Sustainable polar aprotic/poly-deep eutectic solvent systems for highly efficient

dissolution of lignin

Qiaoling Liu,^{a,†} Yang Wang,^{a,†} Jing Bian,^a Ming-Fei Li,^a Jun-Li Ren,^b Xiang Hao,^{a,*}

and Feng Peng^{a,*}

^a Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research

Center of Forestry Biomass Materials and Energy, Beijing Forestry University,

Beijing 100083, China

^b State Key Laboratory of Pulp and Paper Engineering, South China University of

Technology, Guangzhou 510640, China

1.	Table S1. The viscosity and density of PDESs at room temperature. 1			
2.	Fig. S1. The phase-transition temperatures of PDESs.			
3.	Fig. S2. Solubility of lignin in PDESs 1			
4.	Table S2. The lignin solubility in the pure PDESs and polar aprotic solvents at room temperature.2			
5.	Table S3. The viscosity of PDESs with different co-solvents at room temperature.2			
6.	Table S4. Solubility of EHL in the synthesized PDESs with different co-solvents at room			
	temperature. 2			
7.	Table S5. Solubility of LS in the synthesized PDESs with different co-solvents at room			
	temperature. 3			
8.	Table S6. Solubility of OL in the synthesized PDESs with different co-solvents at room			
	temperature. 4			
9.	Fig. S3. 2D HSQC NMR spectra of the three lignin samples, including the side chain regions and			
	the aromatic regions. Main substructures of lignin, including side chain linkages and aromatic			
	units. 5			
10.	Table S7. Assignments of ¹³ C- ¹ H correlated signals in the HSQC spectra of three lignin samples. 5			
11.	Table S8. The Kamlet-Taft empirical parameters of solvent.6			
12.	Table S9. The Kamlet-Taft empirical parameters of the PC/PDESs.a6			
13.	Table S10. The Kamlet-Taft empirical parameters of the NFM/PDESs.ª7			
14.	Table S11. The Kamlet-Taft empirical parameters of the DMI/PDESs.ª8			
15.	Table S12. The Kamlet-Taft empirical parameters of the Cyrene/PDESs.a9			
16.	Fig. S4. The correlation between the LS solubility and the α value of the corresponding solvent			
	(the line represents the solubility of the lignin in PDESs, and the data above the line indicated that			
	lignin was promoted to dissolve by adding co-solvents).			

- 17. Fig. S5. The correlation between the OL solubility and the α value of the corresponding solvent (the line represents the solubility of the lignin in PDESs, and the data above the line indicated that lignin was promoted to dissolve by adding co-solvents). 10
- Fig. S6. The correlation between the EHL solubility and the β value of the corresponding solvent (the line represents the solubility of the lignin in PDESs, and the data above the line indicated that lignin was promoted to dissolve by adding co-solvents).
- Fig. S7. The correlation between the LS solubility and the β value of the corresponding solvent (the line represents the solubility of the lignin in PDESs, and the data above the line indicated that lignin was promoted to dissolve by adding co-solvents).
- 20. Fig. S8. The correlation between the OL solubility and the β value of the corresponding solvent (the line represents the solubility of the lignin in PDESs, and the data above the line indicated that lignin was promoted to dissolve by adding co-solvents). 12
- Fig. S9. The correlation between the EHL solubility and the α value of the corresponding solvent (the line represents the solubility of the lignin in PDESs, and the data above the line indicated that lignin was promoted to dissolve by adding co-solvents).
- 22. Fig. S10. The correlation between the EHL solubility and the π^* value of the corresponding solvent (the line represents the solubility of the lignin in PDESs, and the data above the line indicated that lignin was promoted to dissolve by adding co-solvents, and the critical value of π^* was 0.441, 0.452, 0.587, 0.520, 0.418 and 0.554 in P2-Lev, P4-Lev, P6-Lev, PA2-Lev, PA4-Lev, and PA6-Lev, respectively). 13
- 23. Fig. S11. The correlation between the OL solubility and the π^* value of the corresponding solvent (the line represents the solubility of the lignin in PDESs, and the data above the line indicated that lignin was promoted to dissolve by adding co-solvents, and the critical value of π^* was 0.441, 0.452, 0.531, 0.441, 0.418 and 0.406 in P2-Lev, P4-Lev, P6-Lev, PA2-Lev, PA4-Lev, and PA6-Lev, respectively).

