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General information

2-methoxyphenol (guaiacol, 299%), 4-Hydroxy-3-methoxybenzyl alcohol (vanillyl alcohol, 98%),
sulfuric acid (H,SO,4, 99.99%), potassium carbonate (K,CO;, >99%) potassium iodide (KI, 299%), 2-
bromopropionamide (99%), hydroxide potassium (KOH, 285%), triethylamine (299.5%), di-tert-butyl
dicarbonate (Boc,0, 99%), 4-(dimethylamino)pyridine (DMAP, 299%), methylene diphenyl
diisocyanate (MDI, 98 %), 1,3,5-trimethoxybenzene (299%), d-chloroform (CDCl;, 99.5 % D) were
supplied by Sigma-Aldrich (Darmstadt, Germany) and used as received. Velvetol® H500 was kindly
supplied by WeylChem International GmbH (Frankfurt am Main, Germany) and used as received.
Glycerol (299.5%) was purchased by Prolabo (Paris, France) and used as received.

Silica gel plates (GF254, coating thickness 0.2-0.25 mm) were employed for thin-layer chromatography
(TLC), and 200-300 mesh silica gel was used for flash column chromatography. *H and 3C NMR spectra
were recorded on a Bruker Advance™ 400 spectrometer at ambient temperature with CDCl; as
solvent. Chemical shifts were reported in ppm with tetramethylsilane as an internal standard. The
Fourier transform infrared spectra were recorded using a ThermoScientific Nicolet 210 FT-IR
spectrometer equipped with a Specac golden gate attenuated total reflection (ATR) heating cell. The
characteristic IR spectra were plotted in transmittance mode, then we observed the disappearance of
the isocyanate peak. The conversion degree of curing reaction is given by U = (A0-At)/AO0 where AO is
the peak area of C=0 streching (OCN function) at t0 and At is the peak area of C=0 streching (OCN
function) over the time. High resolution mass spectrometry (HRMS) data were obtained on a LC-TOF
mass spectrometer (micrOTOF-Q) using electrospray ionization (ESI) in positive or negative mode.
GCMS were analyzed by electrospray ionization (ESI) using Chimadzu QP2010SE mass spectrometer.
Thermogravimetric analyses (TGA) of the cured polyurethanes were performed on a Netzsch STA 449
F1 TGA. The protective gas used was nitrogen with a 20 mL:-min~ flow. Approximately 10 mg of sample
was placed in an alumina crucible and heated from room temperature to 800 °C with a 10 °C-:min?
heating ramp. Differential scanning calorimetry (DSC) analyses were carried out using a Netzsch DSC
3500 Sirius calorimeter. Nitrogen was used as the purge gas at 40 mL-min~t. Approximately 10 mg of
sample was placed in pierced aluminum pans. The melting temperatures were recorded between room
temperature and 150°C at 20 °C:min~l. The thermal properties of the thermoset materials were
recorded between -100 and 200 °C at 20 °C:min~! to observe the glass transition temperature. Gelation
times were determined using a ThermoFischer Mars 60 rheometer using plate-plate aluminium
disposable geometry (25 mm diameter, 0.4 mm gap, 0.2 mL of formulation). Measurements were
performed using a multi-frequency program (0.8 Hz, 3 Hz and 7 Hz) at 90°C with a stress of 3 Pa.

The milling reactions were carried out in a vibratory Retsch Mixer Mill 400 (vbm) operated at up to 30
Hz. The microwave reactions were carried out in an Anton Paar Monowave 300 microwave reactor
using standard 5 mL glass vials.


https://www.sigmaaldrich.com/FR/fr/product/mm/851055

1. Experimental section

1.1 General procedure for the synthesis of bis O-Alkylated bisguaiacol F
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- Thermal procedure

