited material, the adhesion on the gold material, and among different layers. As such, the response frequency versus mass had to be calibrated specifically for LOX.

To calibrate the QCM response, controlled amounts of LOX were deposited by drop-casting on the resonator. The range of units considered goes from 0.18 to 2.43 U and the linear fit obtained is reported in Fig. S1. Then the QCM has been used to measure the amount of the LOX deposited during the ESD process, by performing three depositions at the standard condition: by spraying the working LOX solution ($1 \mu \mathrm{~g} / \mu \mathrm{L}$) at a flow rate of $1 \mu \mathrm{l} / \mathrm{min}$, for 40 minutes on the QCM. The average frequency value obtained was interpolated on the calibration line, revealing a quantity of LOX deposited equal to $2.24 \pm 0.2 \mathrm{U}$.

Fig. S1. Calibration curve of the amount of deposited LOX on the QCM electrode by drop-casting (black dots). The blue dot indicates the amount of LOX deposited on QCM during the ESD process. The red line is the linear regression fit ($y=6405.56$ $(\pm 410.38) x+2312.55(\pm 601.05)$, with an $\left.R^{2}=0.96\right)$. The voltage settings and geometrical parameters for the deposition are the ones in Figure 1 in the main text.

2. Ciclic Voltammetry

In order to assess the correct working potential, the electrochemical characterization through cyclic voltammetry (CV) was assessed prior to conducting the chronoamperometric measurements. Fig. S2 presents CV sweeps carried out at $100 \mathrm{mV} / \mathrm{s}$ between 0.5 V and -0.5 V . The measurements were performed by dropping 100μ l of PBS buffer 0.1 M pH 7 on PB/C-SPEs and recording the current in the presence of only buffer (red curve) and 0.46 mM of L-Lactic acid (blue curve). These curves are compared with the CV performed on e-LOX/PB/C-SPE in the presence of 0.46 mM L-Lactic acid (black curve).

The reduction peak of Prussian Blue (PB) in Prussian White (PW) and the oxidation peak of PW in PB are shown at -0.1 V and 0.26 V respectively on the black curve. The potential of -0.1 V has been chosen for the subsequent chronoamperometric measurements.

Fig. S2 CV sweeps performed at $100 \mathrm{mV} / \mathrm{s}$ between 0.5 V and $-\mathbf{0 . 5} \mathrm{V}$ on bare PB/C-SPEs in the presence of $100 \mu \mathrm{l}$ of PBS buffer 0.1 M pH 7 (red curve) and 0.46 mM of L-Lactic acid (blue curve). CV sweep performed at the same condition on e-LOX/PB/C-SPE in presence of 0.46 mM of L-Lactic acid diluted in $\mathbf{1 0 0} \mu$ l of buffer (black curve).

2. Comparison of Hazardous Chemicals

In Table S1, all the main hazardous chemicals, used for the manufacturing of the biosensors listed in Table 2 of the main article, are shown. The most dangerous chemical for the environment are marked in red. They have been identified according to the Regulation (EC) No 1272/2008 and the GHS Classification ${ }^{4}$ as well as the nomenclature, for some of them, identified by the CHEM21 selection guide. ${ }^{5}$ As can be seen, all the biosensors mentioned in Table 2 use a large number of chemical agents that are dangerous for both human and environment. The present work demonstrates a greener approach thanks to the use of only isopropanol and water for the ESD spray solution and Prussian Blue for the sensor surface. Isopropanol is recommended by the CHEM21 selection guide and Prussian Blue has not been considered hazardous by the Regulation (EC) No 1272/2008.

