Supporting information

Molecular understanding of the morphology and properties of lignin nanoparticles: Unravelling the potential for tailored applications

Ievgen V. Pylypchuk^{1§}, Maria Karlsson^{2§}, Pär A. Lindén², Mikael Lindström^{1,2}, Olena Sevastyanova^{1,2*} and Martin Lawoko^{1,2*}

Contents

1.	HSC	QC	2
	l.1.	OS protected lignin	2
	1.2.	OS reference lignin	4
	1.3.	Kraft lignin	6
	l.4.	Diagnostic shifts for HSQC assignment	8
	1.5.	Semi quantification of interunit linkages for the different type of lignins	8
2.	³¹ P	NMR	9
2	2.1.	Hydroxyl-functionalities for the different lignin	9
3.	Size	e Exclusion Chromatography (SEC)1	0
	3.1.	Molecular weight and dispersity index of lignin fractions1	0
4.	¹ H I	NMR1	0
5.	NM	R of LNPs1	6
6.	Sch	eme of biorefinery processes2	2
(5.1.	OS protected lignin2	2
(5.2.	OS reference lignin	2
7.	31P	NMR spectra of ethanol fractions2	3
8.	Ext	raction and ethanol fractionation yield2	8
9.	Lig	nin structures2	8
10.	DF	Г: Molecular volume2	9

1. HSQC

1.1. OS protected lignin

Figure S1. The OS protected lignin. f2 correspond to the ¹H and f1 to the ¹³C dimension, respectively.

Figure S2. The ethanol soluble part of the fractionated OS protected lignin. f2 correspond to the ¹H and f1 to the ¹³C dimension, respectively.

Figure S3. The ethanol insoluble part of the fractionated OS protected lignin. f2 correspond to the ¹H and f1 to the ¹³C dimension, respectively.

1.2. OS reference lignin

Figure S4. OS reference lignin. f2 correspond to the ¹H and f1 to the ¹³C dimension, respectively. The signals from condensations between the aliphatic sidechain and aromatic ring is marked with red dotted rectangles.

Figure S5. The ethanol soluble part of the fractionated OS reference lignin. f2 correspond to the 1 H and f1 to the 13 C dimension, respectively.

Figure S6. The ethanol insoluble part of the fractionated OS reference lignin. f2 correspond to the 1 H and f1 to the 13 C dimension, respectively.

1.3. Kraft lignin

Figure S7. The kraft lignin. f2 correspond to the ¹H and f1 to the ¹³C dimension, respectively.

Figure S8. The ethanol soluble part of the fractionated kraft lignin. f2 correspond to the ¹H and f1 to the ¹³C dimension, respectively.

Figure S9. The ethanol insoluble part of the fractionated kraft lignin. f2 correspond to the ¹H and f1 to the ¹³C dimension, respectively.

1.4. Diagnostic shifts for HSQC assignment

Chemical shifts	C2	β- Ο -4΄, C _α	β- Ο-4 , Et-C _α	β- Ο -4΄, C _β	β-5 [´] , C _α	β-β΄, Cα
$^{1}\mathrm{H}$	7.8-6.1 (7.8-5.6) ¹	5.4-4.4	4.7-4.0	4.6-3.9	5.8-5.0	4.8-4.5
¹³ C	113.2-106.1 (113.2-101.9) ¹	74.0-69.0	81.4-76.9	86.6-80.5	91.0-83.2	86.4-83.1
		/ 110 0510	0111 / 015	0010 0010	, 110 0 0 .2	0011 00

Table S1. Chemical shifts for integration of HSQC NMR spectra for inter-unit linkages.

¹Larger integration of the C2 area for the 2h reference lignin and LignoBoost.

Chemical shifts	Stilbene, β-1΄, C _α	Stilbene, β -5', C _{β}	Coumarylaldehyde, C _α	НК, Сү
$^{1}\mathrm{H}$	127.8-124.4	121.8-117.8	155.5-151.7	68.5-65.3
¹³ C	7.1-6.9	7.5-7.1	7.7-7.4	4.3-4.0

1.5. Semi quantification of interunit linkages for the different type of lignins

Table S2. Semi quantification of interunit linkages.