24.	Fig. S12. SEM images of a), b) and c) initial LS and d), e) and f) regenerated LS.	14
25.	Fig. S13. SEM images of a), b) and c) initial OL and d), e) and f) regenerated OL.	14
26.	Fig. S14. SEM images of a), b) and c) initial EHL and d), e) and f) regenerated EHL.	14
27.	Fig. S15. The FT-IR of native and generated lignins	15
28.	Fig. S16. TGA of initial and regenerated lignin	15
29.	Table S13. Sugar content and molecular weight of three lignin samples.	15
30.	Table S14. Element analysis of different lignin	16

Entry	PDES	Viscosity (mPa·s)	Density (g/cm ⁻³)
1	P2-Lev	51.20	1.1338
2	P4-Lev	94.72	1.1331
3	P6-Lev	133.26	1.1314
4	PA2-Lev	29.40	1.1280
5	PA4-Lev	58.84	1.1278
6	PA6-Lev	96.90	1.1271

Table S1. The viscosity and density of PDESs at room temperature.

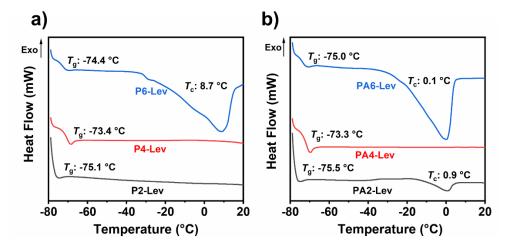


Fig. S1. The phase-transition temperatures of PDESs.

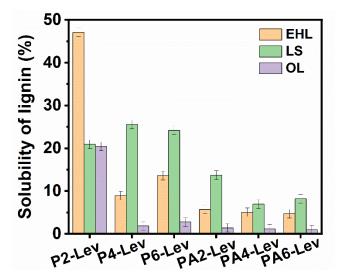


Fig. S2. Solubility of lignin in PDESs

Entry	Solvent	Solubility (%)			
Entry	Solvent	EHL	OL	LS	
1	P2-Lev	47.06 (±1.2)	20.41 (±1.2)	20.94 (±1.2)	
2	P4-Lev	8.94 (±0.1)	1.82 (±0.1)	25.52 (±0.2)	
3	P6-Lev	13.5 (±0.4)	2.76 (±0.1)	24.17 (±0.5)	
4	PA2-Lev	5.71 (±0.4)	1.41 (±0.5)	13.70 (±1.0)	
5	PA4-Lev	5.06 (±0.5)	1.17 (±0.2)	6.94 (±0.5)	
6	PA6-Lev	4.71 (±0.1)	0.94 (±0.1)	8.20 (±0.4)	
7	PC	0.76 (±0.1)	0.82 (±0.1)	0.59 (±0.1)	
8	NFM	0.58 (±0.1)	0.96 (±0.1)	0.59 (±0.1)	
9	DMI	1.29 (±0.1)	0.59 (±0.1)	0.59 (±0.1)	
10	Cyrene	0.58 (±0.1)	1.47 (±0.1)	0.59 (±0.1)	

Table S2. The lignin solubility in the pure PDESs and polar aprotic solvents at room temperature.

^aThe solubility value was the average of twice measurements, and the values in the parentheses were the half of the range of replicate results.

Entry	PDES	Co-solvent (20 vol%)	Viscosity (mPa·s)
1		DMI	87.58
2	DC L	PC	54.40
3	P6-Lev	NFM	86.86
4		Cyrene	106.58

Table S3. The viscosity of PDESs with different co-solvents at room temperature.

Table S4. Solubility of EHL in the synthesized PDESs with different co-solvents at room temperature.