Table S1. List of the main hazardous chemicals used for the manufacturing of the biosensors listed in Table $\mathbf{2}$ of the main article.

| Hazardous Chemical | Hazards identification
 according to Regulation (EC) No 1272/2008 | Hazards identification
 according to GHS Classification 4 | CHEM21
 selection guide | ref
 t wores |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Triphenylmethane
 isocyanate | - | H319 Causes serious eye irritation (Category 2)
 H315 Causes skin irritation (Category 2)
 H334 Skin sensitization (Category 1)
 H332 Acute toxicity, Inhalation (Category 4) | - | |
| Dimethylsulfoxide | - | H315 Causes skin irritation
 H319 Causes serious eye irritation
 H335 May cause respiratory irritation | Absent
 (after
 discussion) | |
| Potassium
 ferricyanide | H319 Causes serious eye irritation (Category
 2).
 H411 Long-term (chronic) aquatic hazard
 (Category 2). Toxic to aquatic life with long
 lasting effects.
 EUH032 Contact with acids liberates very
 toxic gas. | | 6 | Absent |
| Hexachloroplatinic
 acid | H290 Corrosive to Metals (Category 1).
 H300 Fatal if swallowed.
 H301 Acute toxicity, Oral (Category 3).
 H314, Skin corrosion (Category 1), Toxic if | | Absent | |

	H331 Acute toxicity, Inhalation (Category 3). H400 Contains gas under pressure; may explode if heated. Short-term (acute) aquatic hazard (Category 1). H410 Causes severe skin burns and eye damage. H411 Long-term (chronic) aquatic hazard (Category 2). Toxic if inhaled.				
Ethanol	H225 Flammable liquids (Category 2). H319 Eye irritation (Category 2).		Recommended	$\begin{aligned} & \hline 8, \\ & 9, \\ & 10 \end{aligned}$	Absent
Sulfuric acid	H290 Corrosive to Metals (Category 1), H314 Skin corrosion (Sub-category 1A), H318 Serious eye damage (Category 1),		-	9	Absent
Potassium hydroxide	H290 Corrosive to Metals (Category 1). H302 Acute toxicity, Oral (Category 4). H314 Skin corrosion (Sub-category 1A). H318 Serious eye damage (Category 1). Harmful if swallowed. H319 Causes severe skin burns and eye damage.		-	9	Absent
Glutaraldehyde solution	H302 Acute toxicity, Oral (Category 4), H331 Acute toxicity, Inhalation (Category 3), H314 Skin corrosion (Sub-category 1B), H318 Serious eye damage (Category 1), H334 Respiratory sensitization (Category 1), H317 Skin sensitization (Category 1), H335 Specific target organ toxicity - single exposure (Category 3), Respiratory system. Very toxic to aquatic life with long lasting effects. H400 Short-term (acute) aquatic hazard (Category 1), H411 Long-term (chronic) aquatic hazard (Category 2). Fatal if inhaled. EUH071 Corrosive to the respiratory tract. H225 Highly flammable liquid and vapor. H330 Fatal if inhaled.			9	Absent
Dococyltrimethylamm onium chloride	-	H302 Harmful if swallowed H312 Harmful in contact with skin H314 Causes severe skin burns and eye damage	-	10	Absent
Sodium silicate	H290 Corrosive to Metals (Category 1). H314 Skin corrosion (Category 1). H318 Serious eye damage (Category 1). H335 Specific target organ toxicity - single exposure (Category 3), Respiratory system.		-	10	Absent
Tetraethyl orthosilicate	H226 Flammable liquids (Category 3). H332 Acute toxicity, Inhalation (Category 4). H319 Eye irritation (Category 2). H335 Specific target organ toxicity - single exposure (Category 3), Respiratory system.		-	10	Absent
Cobalt phthalocyanine	H351 Carcinogenicity (Category 2).		-	10	Absent
Adipoyl dihydrazide	-	H320 Causes eye irritation. H361 Suspected of damaging fertility or the unborn child. H400 Very toxic to aquatic life. H410 Very toxic to aquatic life with long lasting effects.	-	10	Absent
Hydrochloric acid	H290 Corrosive to Metals (Category 1). H314 Skin corrosion (Sub-category 1B). H318 Serious eye damage (Category 1). H335 Specific target organ toxicity - single exposure (Category 3), Respiratory system. H319 Causes serious eye damage.		-	10	Absent
Ammonia solution 25\%	H314 Skin corrosion (Sub-category 1B). H318 Serious eye damage (Category 1). H335 Specific target organ toxicity - single exposure (Category 3), Respiratory system. H400 Short-term (acute) aquatic hazard (Category 1).		-	10	Absent

