Supporting Information

 β -ketoenamine-linked covalent organic framework as heterogeneous photocatalyst for synthesis of 2-arylbenzothiazoles by cyclization reaction

Ziqi Liu, Zhicheng Chen, Huixin Tong, Mengmeng Ji and Wenyi Chu*

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080,

P. R. China.

(E-mail: wenyichu@hlju.edu.cn; Fax: +86-451-86609135; Tel: +86-451-86609135)

Contents of Supporting Information

1. Synthesis of 4,4',4''-(1,3,5-triazine-2,4,6-trial) trianiline (TAPT)	S3
Scheme S1. Synthetic route approach to TAPT	S3
Figure S1. ¹ H NMR of 4,4',4"-(1,3,5-triazine-2,4,6-triyl) trianiline (TAPT)	S4
Figure S2. ¹³ C NMR of 4,4',4"-(1,3,5-triazine-2,4,6-triyl) trianiline (TAPT)	S4
2. Synthesis of 2,4,6-trihydroxybenzene-1,3,5-tricarbaldehyde (TP)	S5
Scheme S2. Synthetic route approach to TP	S5
Figure S3. ¹ H NMR of 2,4,6-trihydroxybenzene-1,3,5-tricarbaldehyde (TP)	S6
Figure S4. ¹³ C NMR of 2,4,6-trihydroxybenzene-1,3,5-tricarbaldehyde (TP)	S6
3. The influence of the proportion of ethanol and water for reaction	S7
Table S1 The optimization of reaction solvents.	S7
4. Photocatalytic gram-scale preparation of 2-phenylbenzothiazole	S8
Scheme S3. Gram-scale preparation of 2-phenylbenzothiazole	S8
5. Characterization of TAPT-TP-COF	S9
Figure S5. FT-IR spectra of (a) TP, (b) TAPT, and (c) TAPT-TP-COF	S9
Figure S6. SEM images of TAPT-TP-COF	S9
Figure S7 TEM images of TAPT-TP-COF	S10
Figure S8 Solid-state ¹³ C CP-MAS NMR spectrum of TAPT-TP-COF	S10

7. Data and NMR spectra of the products	S14
6. References	S14
Figure S14. Emission spectrum of TAPT-TP-COF under the 10 W Blue LED	S13
Figure S13. Photoluminescence spectra of TAPT-TP-COF	S13
Figure S12. HOMO spectra (a) and LUMO spectra (b) of TAPT-TP-COF	S12
Figure S11 EIS Nyquist plots of TAPT-TP-COF under light and dark.	S12
Figure S10 Possible catalytic cycles for the cyclization by TAPT-TP-COF via en transfer.	ergy S11
Figure S9 TGA spectrum of TAPT-TP-COF	S11

1. Synthesis of 4,4',4''-(1,3,5-triazine-2,4,6-trial) trianiline (TAPT).

Scheme S1. Synthetic route approach to TAPT

TAPT was synthesized according to the procedures described in the literature. ¹ *P*-aminophenonitrile (1.18 g, 10 mmol) was added into the round bottom flask under the N₂ atmosphere. CH₂Cl₂ (25 mL) as the solution was slowly dripped and followed with CF₃SO₃H (4 mL, 45 mmol) under an ice bath and then stirred for 12 h. After the reaction was completed, the yellow oil layer was separated and diluted by water (20mL) and the pH was adjusted to 9-11 with 0.5 M NaOH solution to precipitate the yellow solid under magneton agitation. The solid was repeatedly washed with collected water to get a yellow powder.

The pure product was obtained as a yellow solid (0.97 g, 82%); m.p. 381-382°C. ¹H NMR (400 MHz, DMSO) δ 8.35 (d, *J* = 8.4 Hz, 6H), 6.69 (d, *J* = 8.4 Hz, 6H), 5.90 (s, 6H) (Figure S1). ¹³C NMR (100 MHz, DMSO) δ 170.0, 153.4, 130.6, 123.4, 113.6 (Figure S2). HRMS: C₂₁H₁₈N₆ for [M+H]⁺: 355.1671. Found: 355.1665. Anal.calcd for: C₂₁H₁₈N₆: C 71.17, H 5.12, N 23.71; Found: C 71.18, H 5.12, N 23.70. FT-IR (KBr disc): v= 3454, 3325, 3210, 1633, 1606, 1577, 1498, 1433, 1367, 1309, 1296, 1180, 1149, 1130, 813 cm⁻¹

Figure S1. ¹H NMR of 4,4',4"-(1,3,5-triazine-2,4,6-triyl) trianiline (TAPT)

Figure S2. ¹³C NMR of 4,4',4"-(1,3,5-triazine-2,4,6-triyl) trianiline (TAPT)

2. Synthesis of 2,4,6-trihydroxybenzene-1,3,5-tricarbaldehyde (TP)

Scheme S2. Synthetic route approach to TP

TP was synthesized according to the literature.² 1,3,5-trihydroxybenzene (3g, 23.8 mmol) and hexamethylenetetramine (8.34 g, 59.5 mmol) were added into the round bottom flask under the N₂ atmosphere. The solution was heated to 100°C and stirred for 2.5 h under the trifluoroacetic acid (47 mL) as a solution. Then, HCl (50 mL) was added and the mixture was kept at 100°C for another 1h. After cooling to room temperature, the filtrate was extracted with CH_2Cl_2 (3×100 mL) and the oil layer was separated and dried with anhydrous Na₂SO₄. The crude product was obtained by rotary evaporation of the solvent. The final product was collected in the form of light pink powder after recrystallization with hot ethanol.