Entry	PDES	Co-solvent		Solubility of	EHL (%) ^a	
Entry	TDES	content (vol%)	РС	NFM	DMI	Cyrene
1		10	62.00 (±1.7)	63.12 (±1.5)	70.00 (±1.7)	12.01 (±1.5)
2		20	72.47 (±1.8)	73.17 (±1.2)	80.23 (±1.7)	24.64 (±1.2)
3	P2-Lev	40	72.52 (±1.5)	76.47 (±1.7)	67.35 (±1.4)	24.23 (±0.6)
4		60	60.41 (±1.7)	76.17 (±1.2)	60.47 (±1.7)	13.23 (±1.2)
5		80	54.29 (±1.1)	69.47 (±1.7)	55.35 (±0.7)	7.71 (±0.6)
6		10	35.75 (±1.7)	30.14 (±1.6)	28.79 (±1.5)	10.44 (±1.6)
7		20	55.76 (±1.7)	47.17 (±1.7)	43.82 (±1.0)	15.47 (±1.0)
8	P4-Lev	40	43.17 (±1.1)	37.47 (±1.1)	33.88 (±1.0)	14.23 (±0.5)
9		60	37.35 (±1.1)	30.11 (±1.0)	27.11 (±0.5)	8.12 (±1.0)
10		80	25.41 (±0.5)	21.29 (±0.6)	17.17 (±0.5)	6.24 (±0.5)
11		10	17.29 (±0.5)	10.58 (±0.4)	11.64 (±0.6)	12.8 (±0.5)
12		20	25.29 (±0.5)	11.58 (±0.7)	12.64 (±0.6)	13.47 (±0.5)
13	P6-Lev	40	19.23 (±0.5)	9.76 (±0.7)	9.12 (±0.7)	12.47 (±0.5)
14		60	13.38 (±0.6)	6.71 (±0.6)	5.06 (±0.6)	$7.88 (\pm 0.6)$
15		80	9.12 (±0.5)	3.35 (±0.5)	2.35 (±0.5)	4.00 (±0.5)
16	PA2-Lev	10	17.7 (±0.4)	8.141 (±0.5)	6.92 (±0.5)	6.03 (±0.4)
17	I AZ-LEV	20	24.70 (±0.4)	10.41 (±0.5)	9.82 (±0.5)	8.53 (±0.3)

18		40	21.29 (±0.6)	8.00 (±0.6)	7.59 (±0.6)	8.18 (±0.6)
19		60	18.94 (±0.4)	4.76 (±0.4)	5.75 (±0.4)	7.71 (±0.4)
20		80	17.11 (±0.6)	2.41 (±0.3)	2.53 (±0.3)	2.29 (±0.3)
21		10	28.21 (±0.5)	9.70 (±1.1)	15.01 (±0.8)	8.75 (±0.5)
22		20	32.47 (±1.0)	11.52 (±1.0)	19.05 (±0.8)	13.52 (±0.5)
23	PA4-Lev	40	21.35 (±0.8)	10.41 (±0.5)	14.00 (±0.5)	6.47 (±0.6)
24		60	9.41 (±0.5)	7.12 (±0.5)	9.94 (±0.4)	4.67 (±0.5)
25		80	7.12 (±0.5)	5.941 (±0.4)	7.82 (±0.5)	2.18 (±0.4)
26		10	20.55 (±0.6)	5.23 (±0.5)	3.75 (±0.4)	5.1 (±0.3)
27		20	26.94 (±0.5)	7.53 (±0.4)	4.12 (±0.4)	5.59 (±0.4)
28	PA6-Lev	40	23.17 (±0.8)	4.12 (±0.4)	2.24 (±0.3)	5.16 (±0.4)
29		60	20.17 (±0.5)	2.12 (±0.5)	2.00 (±0.6)	4.24 (±0.5)
30		80	15.11 (±0.2)	1.29 (±0.3)	1.71 (±0.5)	1.88 (±0.3)

^aThe solubility value was the average of twice measurements, and the values in the parentheses were the half of the range of replicate results

Table S5. Solubility of LS in the synthesized PDESs with different co-solvents at room temperature.