Bisguaiacol F (1 equiv., 1.92 mmol, 5 g), potassium iodide (0.1 equiv., 0,19 mmol, 0.32 g), potassium
carbonate (3 equiv., 5.77 mmol, 7.96 g) and 2-bromopropionamide (2 equiv., 3.84 mmol, 5.80 g) were
taken in a 500 mL round bottomed flask equipped with a magnetic stirrer and a reflux condenser. To
the stirring mixture, 150 mL of acetonitrile was added. Then, the reaction mixture was heated to reflux
for 24 h, cooled to room temperature, filtrated and concentrated under reduced pressure. The crude
product was purified through flash column chromatography on silica gel with dichloromethane-
methanol as eluents. After evaporation of the solvents, the isolated bis O-Alkylated bisguaicol F was
obtained as a white to yellowish powder with a yield of 94%.

- Mechanochemical procedure

A 20 mL stainless steel milling jar was loaded with bisguaiacol F (1 equiv., 0.81 mmol, 0.212 g),
potassium iodide (0.1 equiv., 0,08 mmol, 0.014 g), potassium carbonate (3 equiv., 2.41 mmol, 0.333 g),
2-bromopropionamide (2 equiv., 1.62 mmol, 0.245 g) and one 1 cm stainless steel ball. The reactor
was then sealed and subjected to vibratory milling at 30 Hz for the set amount of time. The reaction
mixture was then dissolved in acetonitrile, filtrated and concentrated under reduced pressure. The
obtained bis O-Alkylated bisguaicol F was obtained as a white to yellowish powder with a full
conversion.

1.2 General procedure for the synthesis of bisguaiacol F diamine (BGA)
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- Thermic procedure

Bis O-Alkylated bisguaiacol F (1 equiv., 12.4 mmol, 5 g) and potassium hydroxide (85% purity, 2.4
equiv., 29.8 mmol, 1.67 g) were taken in a 100 mL round bottomed flask equipped with a magnetic
stirrer. The reaction mixture was dissolved in 50 mL of dry DMSO and heated at 140 °C for 18 h. The
solution was then cooled to room temperature and diluted in water, extracted three times with ethyl
acetate. The combined organic layers were washed one time with sat. brine solution and finally dried



over MgS0,. The crude product was purified through flash column chromatography on silica gel with
cyclohexane/ethyl acetate as eluents containing (0.2%" of triethylamine). After evaporation of the
solvents, the obtained bisguaiacol F diamine was obtained a light brown powder with a yield of 66%.

- Microwave procedure

Bis O-Alkylated bisguaiacol F (1 equiv., 1.24 mmol, 0.500 g), potassium hydroxide (85% purity, 5.2
equiv., 6.46 mmol, 0.380 g) and 5 mL of solvent were added in a microwave reactor consisting in a 10
mL vessel tube, a pressure monitor system and a fiber optic temperature probe. The system was
irradiated under microwave conditions at different temperature and during different periods. Reaction
conversion was monitored by GCMS analysis using 1,3,5-trimethoxybenzene as internal standard.

1.3 General procedure for the synthesis of bisguaiacol F diisocyanate (BGl)

Boc,0 2.2 equiv.
-0 SN DMAP 10 mol% A0 O~
HoN 6 NH, solvent, 20 °C, 2 h OCN ; NCO
A solution of di-tert-butyl dicarbonate (2.2 equiv., 8.52 mmol, 1.86 g), DMAP (0.1 equiv., 0.39 mmaol,
0.047 g) in 10 mL of dry acetonitrile was prepared in a 50 mL round bottomed flask equipped with a

magnetic stirrer. A solution of bisguaiacol F diamine (1 equiv., 3.87 mmol, 1 g) in 10 mL of dry
acetonitrile was then slowly added to the previous solution. The reaction mixture was stirred at room

temperature for 2 h and then concentrated under reduce pressure. The crude product was purified
through flash column chromatography on silica gel with cyclohexane/ethyl acetate as eluents. After
evaporation of the solvents, a highly pure (= 99%) bisguaiacol F diisocyanate was obtained as a white
powder with a yield of 70%.