Lignin	β-O-4΄	β-5΄	β-β΄	Stilbene β -1', C _a	Stilbene β -5', C $_{\beta}$	Coumarylaldehyde, C _α	ΗΚ, Cγ
OS protected initial	32	12	2.0	3.8	3.9	2.0	1.5
OS protected EtOH soluble	33	12	1.7	5.6	3.4	2.1	1.4
OS protected EtOH insoluble	33	12	2.9	2.3	4.9	2.1	1.7
OS reference initial	5.5	2.4	0.63	2.0	4.0	0.29	1.3
OS reference EtOH soluble	5.1	2.4	0.48	2.2	4.0	0.32	1.3
OS reference EtOH insoluble	3.9	3.3	0.87	1.0	3.9	0.25	1.2
Kraft initial	6.8	1.7	1.4	2.9	6.2	n.d.	n.d.
Kraft EtOH soluble	3.6	1.0	0.86	3.2	6.0	n.d.	n.d.
Kraft EtOH insoluble	9.0	2.9	2.2	2.4	4.5	n.d.	n.d.

2. ³¹P NMR

2.1. Hydroxyl-functionalities for the different lignin

	Aliphatic OH	C ₅ -substituted	Guaiacyl OH	<i>p</i> -hydroxy	Carboxylic acid
		ОН		phenyl OH	ОН
Chemical shift	149.1-145.1	144.7-141.1	140.6-138.8	138.2-137.3	136.6-133.6
OS protected	mmol/g	mmol/g	mmol/g	mmol/g	mmol/g
lignin					
Initial	3.04	0.663	1.31	0.0572	0.166
EtOH soluble	3.09	0.578	1.56	0.0629	0.257
EtOH insoluble	2.95	0.738	1.14	0.0625	0.0625

Table S3. Hydroxyl-functionality of the OS protected lignin.

Table S4. Hydroxyl-functionality of the OS reference lignin.

	Aliphatic OH	C ₅ –substituted OH	Guaiacyl OH	<i>p</i> -hydroxy phenyl OH	Carboxylic acid OH
Chemical shift	149.1-145.1	144.7-141.1	140.6-138.8	138.2-137.3	136.6-133.6
OS reference	mmol/g	mmol/g	mmol/g	mmol/g	mmol/g
Initial	1.50	1.28	1.88	0.149	0.252
EtOH soluble	1.42	1.11	2.15	0.121	0.350
EtOH insoluble	1.57	1.45	1.68	0.159	0.193

Table S5. Hydroxyl-functionality of the kraft lignin.

	Aliphatic OH	C ₅ –substituted OH	Guaiacyl OH	<i>p</i> -hydroxy phenyl OH	Carboxylic acid OH
Chemical shift	149.1-145.1	144.7-141.1	140.6-138.8	138.2-137.3	136.6-133.6
Kraft	mmol/g	mmol/g	mmol/g	mmol/g	mmol/g
Initial	1.76	1.28	2.03	0.209	0.508
EtOH soluble	1.34	1.50	2.71	0.200	0.616
EtOH insoluble	2.11	1.54	1.77	0.165	0.376

3. Size Exclusion Chromatography (SEC)

3.1. Molecular weight and dispersity index of lignin fractions

Table S6. Molecular weight and dispersity of the lignin fraction
--

Lignin	Mn	Mw	Mz	Ð
	[g/mol]	[g/mol]	[g/mol]	
OS protected, initial	1800	7100	32000	3.88
OS protected, EtOH soluble	1100	2000	3200	1.83
OS protected, EtOH insoluble	3900	11800	42800	3.05
OS reference, initial	1500	5500	19000	3.68
OS reference, EtOH soluble	800	1500	2400	1.78
OS reference, EtOH insoluble	3200	9700	27600	3.06
Kraft, initial	1270	3100	7200	2.46
Kraft, EtOH soluble	970	1800	3200	1.90
Kraft, EtOH insoluble	2300	5300	9900	2.30

Figure S10. Dispersity index trends for the lignin fractions.

4. ¹**HNMR**

¹H NMR of the unfractionated lignins, analysed in DMSO-d6.

Figure S12. OS protected lignin, ethanol soluble fraction

Figure S16. OS reference lignin, ethanol insoluble fraction

Figure S18. Kraft lignin, ethanol soluble fraction

5. NMR of LNPs

ماغرياران

5.0 4.5 f1 (ppm) 8

3.5

3.0

2.5

2.0

4.0

1000

500

0

- -500

17.56

1.0

0.5

0.0

1.5

Figure S21. LNPs from OS protected lignin, ethanol insoluble fraction.

6.0

5.5

7.0 6.5

a hi dhah ni hili a waa ha

. 7.5

9.5

. 9.0 .5

8.0

Figure S22. LNPs from OS protected lignin, ethanol soluble fraction.

Figure S23. LNPs from OS reference lignin, initial fraction

Figure S24. LNPs from OS reference lignin, ethanol soluble fraction.

Figure S25. LNPs from OS reference lignin, ethanol insoluble fraction.

Figure S28. LNPs from kraft lignin, ethanol insoluble fraction.