Entw	PDES	Co-solvent		Solubility of LS (%) ^a			
Entry	PDES	content (vol%)	РС	NFM	DMI	Cyrene	
1		10	82.45 (±1.6)	68.89 (±1.4)	78.83 (±1.5)	38.20 (±1.7)	
2		20	92.52 (±1.7)	78.94 (±1.7)	96.82 (±1.7)	48.23 (±1.1)	
3	P2-Lev	40	60.52 (±1.7)	56.05 (±1.1)	63.00 (±1.7)	45.82 (±1.1)	
4		60	54.23 (±1.1)	36.17 (±0.8)	54.94 (±1.1)	29.35 (±1)	
5		80	48.35 (±.1)	21.17 (±0.8)	46.47 (±1.1)	11.52 (±1.1)	
6		10	42.31 (±1.4)	42.60 (±1.6)	47.8 (±1.6)	31.8 (±1.7)	
7		20	54.35 (±1.7)	53.64 (±1.7)	59.82 (±1.1)	40.82 (±1.7)	
8	P4-Lev	40	44.64 (±1.1)	44.64 (±1.1)	51.82 (±1.7)	34.76 (±1.7)	
9		60	31.71 (±1.1)	33.88 (±1.1)	41.05 (±1.7)	18.71 (±1.1)	
10		80	26.17 (±0.5)	18.00 (±1.1)	20.11 (±1.1)	8.18 (±0.5)	
11		10	25.13 (±1.0)	20.15 (±0.6)	20.23 (±1.2)	30.12 (±1.1)	
12		20	31.82 (±1.7)	24.14 (±1.1)	23.82 (±0.5)	33.35 (±1.7)	
13	P6-Lev	40	24.71 (±1.2)	22.52 (±1.2)	17.64 (±1.2)	22.35 (±1.0)	
14		60	15.82 (±1.2)	14.94 (±1.2)	12.52 (±1.0)	14.17 (±1.1)	
15		80	9.18 (±0.5)	7.35 (±0.5)	4.529 (±0.5)	$6.59 (\pm 0.5)$	
16		10	44.2 (±2.0)	25.23 (±2.0)	30.1 (±1.8)	30.1 (±2.0)	
17		20	52.47 (±2.0)	35.47 (±1.8)	41.76 (±2.0)	37.64 (±2.0)	
18	PA2-Lev	40	48.11 (±1.2)	31.05 (±1.2)	29.41 (±1.0)	36.05 (±1.4)	
19		60	35.52 (±1.0)	15.88 (±1.4)	14.64 (±1.2)	27.23 (±1.0)	
20		80	29.82 (±1.0)	10.82 (±1.0)	4.24 (±1.0)	13.88 (±1.0)	
21		10	22.2 (±1.2)	16.87 (±1.2)	23.60 (±1.1)	33.40 (±1.0)	
22		20	26.58 (±1.2)	20.88 (±1.2)	29.41 (±1.2)	34.94 (±0.7)	
23	PA4-Lev	40	16.29 (±1.0)	19.41 (±0.6)	16.52 (±1.1)	25.41 (±1.1)	
24		60	9.88 (±0.6)	12.05 (±0.5)	12.94 (±0.5)	16.71 (±0.5)	
25		80	7.05 (±0.5)	7.24 (±0.5)	9.41 (±0.6)	$7.50 (\pm 0.5)$	

26		10	16.21 (±0.4)	10.99 (±0.6)	9.76 (±0.6)	20.12 (±0.5)
27		20	19.00 (±0.4)	13.94 (±0.6)	12.11 (±0.6)	23.41 (±0.5)
28	PA6-Lev	40	16.88 (±0.4)	13.23 (±0.4)	9.65 (±0.5)	18.35 (±0.4)
29		60	12.17 (±0.3)	8.29 (±0.3)	7.71 (±0.3)	12.88 (±0.3)
30		80	9.05 (±0.3)	5.88 (±0.3)	5.24 (±0.3)	5.06 (±0.3)

^aThe solubility value was the average of twice measurements, and the values in the parentheses were the half of the range of replicate results

Table S6. Solubility of OL in the synthesized PDESs with different co-solvents at room temperature.