1.4 General procedure for the synthesis of polyurethane thermosets through a two-step method

As a representative example, 2.40 g of BGI (2.5 equiv., 0.77 mol) was introduced in a 10 mL two necks
round-bottom flask, equipped with a mechanical stirrer. The system was purged with nitrogen for 10
min and then heated up to 90 °C. Afterwards, 1.60 g of Velvetol® H500 (1 equiv., 2.72 mmol) were
added with a syringe driver for one hour. The mixture was mechanically stirred for 4 h at 90 °C. Finally,
2.60 g of the obtained prepolymer was poured into a PP flask, and 0.187 g of glycerol was added. The
mixture was mixed at 2500 rpm for 3 mins in a PP flask with a SpeedMixer™, poured into a silicon
mould, and cured at 90 °C for 24 h in oven.



2. Characterization of the products and the polyurethane materials
2.1 O-bis Alkylated BGF characterizations
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S1. Molecular structure assignment of O-bis Alkylated BGF
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S2. 'H NMR spectrum of O-bis Alkylated BGF (in CDCl3)
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S3. 13C NMR spectrum of O-bis Alkylated BGF (in CDCl;)
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S4. FTIR spectrum of O-bis Alkylated BGF
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S5. (LC)-HRMS of O-bis Alkylated BGF
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2.2 BGF diamine characterizations

Figure S7. Molecular structure assignment of BGF diamine
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S8. *H NMR spectrum of BGF diamine
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S9. 13C NMR spectrum of BGF diamine
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Figure S11. (LC)-HRMS of BGF diamine
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Figure S12. (GC)-MS of BGF diamine
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Figure S13. DSC thermogram of BGF diamine



2.3 BGF diisocyanate characterizations
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Figure S14. Molecular structure assignment of BGF diisocyanate
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Figure S15. *H NMR spectrum of BGF diisocyanate
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Figure S16. 13C NMR spectrum of BGF diisocyanate
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Figure S17. FTIR spectrum of BGF diisocyanate
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Figure S18. (LC)-HRMS of BGF diisocyanate
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Figure S19. (GC)-MS of BGF diisocyanate
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Figure S20. DSC thermogram of BGF diisocyanate



2.4 MDI-based prepolymer characterization
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Figure S21. Molecular structure assignment of MDI-based prepolymer
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Figure S22. 'H NMR spectrum of MDI-based prepolymer
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Figure S23. 3C NMR spectrum of MDI-based prepolymer
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2.5 BGl-based prepolymer characterization
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Figure S25. Molecular structure assignment of BGl-based prepolymer
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Figure S26. *H NMR spectrum of BGl-based prepolymer
Cy
Cr
11(Ce
- I C
g
q
<
I JLUH i
e | " " Al Al “ﬂl.uu‘ L
n bl penpiose Mot | i
1’65 0 1’5 4 '40 1 S | 1pp 1"5 1'2 5 lm) 1;)5 1¢0| 9’5 9' 8’5 8’0 7’0 '5 6’0 5' ‘;5 ‘;O 3'5 3’0 2’5
Chemicql shift H) Jppm

Figure S27. 13C NMR spectrum of BGl-based prepolymer
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2.6 MDI-based cured material characterizations
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Figure S29. FTIR spectrum of MDI-based thermoset
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Figure S30. TGA thermogram of MDI-based thermoset
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Figure S31. DSC thermogram of MDI-based thermoset
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Figure S32. Gelation time determination of MDI-based thermoset at 90°C (f=0.8 Hz, 2.4 Hz, 8 Hz)
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Figure S33. Curing conversion of MDI-based thermoset monitoring by FTIR spectroscopy at 90 °C



2.7 BGl-based cured material characterization
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S34. FTIR spectrum of BGl-based thermoset
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Figure S36. DSC thermogram of BGl-based thermoset
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Figure S37. Gelation time determination of BGl-based thermoset at 90°C (f=0.8 Hz, 2.4 Hz, 8 Hz)
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Figure S38. Curing conversion of BGl-based thermoset monitoring by FTIR spectroscopy at 90 °C



