Supporting Information

Photoelectrochemical NADH regeneration on a polymer semiconductor-based photocathode

Nanxin Li ^a, Jia You ^a, Lanlan Huang ^b, Haoran Zhang ^a, Xianlong Wang ^a, Lihua He ^a, Chunli Gong ^b, Shiwei Lin ^{a *}, Bingging Zhang ^{a, b, *}

 ^a State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
^b School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan

432000, China

*Corresponding authors.

E-mail addresses: bqzhang@hainanu.edu.cn; linsw@hainanu.edu.cn

Fig. S1 Cyclic voltammetry deposition of pTTh on carbon paper (CP) electrode in acetonitrile solution containing 10 mM TTh and 0.1 M LiClO₄, the scan rate is 25 mV s^{-1} .

Fig. S2 N₂ adsorption-desorption isothermal analysis of CP-pTTh and CP.

Fig. S3 1 H NMR (D₂O) spectrum of [Cp^{*}Rh(bpy)Cl]⁺.

Fig. S4 LSV curves of the NAD $^+$ reduction on pTTh electrode in the dark.

Fig. S5 LSV curves recorded in N_2 -saturated NAD⁺ and Rh(III) contained PBS solution on carbon paper and pTTh.

Fig. S6 (a, b) SEM images of pTTh after 3 h regeneration.

Fig. S7 FT-IR spectra of pTTh before and after 3 h regeneration.

Fig. S8 The yield of 1,4-NADH on pTTh electrodes synthesized with different number of CV electrodeposition cycles.