	H411 Long-term (chronic) aquatic hazard (Category 2).			
Potassium ferrocyanide	H412 Long-term (chronic) aquatic hazard (Category 3). EUH032 Contact with acids liberates very toxic gas.		-	
i-PrOH	H225 Flammable liquids (Category 2). H319 Eye irritation (Category 2). H336 Specific target organ toxicity - single exposure (Category 3), Respiratory system.		Absent	
Prussian Blue	Not a hazardous substance or mixture according to Regulation (EC) No 1272/2008.	H302 Harmful if swallowed H312 Harmful in contact with skin H332 Harmful if inhaled	Recommended	-
Water	Not a hazardous substance or mixture according to Regulation (EC) No. 1272/2008 GHS Not Classified		10\%	

3. References

${ }^{1}$ Macagnano, A.; Zampetti, E.; Pistillo, B. R.; Pantalei, S.; Sgreccia, E.; Paolesse, R.; d'Agostino, R. Double layer sensors mimic olfactive perception: A case study. Thin Solid Films 2008, 516, 7857-7865. DOI:
10.1016/j.tsf.2008.05.025.
${ }^{2}$ Bearzotti, A.; Macagnano, A.; Papa, P.; Venditti, I. A study of a QCM sensor based on pentacene for the detection of BTX vapors in air. Sensors and Actuators B: Chemical 2017, 240,1160-1164. DOI: 10.1016/j.snb.2016.09.097
${ }^{3}$ Wasilewski, T.; Szulczynski, B.; Kamysz, W.; Gebicki, J.; Namiesnik, J. Evaluation of Three Peptide Immobilization Techniques on a QCM Surface Related to Acetaldehyde Responses in the Gas Phase. Sensors 2018, 18, No. 3942. DOI: 10.3390/s18113942
${ }^{4}$ GHS Classification- United Nations Economic Commission for Europe, Globally Harmonized System of Classification and Labelling of Chemicals (GHS): http://www.unece.org/trans/danger/publi/ghs/ghs welcome e.html
${ }^{5}$ Denis Prat et. al., Green Chem., 2016, 18, 288-296. DOI: 10.1039/C5GC01008DJ
${ }^{6}$ K. Hajizadeh, H.B. Halsall and W.R. Heineman, Immobilization of lactate oxidase in a poly(vinylalcohol) matrix on platinised graphite electrodes by chemical cross-linking with isocyanate, Talanta, 1991, 38,37-47
${ }^{7}$ N. Sato and H. Okuma, Amperometric simultaneous sensing system for D-glucose and L-lactate based on enzyme-modified bilayer electrodes, Anal.Chim.Acta,2006, 565, 250-254.
${ }^{8}$ J. M. Goran, J. L. Lyon and K. J. Stevenson, Amperometric Detection of I-Lactate Using Nitrogen-Doped Carbon Nanotubes Modified with Lactate Oxidase, Anal. Chem., 2011, 83, 8123-8129.
${ }^{9}$ M. R. Romero, F. Ahumada, F. Garay and A. M. Baruzzi, Amperometric biosensor for direct blood lactate detection, Anal.Chem., 2010, 82, 5568-5572.
${ }^{10}$ T. Shimomura, T. Sumiya, M. Ono, T. Ito and T. Hanaoka, Amperometric L-lactate biosensor based on screen-printed carbon electrode containing cobalt phthalocyanine, coated with lactate oxidase-mesoporous silica conjugate layer, Anal.Chim.Acta, 2012, 714, 114-120.