The pure product was obtained as a white solid (540 mg, 18%); m.p. 199-200°C. ¹H NMR (400 MHz, CDCl₃) δ 14.11 (s, 3H), 10.15 (s, 3H) (Figure S3). ¹³C NMR (100 MHz, CDCl₃) δ 192.1, 173.6, 102.9, 77.4, 77.0, 76.7 (Figure S4). HRMS: C₉H₆O₆ for [M+H]⁺: 211.0243. Found: 211.0231. Anal.calcd for: C₉H₆O₆: C 51.44, H 2.88; Found: C 51.43, H 2.89. FT-IR (KBr disc): v= 2889, 1643, 1593, 1433, 1390, 1253, 1193, 968, 873, 817, 785, 607 cm⁻¹

Figure S3. ¹H NMR of 2,4,6-trihydroxybenzene-1,3,5-tricarbaldehyde (TP)

Figure S4. ¹³C NMR of 2,4,6-trihydroxybenzene-1,3,5-tricarbaldehyde (TP)

3. The influence of the proportion of ethanol and water for reaction

Entry	Photocatalyst	Solvent	Base	Yield
	(wt%)	(V:V)	(equiv.)	(%)
1	TAPT-TP-COF (5)	EtOH: $H_2O(1:1)$	K ₂ CO ₃	79
2	TAPT-TP-COF (5)	EtOH: $H_2O(1:2)$	K_2CO_3	63
3	TAPT-TP-COF (5)	EtOH: $H_2O(1:3)$	K ₂ CO ₃	42
4	TAPT-TP-COF (5)	EtOH:H ₂ O (1:4)	K ₂ CO ₃	25
5	TAPT-TP-COF (5)	H_2O	K ₂ CO ₃	trace
6	TAPT-TP-COF (5)	EtOH:H ₂ O (2:1)	K ₂ CO ₃	68
7	TAPT-TP-COF (5)	EtOH:H ₂ O (3:1)	K ₂ CO ₃	57
8	TAPT-TP-COF (5)	EtOH: $H_2O(4:1)$	K ₂ CO ₃	43
9	TAPT-TP-COF (5)	EtOH	K ₂ CO ₃	34

Table S1 The optimization of reaction solvents.

Firstly, N-phenylbenzothioamide was chosen as the substrate by using TAPT-TP-COF as the photocatalyst and K₂CO₃ as the base in mixed solvents of EtOH/ H₂O (V: V= 1:1) under the irradiation of 10 W blue LED at room temperature for 10 hours. The yield of 2-phenylbenzothiazole was 79% (entry 1). Next, the proportion of water in the mixed solvent was gradually increased. As shown in entries 2-4, the yield of **2a** gradually decreased from 79% to 25%. When the water was used as the reaction solvent, the yield of the product decreased significantly (entry 5). From the experimental results, it can be seen that the reason for the gradually decreasing yield may be due to the increasing proportion of H₂O in the mixed solvent was gradually increased, and the results were shown in entries 6-8. When the ratios of EtOH/ H₂O were V: V= 2:1, 3:1, 4:1, the yields of **2a** were 68%, 57%, 43%, respectively. A yield of 34% was obtained when anhydrous EtOH was selected as the solubility of the base

due to the increasing proportion of EtOH. Therefore, based on the above experiments results, $EtOH/H_2O$ (V: V= 1:1) was selected as the solvent.

$\begin{array}{c|c} & S & TATP-TP-COF \\ & NaHCO_3 & \\ \hline & & EtOH:H_2O=1:1 \\ 1.50 \text{ g} & Blue \text{ LED, rt, 10h} & 1.41g (95\%) \end{array}$

4. Photocatalytic gram-scale preparation of 2-phenylbenzothiazole

Scheme S3. Gram-scale preparation of 2-phenylbenzothiazole

To an ovendried 250 mL round bottomed flask containing a stirring bar, Narylbenzothioamide (1.50 g, 0.7 mmol, 1.0 eq), TAPT-TP-COF (75 mg, wt%), NaHCO₃ (1.18 g, 2.0 eq) were added followed by 50 mL EtOH: H₂O (V:V=1:1,). The reaction was kept stirring at room temperature for 10 h under the irradiation of 10 W blue LED (monitored by TLC). After the reaction was completed, the reaction solution was filtered. Then the filtrate was concentrated under reduced pressure to obtain the crude product. The crude product was purified by column chromatography on silica gel with ethyl acetate: petroleum ether = 1:4 as the eluent. 1.41 g of the final product 2-phenylbenzothiazole was obtained with the yield of 95% by concentrated under reduced pressure.

5. Characterization of TAPT-TP-COF

Figure S5. FT-IR spectra of (a) TP, (b) TAPT, and (c) TAPT-TP-COF

Figure S6. SEM images of TAPT-TP-COF

Figure S7 TEM images of TAPT-TP-COF

Figure S8 Solid-state ¹³C CP-MAS NMR spectrum of TAPT-TP-COF

Figure S9 TGA spectrum of TAPT-TP-COF

Figure S10 Possible catalytic cycles for the cyclization by TAPT-TP-COF via energy transfer.

Figure S11 EIS Nyquist plots of TAPT-TP-COF under light and dark.

Figure S12. HOMO spectra (a) and LUMO spectra (b) of TAPT-TP-COF

Figure S13. Photoluminescence spectra of TAPT-TP-COF

Figure S14. Emission spectrum of TAPT-TP-COF under the 10 W Blue LED

6. References

- S. Zhang, Y. Zheng, H. An, B. Aguila, C.-X. Yang, Y. Dong, W. Xie, P. Cheng, Z. Zhang, Y. Chen and S. Ma, *Angewandte Chemie International Edition*, 2018, 57, 16754–16759.
- J. H. Chong, M. Sauer, B. O. Patrick and M. J. MacLachlan, Org. Lett., 2003, 5, 3823–3826.