F 4	DDEC	Co-solvent	Solubility of OL (%) ^a			
Entry	PDES	content (vol%)	PC	NFM	DMI	Cyrene
1		10	46.34 (±1.4)	48.76 (±1.6)	42.71 (±1.6)	4.01 (±1.7)
2		20	56.41 (±1.7)	61.76 (±1.7)	52.70 (±1.6)	4.41 (±1.1)
3	P2-Lev	40	46.35 (±1.7)	50.05 (±1.6)	49.47 (±1.7)	4.17 (±1.7)
4		60	31.58 (±1.1)	41.23 (±1.0)	41.11 (±1.1)	3.70 (±1.7)
5		80	21.76 (±1.1)	31.82 (±1.1)	34.05 (±1.1)	3.35 (±1.1)
6		10	2.29 (±0.11)	2.05 (±0.10)	3.05 (±0.11)	2.9 (±0.10)
7		20	3.29 (±0.11)	3.06 (±0.1)	4.52 (±0.15)	4.23 (±0.1)
8	P4-Lev	40	2.41 (±0.1)	2.76 (±0.12)	4.24 (±0.17)	3.29 (±0.11)
9		60	2.12 (±0.12)	2.53 (±0.21)	3.94 (±0.16)	2.94 (±0.11)
10		80	1.89 (±0.1)	2.18 (±0.1)	3.53 (±0.15)	2.47 (±0.1)
11		10	2.91 (±0.14)	2.78 (±0.11)	3.23 (±0.10)	3.12 (±0.12)
12		20	3.29 (±0.1)	2.94 (±0.1)	3.82 (±0.1)	3.58 (±0.1)
13	P6-Lev	40	2.71 (±0.1)	2.06 (±0.1)	2.29 (±0.1)	2.82 (±0.1)
14		60	2.24 (±0.1)	1.76 (±0.1)	1.59 (±0.1)	2.35 (±0.1)
15		80	1.24 (±0.1)	1.47 (±0.1)	0.71 (±0.1)	2.00 (±0.1)
16		10	6.23 (±0.3)	2.15 (±0.3)	7.52 (±0.4)	2.1 (±0.4)
17		20	9.35 (±0.3)	3.59 (±0.3)	10.59 (±0.4)	3.82 (±0.4)
18	PA2-Lev	40	8.53 (±0.3)	3.24 (±0.4)	7.65 (±0.3)	2.88 (±0.2)
19		60	8.00 (±0.2)	2.94 (±0.3)	5.88 (±0.2)	2.18 (±0.2)
20		80	6.94 (±0.1)	2.65 (±0.1)	4.71 (±0.1)	1.65 (±0.3)
21		10	2 (±0.3)	3.76 (±0.3)	10.12 (±0.4)	1.78 (±0.3)
22		20	2.65 (±0.3)	4.18 (±0.3)	13.64 (±0.4)	2.82 (±0.3)
23	PA4-Lev	40	2.35 (±0.2)	4.00 (±0.3)	13.05 (±0.3)	2.35 (±0.2)
24		60	1.53 (±0.2)	3.53 (±0.2)	12.17 (±0.2)	2.11 (±0.2)
25		80	1.29 (±0.2)	3.35 (±0.2)	10.05 (±0.2)	1.76 (±0.2)
26		10	1.43 (±0.1)	2.1 (±0.1)	4.12 (±0.1)	1.89 (±0.1)
27		20	1.94 (±0.1)	3.06 (±0.1)	5.29 (±0.1)	2.52 (±0.1)
28	PA6-Lev	40	1.59 (±0.06)	2.71 (±0.1)	4.82 (±0.08)	2.11 (±0.08)
29		60	1.30 (±0.1)	2.35 (±0.06)	3.59 (±0.1)	1.35 (±0.06)
30		80	1.00 (±0.08)	2.06 (±0.1)	2.76 (±0.1)	0.70 (±0.1)

^aThe solubility value was the average of twice measurements, and the values in the parentheses were the half of the range of replicate results

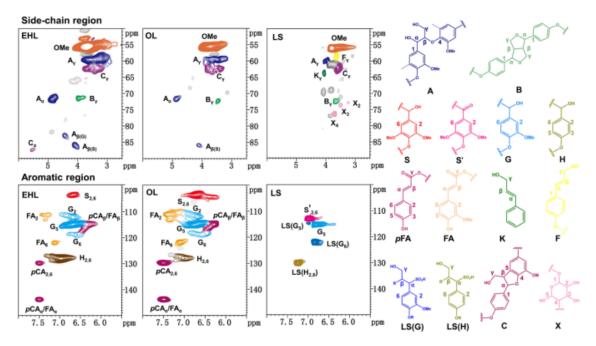


Fig. S3. 2D HSQC NMR spectra of the three lignin samples, including the side chain regions and the aromatic regions. Main substructures of lignin, including side chain linkages and aromatic units.