LNPs from	Relative integral intensity at 3.80- 3.30 ppm (-OCH ₃ from S- and G- units)	Relative integral intensity at 1.80-0.5 ppm (nonoxygenated aliphatic)	Relative integral intensity at (aromatics)
Ethanol soluble OS protected	1	61.52	dd 7.66-7.23 ppm 0.99+1.24 (coumaryl aldehyde and/or Stilbene , β - 5' , C_{β}
Initial OS protected	1	1.15	-
Ethanol insoluble OS protected	1	17.56	-
Ethanol soluble OS Reference	1	6.9	

Table S7. The integral intensities of some signals from the NMR of LNPs.

Initial OS Reference	1	2.80	s 8.39-8.31ppm 0.20
Ethanol insoluble OS Reference	1	2.33	
Ethanol soluble Kraft	1	2.43	s 7.09-6.18 ppm 0.52 (Stilbene, β -1', C_{α} and/or Enol ether, C_{α}
Initial Kraft	1	0.02	
Ethnaol insoluble Kraft	1	6.45	S 6.93-6.87 ppm 0.05 Stilbene, β-1΄, C _α

Figure S29. Relative intensity of the non-oxygenated aliphatic signal at 1.80-0.04 ppm (intensity of signal of methoxy groups set as 1). Please also look in Table S7.

6. Scheme of biorefinery processes

6.1. OS protected lignin

In relation to the organosolv lignins, cyclic extraction applies a biorefinery concept, where wood polymers are sequentially extracted, i.e., a stream of hemicellulose was extracted using subcritical water prior to the organosolv extraction of lignin. This biorefinery-based process aims to preserve the native lignin structure, where native-like lignin is extracted after the extraction of hemicelluloses at 160°C for 2 hours, using the principle of additive-free physical protection strategies during the extraction. The extraction was performed in fifteen cycles, each for five minutes, using an accelerated solvent extraction at a temperature of 160°C. This lignin is referred to as "protected lignin" where β -O-4' units are preserved.

Figure S30. Scheme of the consolidated biorefinery process where lignin with preserved structure is extracted.

6.2. OS reference lignin

In the second biorefinery-based process, lignin was extracted based on an organosolv process subsequent to hemicellulose extraction, but in batch mode at 160°C for 2 hours. This lignin is referred to simply as "organosolv lignin". Overall, these modifications when compared to the classical one-step organosolv process without pre-extraction of hemicellulose, improved the lignin purity.

Figure S31. Scheme of the reference consolidated biorefinery process where a batch lignin is extracted.

7. 31P NMR spectra of ethanol fractions

Figure S32. ³¹P NMR spectra of the ethanol soluble part of the fractionated OS protected lignin.

Figure S33. ³¹P NMR spectra of the ethanol insoluble part of the fractionated OS protected lignin.

Figure S34. ³¹P NMR spectra of the ethanol soluble part of the fractionated OS reference lignin

Figure S35. ³¹P NMR spectra of the ethanol insoluble part of the fractionated OS reference lignin.

Figure S36. ³¹P NMR spectra of the ethanol soluble part of the fractionated kraft lignin.

Figure S37. ³¹P NMR spectra of the ethanol insoluble part of the fractionated kraft lignin.

8. Extraction and ethanol fractionation yield

Table S8. The absolute dry mass% of the fractions after ethanol fractionation.

Lignin	Extracted lignin yield [mass%] ¹	EtOH soluble [mass%]	EtOH insoluble [mass%]
OS protected	54	45.8	53.4
OS reference	48	45.4	53.3
Kraft	-	42.7	56.7

¹Assuming 27% lignin in spruce wood.

9. Lignin structures

Figure S38. Identified structures in the lignin fractions.

10. DFT: Molecular volume

Protected (preserved) Organosolv lignin

Organosolv reference lignin Gas phase 4-5 distance=3.392 Å Volume=1106.35 Å Solvated in water 4-5 distance=3 435 Volume=1109.72 Å Gas phase Gas phase Alternative Kraft Lignin 1-2 distance=4.983Å 1-5 interring distance=3.521Å 2-3 distance=6.742Å 2-3 interring distance=3.454Å Volume=818.05Å³ (Volume=976.46 Å³) Solvated in water Solvated in acetone 1-5 interring distance=3.624Å 1-2 distance=4.145Å 2-3 interring distance=3.730Å Volume=821.24Å³ 2-3 distance=6.830Å Volume=942.50 Å3 Solvated in water DН Solvated in acetone 1-5 interring distance=3.632Å 1-2 distance=5.056Å 2-3 interring distance=3.685Å Volume=821.40Å³ 2-3 distance=6.759Å

Figure S39. Molecular volume in different systems.

Volume=981.81 Å3