7. Data and NMR spectra of the products

2-phenylbenzo [d]thiazole (2a):

The pure product was obtained as a white solid (49 mg, 98%); m.p. 113-114°C. ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 8.07 (m, 3H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.50 (dd, *J* = 9.2, 5.5 Hz, 4H), 7.38 (t, *J* = 7.6 Hz, 1H) (Figure S15). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 154.2, 135.1, 133.7, 131.0, 129.1, 127.6, 126.4, 125.2, 123.3, 121.7 (Figure S16). HRMS: C₁₃H₉NS for [M+H]⁺: 212.0534. Found: 212.0531. Anal.calcd for: C₁₃H₉NS: C 73.90, H 4.29, N 6.63, S 15.17; Found: C 73.89, H 4.30, N 6.62, S 15.18. FT-IR (KBr disc): v= 1638.2, 1550, 1473.6, 1435, 1311, 1226, 1157, 1072, 964, 763 cm⁻¹

2-(2-methoxyphenyl) benzo[d]thiazole (2b):

The pure product was obtained as a white solid (41.5 mg, 83%); m.p. 104-105°C. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (dd, J = 7.8, 1.5 Hz, 1H), 8.15 (d, J = 8.2 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.60 – 7.47 (m, 1H), 7.40 (dddd, J = 8.8, 8.0, 7.5, 1.3 Hz, 2H), 7.14 (t, J = 7.6 Hz, 1H), 7.01 (d, J = 8.3 Hz, 1H), 3.99 (s, 3H) (Figure S17). ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 157.3, 152.2, 136.2, 131.8, 129.6, 126.0, 124.6, 122.8, 122.3, 121.3, 121.2, 111.7, 55.7 (Figure S18). HRMS: C₁₄H₁₁NOS for [M+H]⁺: 242.0640. Found: 242.0637. Anal.calcd for: C₁₄H₁₁NOS C 69.68, H 4.59, N 5.80, S 13.29; Found: C 69.66, H 4.60, N 5.81, S 13.30. FT-IR (KBr disc): v= 2850, 1589, 1496, 1458, 1427, 1288.5, 1249, 1111, 1010, 964.4, 756.1 cm⁻¹

2-(2-chlorophenyl) benzo[d]thiazole (2c):

The pure product was obtained as a white solid (35.5 mg, 71%); m.p. 83-85°C. ¹H NMR (400 MHz, CDCl₃) δ 8.26 – 8.19 (m, 1H), 8.15 (d, *J* = 8.1 Hz, 1H), 7.94 (d, *J* = 7.8 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.46 – 7.37 (m, 3H) (Figure S19). ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 152.5, 136.1, 132.7, 132.3, 131.8, 131.2, 130.8, 127.1, 126.3, 125.5, 123.5, 121.4 (Figure S20). HRMS: C₁₃H₈ClNS for [M+H]⁺: 246.0144. Found: 246.0138. Anal.calcd for: C₁₃H₈ClNS: C 63.54, H 3.28, Cl 14.43, N 5.70, S 13.05; Found: C 63.55, H 3.27, Cl 14.44, N 5.70, S 13.04; FT-IR (KBr disc): v=1558, 1481, 1427, 1311, 1265, 1219, 1157, 1056, 964, 756 cm⁻¹

2-(*m*-tolyl) benzo[d]thiazole (2d):

The pure product was obtained as a white solid (43.5 mg, 87%); m.p. 65-67°C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.2 Hz, 1H), 7.96 (s, 1H), 7.88 (d, J = 7.8Hz, 2H), 7.49 (t, J = 7.6 Hz, 1H), 7.37 (t, J = 7.6 Hz, 2H), 7.30 (d, J = 7.5 Hz, 1H), 2.45 (s, 3H) (Figure S21). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 154.2, 138.9, 135.1, 133.6, 131.8, 128.9, 128.0, 126.3, 125.2, 124.9, 123.2, 121.6, 21.4 (Figure S22). HRMS: C₁₄H₁₁NS for [M+H]⁺: 226.0690. Found: 226.0687. Anal.calcd for: C₁₄H₁₁NS: C 74.63, H 4.92, N 6.22, S 14.23; Found: C 74.62, H 4.93, N 6.23, S 14.22. FT-IR (KBr disc): v=2916, 1612, 1589, 1481, 1427, 1311, 1234, 1180, 1087, 979, 756.1 cm⁻¹

2-(3-bromophenyl) benzo[d]thiazole (2e):

The pure product was obtained as a white solid (41 mg, 82%); m.p. 84-86°C. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 8.08 (d, J = 8.2 Hz, 1H), 7.98 (d, J = 7.8 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.38 (dt, J = 21.4, 7.8 Hz, 2H) (Figure S23). ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 154.0, 135.5, 135.1, 133.8, 130.5, 130.3, 126.6, 126.2, 125.6, 123.5, 123.2, 121.7 (Figure S24). HRMS: C₁₃H₈BrNS for [M+H]⁺: 289.9639. Found: 289.9641. Anal.calcd for: C₁₃H₈BrNS: C 53.81, H 2.78, Br 27.54, N 4.83, S 11.05; Found: C 53.82, H 2.77, Br 27.53, N 4.82, S 11.07; FT-IR (KBr disc): v= 1596, 1491, 1455, 1315, 1226, 1097, 956, 724, 716 cm⁻¹

2-(3-chlorophenyl) benzo[d]thiazole (2f):

The pure product was obtained as a white solid (40 mg, 80%); m.p.96-97°C. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 8.08 (d, J = 8.2 Hz, 1H), 7.93 (d, J = 7.4 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.51 (t, J = 7.3 Hz, 1H), 7.48 – 7.31 (m, 3H) (Figure S25). ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 154.0, 135.3, 135.2, 135.1, 130.9, 130.3, 127.4, 126.6, 125.7, 125.6, 123.5, 121.7 (Figure S26). HRMS: C₁₃H₈ClNS for [M+H]⁺: 246.0144. Found: 246.0141. Anal.calcd for: C₁₃H₈ClNS: C 63.54, H 3.28, Cl 14.43, N 5.70, S 13.05; Found: C 63.53, H 3.27, Cl 14.44, N 5.70, S 13.06. FT-IR (KBr disc): v= 1562, 1457, 1410, 1313, 1228, 1173, 1077, 975, 783 cm⁻¹

2-(*p*-tolyl) benzo[d]thiazole (2g):

The pure product was obtained as a white solid (45 mg, 90%); m.p.84-85°C. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.2 Hz, 1H), 7.99 (d, J = 8.1 Hz, 2H), 7.89 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 7.4 Hz, 1H), 7.37 (t, J = 7.6 Hz, 1H), 7.30 (d, J = 8.2 Hz, 2H), 2.43 (s, 3H) (Figure S27). ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 154.2, 141.4, 135.0, 131.0, 129.7, 127.5, 126.3, 125.0, 123.1, 121.6, 21.6 (Figure S28). HRMS: C₁₄H₁₁NS for [M+H]⁺: 226.0690. Found: 226.0685. Anal.calcd for: C₁₄H₁₁NS: C 74.63, H 4.92, N 6.22, S 14.23; Found: C 74.63, H 4.91, N 6.21, S 14.25. FT-IR (KBr disc): v= 2954, 1566, 1519, 1481, 1427, 1311, 1288, 1249, 1172, 956, 756 cm⁻¹

2-(4-(tert-butyl) phenyl) benzo[d]thiazole (2h):

The pure product was obtained as a white solid (46 mg, 92%); m.p.107-108°C. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.1 Hz, 1H), 8.03 (d, *J* = 8.4 Hz, 2H), 7.90 (d, *J* = 7.9 Hz, 1H), 7.58 – 7.44 (m, 3H), 7.37 (t, *J* = 7.6 Hz, 1H), 1.38 (s, 9H) (Figure **S29**). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 154.6, 154.2, 135.0, 130.9, 127.4, 126.2, 126.0, 125.0, 123.1, 121.6, 35.0, 31.2 (Figure S30). HRMS: C₁₇H₁₇NS for [M+H]⁺: 268.1160. Found: 268.1156. Anal.calcd for: C₁₇H₁₇NS: C 76.36, H 6.41, N 5.24, S 11.99; Found: C 76.37, H 6.40, N 5.25, S 11.98. FT-IR (KBr disc): v= 2956, 1504, 1473, 1427, 1311, 1219, 1157, 1111, 1072, 964, 763 cm⁻¹

2-(4-chlorophenyl)benzo[d]thiazole (2i):

The pure product was obtained as a pale solid (41.5 mg, 83%); m.p.113-114°C. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.3 Hz, 1H), 8.01 (d, J = 8.5 Hz, 2H), 7.89 (d, J = 8.2 Hz, 1H), 7.52 – 7.44 (m, 3H), 7.39 (t, J = 7.4 Hz, 1H) (Figure S31). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 154.1, 137.0, 135.1, 132.1, 129.3, 128.7, 126.5, 125.4, 123.3, 121.7 (Figure S32). HRMS: C₁₃H₈ClNS for [M+H]⁺: 246.0144. Found: 246.0142. Anal.calcd for: C₁₃H₈ClNS: C 63.54, H 3.28, Cl 14.43, N 5.70, S 13.05; Found: C 63.52, H 3.29, Cl 14.43, N 5.70, S 13.06. FT-IR (KBr disc): v= 1589, 1507, 1473, 1431, 1315, 1249, 1111, 1086, 964, 754 cm⁻¹

2-(4-bromophenyl) benzo[d]thiazole (2j):

The pure product was obtained as a white solid (42.5 mg, 85%); m.p. 131-132°C. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.1 Hz, 1H), 7.95 (d, *J* = 8.5 Hz, 2H), 7.89 (d, *J* = 7.9 Hz, 1H), 7.61 (d, *J* = 8.5 Hz, 2H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.2 Hz, 1H) **(Figure S33)**. ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 154.1, 135.1, 132.6, 132.2, 128.9, 126.5, 125.5, 125.4, 123.3, 121.7 **(Figure S34)**. HRMS: C₁₃H₈BrNS for [M+H]⁺: 289.9639. Found: 289.9631. Anal.calcd for: C₁₃H₈BrNS: C 53.81, H 2.78, Br 27.54, N 4.83, S 11.05; Found: C 53.80, H 2.77, Br 27.55, N 4.83, S 11.06. FT-IR (KBr disc): v= 1581, 1504, 1473, 1427, 1396, 1311, 1226, 1064, 1010, 964, 825, 756, 717 cm⁻¹

2-(4-nitrophenyl) benzo[d]thiazole (2k):

The pure product was obtained as a yellow solid (37 mg, 74%); m.p.227-229°C.¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 7.7 Hz, 2H), 8.27 (d, J = 7.3 Hz, 2H), 8.13 (d, J = 7.5 Hz, 1H), 7.96 (d, J = 7.2 Hz, 1H), 7.56 (t, J = 6.8 Hz, 1H), 7.47 (t, J = 6.7 Hz, 1H) (Figure S35). ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 154.1, 149.1, 139.1, 135.5, 128.3, 127.0, 126.3, 124.3, 123.9, 121.9 (Figure S36). HRMS: C₁₃H₈N₂O₂S for [M+H]⁺: 257.0385. Found: 257.0381. Anal.calcd for: C₁₃H₈N₂O₂S: C 60.93, H 3.15, N 10.93, S 12.51; Found: C 60.92, H 3.16, N 10.91, S 12.52. FT-IR (KBr disc): 1597, 1519, 1473, 1342, 1311, 1219, 1103, 1103, 972, 763 cm⁻¹

6-methyl-2-phenylbenzo[d]thiazole (2l):

The pure product was obtained as a white solid (44 mg, 88%); m.p. 126-127°C. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (dd, J = 6.6, 2.8 Hz, 2H), 7.96 (d, J = 8.3 Hz, 1H), 7.69 (s, 1H), 7.49 (dd, J = 4.9, 1.6 Hz, 3H), 7.31 (d, J = 8.3 Hz, 1H), 2.50 (s, 3H) (Figure S37). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 152.3, 135.4, 135.2, 133.8, 130.8, 129.0, 127.9, 127.4, 122.7, 121.4, 21.6 (Figure S38). HRMS: C₁₄H₁₁NS for [M+H]⁺: 226.0690. Found: 226.0684. Anal.calcd for: C₁₄H₁₁NS: C 74.63, H 4.92, N 6.22, S 14.23; Found: C 74.64, H 4.91, N 6.21, S 14.24. FT-IR (KBr disc): v= 2916, 1604, 1508, 1481, 1427, 1311, 1249, 1226, 1172, 956, 756 cm⁻¹

6-methoxy-2-phenylbenzo[d]thiazole (2m):

The pure product was obtained as a white solid (47 mg, 94%); m.p. 116-117°C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.0 Hz, 2H), 7.96 (d, *J* = 8.9 Hz, 1H), 7.47 (d, *J* = 5.2 Hz, 3H), 7.35 (d, *J* = 1.8 Hz, 1H), 7.09 (dd, *J* = 8.8, 1.8 Hz, 1H), 3.89 (s, 3H) (Figure S39). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 157.8, 148.7, 136.4, 133.8, 130.6, 129.0, 127.3, 123.7, 115.7, 104.2, 55.8 (Figure S40). HRMS: C₁₄H₁₁NOS for [M+H]⁺: 242.0640. Found: 242.0631. Anal.calcd for: C₁₄H₁₁NOS: C 69.68, H 4.59, N 5.80, S 13.29; Found: C 69.67, H 4.60, N 5.81, S 13.28. FT-IR (KBr disc): v= 2967, 1597, 1550, 1458, 1427, 1265, 1219, 1118, 1026, 964, 756.1 cm⁻¹

6-(tert-butyl)-2-phenylbenzo[d]thiazole (2n):

The pure product was obtained as a white solid (45.5 mg, 91%); m.p.114-116°C.

¹H NMR (400 MHz, CDCl₃) δ 8.10 (dd, J = 6.5, 3.1 Hz, 2H), 8.02 (d, J = 8.6 Hz, 1H), 7.91 (d, J = 1.6 Hz, 1H), 7.57 (dd, J = 8.6, 1.8 Hz, 1H), 7.50 (dd, J = 5.0, 1.7 Hz, 3H), 1.43 (s, 9H) (Figure S41). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 152.1, 148.8, 135.1, 133.8, 130.8, 129.0, 127.5, 124.6, 122.5, 117.7, 35.1, 31.6 (Figure S42). HRMS: C₁₇H₁₇NS for [M+H]⁺: 268.1160. Found: 268.1157. Anal.calcd for: C₁₇H₁₇NS: C 76.36, H 6.41, N 5.24, S 11.99; Found: C 76.37, H 6.40, N 5.24, S 11.99. FT-IR (KBr disc): v= 2936, 1597, 1512, 1473, 1396, 1311, 1226, 1111, 1026, 964, 756 cm⁻¹

6-butyl-2-phenylbenzo[d]thiazole (20):

The pure product was obtained as a white solid (44.5 mg, 89%); m.p. 62-64°C.¹H NMR (400 MHz, CDCl₃) δ 8.08 (dd, *J* = 6.5, 3.1 Hz, 2H), 7.98 (d, *J* = 8.3 Hz, 1H), 7.70 (s, 1H), 7.49 (dd, *J* = 5.0, 1.7 Hz, 3H), 7.32 (dd, *J* = 8.4, 1.4 Hz, 1H), 2.84 – 2.67 (m, 2H), 1.68 (dt, *J* = 15.3, 7.6 Hz, 2H), 1.40 (dq, *J* = 14.6, 7.3 Hz, 2H), 0.96 (t, *J* = 7.3 Hz, 3H) (Figure S43). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 152.4, 140.5, 135.2, 133.8, 130.8, 129.0, 127.5, 127.4, 122.8, 120.8, 35.7, 33.8, 22.4, 14.0 (Figure S44). HRMS: C₁₇H₁₇NS for [M+H]⁺: 268.1160. Found: 268.1154. Anal.calcd for: C₁₇H₁₇NS: C 76.36, H 6.41, N 5.24, S 11.99; Found: C 76.35, H 6.42, N 5.23, S 12.00. FT-IR (KBr disc): v= 2953, 2916, 1597, 1512, 1450, 1319, 1257, 1226, 1095, 1026, 972, 763 cm⁻¹

6-fluoro-2-phenylbenzo[d]thiazole (2p):

The pure product was obtained as a white solid (39 mg, 78%); m.p.134-135°C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 3.9 Hz, 2H), 8.01 (dd, J = 7.9, 4.3Hz, 1H), 7.62 – 7.52 (dd, 1H),7.49 (d, J = 2.2 Hz, 1H), 7.19 (m, 1H) (Figure S45). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 160.5 (d, J = 245.6 Hz), 150.8, 136.0 (d, J = 11.3 Hz), 133.5, 131.2, 129.3, 127.6, 124.1 (d, J = 9.2 Hz), 114.9 (d, J = 24.6 Hz), 107.8 (d, J = 26.7 Hz) (Figure S46). ¹⁹F NMR (376 MHz, CDCl₃) δ -39.2 (Figure S47). HRMS: C₁₃H₈FNS for [M+H]⁺: 230.0440. Found: 230.0435. Anal.calcd for: C₁₃H₈FNS: C 68.10, H 3.52, F 8.29, N 6.11, S 13.98; Found: C 68.09, H 3.52, F 8.30, N 6.12, S 13.97. FT-IR (KBr disc): v= 1561, 1512, 1492, 1454, 1447, 1249, 1196, 959, 756 cm⁻¹

6-chloro-2-phenylbenzo[d]thiazole (2q):

The pure product was obtained as a white solid (40.5 mg, 81%); m.p. 156-157°C. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, J = 6.7, 2.9 Hz, 2H), 7.97 (d, J = 8.7 Hz, 1H), 7.87 (d, J = 1.9 Hz, 1H), 7.55 – 7.48 (m, 3H), 7.45 (dd, J = 8.7, 2.0 Hz, 1H) (Figure **S48**). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 152.7, 136.2, 133.2, 131.3, 131.1, 129.1, 127.6, 127.2, 124.0, 121.3 (Figure S49). HRMS: C₁₃H₈ClNS for [M+H]⁺: 246.0144. Found: 246.0148. Anal.calcd for: C₁₃H₈ClNS: C 63.54, H 3.28, Cl 14.43, N 5.70, S 13.05; Found: C 63.55, H 3.29, Cl 14.42, N 5.69, S 13.05. FT-IR (KBr disc): v= 1581, 1543, 1512, 1473, 1435, 1303, 1219, 1103, 964, 756 cm⁻¹

6-bromo-2-phenylbenzo[d]thiazole (2r):

The pure product was obtained as a white solid (42.5 mg, 85%); m.p. 156-157°C. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, J = 6.5, 2.8 Hz, 2H), 8.03 (d, J = 1.7 Hz, 1H), 7.91 (d, J = 8.7 Hz, 1H), 7.59 (dd, J = 8.7, 1.7 Hz, 1H), 7.54 – 7.45 (m, 3H) (Figure **S50**). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 153.0, 136.7, 133.2, 131.3, 129.9, 129.1, 127.6, 124.3, 124.2, 118.8 (Figure S51). HRMS: C₁₃H₈BrNS for [M+H]⁺: 289.9639. Found: 289.9633. Anal.calcd for: C₁₃H₈BrNS: C 53.81, H 2.78, Br 27.54, N 4.83, S 11.05; Found: C 53.80, H 2.79, Br 27.55, N 4.83, S 11.05. FT-IR (KBr disc): v= 1581, 1535, 1512, 1473, 1435, 1303, 1226, 1087, 964, 756.1 cm⁻¹ 6-nitro-2-phenylbenzo[d]thiazole (2s):

The pure product was obtained as a yellow solid (36 mg, 72%); m.p. 191-192°C. ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, *J* = 2.1 Hz, 1H), 8.36 (dd, *J* = 9.0, 2.2 Hz, 1H), 8.19 – 8.07 (m, 3H), 7.63 – 7.48 (m, 3H) (Figure S52). ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 157.9, 144.9, 135.3, 132.7, 132.3, 129.3, 128.0, 123.3, 121.9, 118.3 (Figure S53). HRMS: C₁₃H₈N₂O₂S for [M+H]⁺: 257.0385. Found: 257.0377. Anal.calcd for: C₁₃H₈N₂O₂S: C 60.93, H 3.15, N 10.93, S 12.51; Found: C 60.94, H 3.14, N 10.93, S 12.50. FT-IR (KBr disc): v= 1589, 1566, 1512, 1442, 1334, 1219, 1126, 1041, 964, 756 cm⁻¹

2-phenyl-6-(trifluoromethyl) benzo[d]thiazole (2t):

The pure product was obtained as a white solid (39 mg, 78%); m.p. 152-153°C. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 8.14 (d, *J* = 8.6 Hz, 1H), 8.10 (dd, *J* = 7.3, 1.9 Hz, 2H), 7.73 (d, *J* = 8.5 Hz, 1H), 7.52 (d, *J* = 7.0 Hz, 3H) (Figure S54). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 156.1, 135.1, 133.0, 131.7, 129.2, 127.8, 127.3 (q, *J* = 32.5 Hz), 124.2 (q, *J* = 270.1 Hz), 123.5, 123.4 (q, *J* = 3.4 Hz), 119.3 (q, *J* = 4.2 Hz) (Figure S55). ¹⁹F NMR (376 MHz, CDCl₃) δ 14.7 (Figure S56). HRMS: C₁₄H₈F₃NS for [M+H]⁺: 280.0408. Found: 280.0402. Anal.calcd for: C₁₄H₈F₃NS: C 60.21, H 2.89, F 20.41, N 5.02, S 11.48; Found: C 60.22, H 2.90, F 20.40, N 5.01, S 11.47. FT-IR (KBr disc): v= 1512, 1481, 1410, 1319, 1249, 1111, 1087, 1049, 964, 763 cm⁻¹

5-methyl-2-phenylbenzo[d]thiazole (2u):

The pure product was obtained as a white solid (44.5 mg, 89%); m.p. 145-146°C.

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 3.9 Hz, 2H), 7.87 (s, 1H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.51 – 7.42 (m, 3H), 7.19 (d, *J* = 8.2 Hz, 1H), 2.5 (s, 3H) (Figure S57). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 154.5, 136.4, 133.6, 131.9, 130.8, 128.9, 127.4, 126.7, 123.1, 120.9, 21.4 (Figure S58). HRMS: C₁₄H₁₁NS for [M+H]⁺: 226.0690. Found: 226.0687. Anal.calcd for: C₁₄H₁₁NS: C 74.63, H 4.92, N 6.22, S 14.23; Found: C 74.64, H 4.92, N 6.21, S 14.23. FT-IR (KBr disc): v = 2923, 1657, 1513, 1457, 1312, 1250, 1113, 1049, 964, 765, 682cm⁻¹

4-methyl-2-phenylbenzo[d]thiazole (2v):

The pure product was obtained as a white solid (41.5 mg, 83%); m.p.139-140°C. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (dd, J = 6.5, 2.9 Hz, 2H), 7.78 – 7.70 (m, 1H), 7.49 (dd, J = 5.0, 1.6 Hz, 3H), 7.32 – 7.27 (m, 2H), 2.82 (s, 3H) (Figure S59). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 153.5, 135.0, 134.0, 133.4, 130.7, 129.0, 127.5, 126.8, 125.1, 119.0, 18.4 (Figure S60). HRMS: C₁₄H₁₁NS for [M+H]⁺: 226.0690. Found: 226.0685. Anal.calcd for: C₁₄H₁₁NS: C 74.63, H 4.92, N 6.22, S 14.23; Found: C 74.64, H 4.91, N 6.23, S 14.22. FT-IR (KBr disc): v = 3076, 1480, 1430, 1260, 1222, 1073, 969, 903, 875, 804 760 cm⁻¹

5,6-dimethyl-2-phenylbenzo[d]thiazole (2w):

The pure product was obtained as a white solid (46.5 mg, 93%); m.p. 150-151°C. ¹H NMR (400 MHz, CDCl₃) δ 8.19 – 8.01 (m, 2H), 7.87 (s, 1H), 7.65 (s, 1H), 7.58 – 7.41 (m, 3H), 2.41 (d, *J* = 4.8 Hz, 6H) (Figure S61). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 153.0, 135.6, 134.8, 133.9, 132.5, 130.6, 129.0, 127.4, 123.4, 121.5, 20.2, 20.2 (Figure S62). HRMS: C₁₅H₁₃NS for [M+H]⁺: 240.0847. Found: 240.0849. Anal.calcd for: C₁₅H₁₃NS: C 75.28, H 5.48, N 5.85, S 13.40; Found: C 75.27, H 5.49, N 5.86, S 13.38. FT-IR (KBr disc): v= 2926, 1535, 1512, 1442, 1311, 1273, 1226, 1123, 1026, 949, 756 cm⁻¹

2-(naphthalen-1-yl) benzo[d]thiazole (2x):

The pure product was obtained as a white solid (45.5 mg, 91%); m.p. 128-129°C. ¹H NMR (400 MHz, CDCl₃) δ 8.98 (d, *J* = 8.5 Hz, 1H), 8.23 (d, *J* = 8.1 Hz, 1H), 7.96 (DDD, *J* = 9.7, 8.7, 5.0 Hz, 4H), 7.65 (DDD, *J* = 8.5, 6.9, 1.4 Hz, 1H), 7.61 – 7.52 (m, 3H), 7.51 – 7.40 (m, 1H) (Figure S63). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 154.1, 135.4, 134.0, 131.0, 130.8, 130.6, 129.3, 128.4, 127.6, 126.5, 126.2, 125.8, 125.2, 124.9, 123.5, 121.3 (Figure S64). HRMS: C₁₇H₁₁NS for [M+H]⁺: 262.0690. Found: 262.0684. Anal.calcd for: C₁₇H₁₁NS: C 78.13, H 4.24, N 5.36, S 12.27; Found: C 78.12, H 4.24, N 5.36, S 12.28. FT-IR (KBr disc): v= 1589, 1504, 1427, 1334, 1311, 1226, 1172, 1095, 933, 756.1 cm⁻¹

2-(thiophen-2-yl) benzo[d]thiazole (2y):

The pure product was obtained as a white solid (32 mg, 64%); m.p. 99-100°C.¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.1 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.65 (dd, J = 3.7, 0.9 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.48 – 7.42 (m, 1H), 7.40 – 7.33 (m, 1H), 7.18 – 7.08 (m, 1H) (Figure S65). ¹³C NMR (100 MHz, CDCl₃) δ 161.4, 153.7, 137.3, 134.7, 129.3, 128.6, 128.1, 126.5, 125.3, 123.0, 121.5 (Figure S66). HRMS: C₁₁H₇NS₂ for [M+H]⁺: 218.0098, Found: 218.0093. Anal.calcd for: C₁₁H₇NS₂: C 60.80, H 3.25, N 6.45, S 29.51; Found: C 60.81, H 3.25, N 6.44, S 29.50. FT-IR (KBr disc): v= 1535, 1473, 1411, 1311, 1219, 1080, 1049, 902, 848, 756 cm⁻¹

2-(pyridine-2-yl) benzo[d]thiazole (2z):

The pure product was obtained as a white solid (38 mg, 76%); m.p. 133-134°C. ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, *J* = 4.4 Hz, 1H), 8.34 (d, *J* = 7.9 Hz, 1H), 8.08 (d, *J* = 8.1 Hz, 1H), 7.93 (d, *J* = 7.9 Hz, 1H), 7.79 (dd, *J* = 15.4, 1.6 Hz, 1H), 7.57 – 7.43 (m, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.33 (dd, *J* = 6.6, 5.0 Hz, 1H) (Figure S67). ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 154.3, 151.4, 149.6, 137.0, 136.1, 126.3, 125.7, 125.3, 123.6, 122.0, 120.8 (Figure S68). HRMS: C₁₂H₈N₂S for [M+H]⁺: 213.0486, Found: 213.0481. Anal.calcd for: C₁₂H₈N₂S: C 67.90, H 3.80, N 13.20, S 15.10; Found: C 67.91, H 3.79, N 13.19, S 15.11. FT-IR (KBr disc): v= 1581, 1512, 1458, 1427, 1311, 1234, 1157, 1087, 979, 756.1 cm⁻¹

Figure S16. ¹³C NMR of 2-phenylbenzo[d]thiazole (2a)

Figure S17. ¹H NMR of 2-(2-methoxyphenyl) benzo[d]thiazole (2b)

Figure S18. ¹³C NMR of 2-(2-methoxyphenyl) benzo[d]thiazole (2b)

Figure S19. ¹H NMR of 2-(2-chlorophenyl) benzo[d]thiazole (2c)

Figure S20. ¹³C NMR of 2-(2-chlorophenyl) benzo[d]thiazole (2c)

Figure S21. ¹H NMR of 2-(*m*-tolyl) benzo[d]thiazole (2d)

Figure S22. ¹³C NMR of 2-(*m*-tolyl) benzo[d]thiazole (2d)

Figure S23. ¹H NMR of 2-(3-bromophenyl) benzo[d]thiazole (2e)

Figure S24. ¹³C NMR of 2-(3-bromophenyl) benzo[d]thiazole (2e)

Figure S25. ¹H NMR of 2-(3-chlorophenyl) benzo[d]thiazole (2f)

Figure S26. ¹³C NMR of 2-(3-chlorophenyl) benzo[d]thiazole (2f)

Figure S27. ¹H NMR of 2-(*p*-tolyl) benzo[d]thiazole (2g)

Figure S28. ¹³C NMR of 2-(*p*-tolyl) benzo[d]thiazole (2g)

Figure S29. ¹H NMR of 2-(4-(tert-butyl) phenyl) benzo[d]thiazole (2h)

Figure S30. ¹³C NMR of 2-(4-(tert-butyl) phenyl) benzo[d]thiazole (2h)

Figure S31. ¹H NMR of 2-(4-chlorophenyl)benzo[d]thiazole (2i)

Figure S32. ¹³C NMR of 2-(4-chlorophenyl)benzo[d]thiazole (2i)

Figure S33. ¹H NMR of 2-(4-bromophenyl) benzo[d]thiazole (2j)

Figure S34. ¹³C NMR of 2-(4-bromophenyl) benzo[d]thiazole (2j)

Figure S35. ¹H NMR of 2-(4-nitrophenyl) benzo[d]thiazole (2k)

Figure S36. ¹³C NMR of 2-(4-nitrophenyl) benzo[d]thiazole (2k)

Figure S37. ¹H NMR of 6-methyl-2-phenylbenzo[d]thiazole (21)

Figure S38. ¹³C NMR of 6-methyl-2-phenylbenzo[d]thiazole (21)

Figure S39. ¹H NMR of 6-methoxy-2-phenylbenzo[d]thiazole (2m)

Figure S40. ¹³C NMR of 6-methoxy-2-phenylbenzo[d]thiazole (2m)

Figure S41. ¹H NMR of 6-(tert-butyl)-2-phenylbenzo[d]thiazole (2n)

Figure S42. ¹³C NMR of 6-(tert-butyl)-2-phenylbenzo[d]thiazole (2n)

Figure S43. ¹H NMR of 6-butyl-2-phenylbenzo[d]thiazole (20)

Figure S44. ¹³C NMR of 6-butyl-2-phenylbenzo[d]thiazole (20)

Figure S45. ¹H NMR of 6-fluoro-2-phenylbenzo[d]thiazole (2p)

Figure S46. ¹³C NMR of 6-fluoro-2-phenylbenzo[d]thiazole (2p)

Figure S47. ¹⁹F NMR of 6-fluoro-2-phenylbenzo[d]thiazole (2p)

Figure S48. ¹H NMR of 6-chloro-2-phenylbenzo[d]thiazole (2q)

Figure S49. ¹³C NMR of 6-chloro-2-phenylbenzo[d]thiazole (2q)

Figure S50. ¹H NMR of 6-bromo-2-phenylbenzo[d]thiazole (2r)

Figure S51. ¹³C NMR of 6-bromo-2-phenylbenzo[d]thiazole (2r)

Figure S52. ¹H NMR of 6-nitro-2-phenylbenzo[d]thiazole (2s)

Figure S53. ¹³C NMR of 6-nitro-2-phenylbenzo[d]thiazole (2s)

Figure S54. ¹H NMR of 2-phenyl-6-(trifluoromethyl) benzo[d]thiazole (2t)

Figure S55. ¹³C NMR of 2-phenyl-6-(trifluoromethyl) benzo[d]thiazole (2t)

Figure S56. ¹⁹F NMR of 2-phenyl-6-(trifluoromethyl) benzo[d]thiazole (2t)

Figure S57. ¹H NMR of 5-methyl-2-phenylbenzo[d]thiazole (2u)

Figure S58. ¹³C NMR of 5-methyl-2-phenylbenzo[d]thiazole (2u)

Figure S59. ¹H NMR of 4-methyl-2-phenylbenzo[d]thiazole (2v)

Figure S60. ¹³C NMR of 4-methyl-2-phenylbenzo[d]thiazole (2v)

Figure S61. ¹H NMR of 5,6-dimethyl-2-phenylbenzo[d]thiazole (2w)

Figure S62. ¹³C NMR of 5,6-dimethyl-2-phenylbenzo[d]thiazole (2w)

Figure S63. ¹H NMR of 2-(naphthalen-1-yl) benzo[d]thiazole (2x)

Figure S64. ¹³C NMR of 2-(naphthalen-1-yl) benzo[d]thiazole (2x)

Figure S65. ¹H NMR of 2-(thiophen-2-yl) benzo[d]thiazole (2y)

Figure S66. ¹³C NMR of 2-(thiophen-2-yl) benzo[d]thiazole (2y)

Figure S67. ¹H NMR of 2-(pyridine-2-yl) benzo[d]thiazole (2z)

Figure S68. ¹³C NMR of 2-(pyridine-2-yl) benzo[d]thiazole (2z)