Region	δС/δН (ррт)	Lable	Assignment
Aliphatic	55.7/3.73	OMe	C-H in methoxyls
	71.9/4.86	Αα	Ca-Ha in β -O-4' substructures (A)
	84.2/4.38	$A\beta(G)$	C β -H β in β -O-4' substructures to G (A)
	86.0/4.12	$A\beta(S)$	C β -H β in β -O-4' substructures to S (A)
	59.8/3.38-3.80	Αγ	C γ -H γ in β -O-4' substructures (A)
	72.2/3.72-4.15	Βγ	C γ -H γ in β - β resinol (B)
	87.7/5.54	Сα	Cα-Hα in phenylcoumaran (C)
	62.1/3.69	Сү	Cγ-Hγ in phenylcoumaran (C)
	63.8/4.10	Κγ	Cγ-Hγ in cinnamyl alcohol (K)
	58.9/3.70	Fγ	Cγ-Hγ in p-hydroxycinnamyl alcohol (F)
	72.8/3.34	X2	C2-H2 in β -D-xylopyranoside (X)
	73.5/3.65	X3	C3-H3 in β -D-xylopyranoside (X)
	76.3/3.78	X4	C4-H4 in β-D-xylopyranoside (X)
romatic	104.0/6.71	S2,6	C2,6-H2,6 in syringyl units (S)
	104.5/7.34	S'2,6	C2,6-H2,6 in oxidized S units (S')
	110.9/6.99	G2	C2-H2 in guaiacyl units (G)
	115.6/6.78	G5	C5-H5 in guaiacyl units (G)
	115.5/6.97	$LS(G_5)$	C5-H5 in G units of lignosulfonate (LS)
	119.0/6.77	G6	C6-H6 in guaiacyl units (G)
	122.0/6.81	$LS(G_6)$	C6-H6 in G units of lignosulfonate (LS)
	127.5/7.05	H2,6	C2,6-H2,6 in p-hydroxyphenyl units (H)
	129.8/7.28	LS(H2,6)	C2,6-H2,6 in H units of lignosulfonate (LS)

Table S7. Assignments of ¹³C-¹H correlated signals in the HSQC spectra of three lignin samples.

110.1/7.29	FA2	C2-H2 in ferulate (FA)
122.2/7.12	FA6	C6-H6 in ferulate (FA)
130.1/7.51	PCA2,6	C2,6-H2,6 in p-coumarate (PCA)
144.1/7.50	ΡCΑα/FΑα	Cα-Hα in p-coumarate (PCA) and ferulate (FA)
115.2/6.30	ΡϹΑβ/ϜΑβ	C β -H β in p-coumarate (PCA) and ferulate (FA)

Table S8. The Kamlet-Taft empirical parameters of solvent.

Entry	Solvent	π*	α	β
1	P2-Lev	0.705	0.941	0.691
2	P4-Lev	0.630	0.850	0.801
3	P6-Lev	0.598	0.810	0.864
4	PA2-Lev	0.985	1.284	0.376
5	PA4-Lev	0.908	1.190	0.489
6	PA6-Lev	0.576	0.784	-0.201
7	DMI	0.441	0.619	0.909
8	PC	0.476	0.661	0.949
9	NFM	0.441	0.619	1.266
10	Cyrene	0.498	0.688	0.872

Entry	PDES	PC content (vol%)	π*	α	β
1		10	0.736	0.980	0.656
2		20	0.705	0.941	0.691
3	P2-Lev	40	0.673	0.902	0.701
4		60	0.620	0.837	0.787
5		80	0.598	0.810	0.812
6		10	0.620	0.837	1.114
7		20	0.620	0.837	1.041
8	P4-Lev	40	0.600	0.837	0.966
9		60	0.576	0.784	0.965
10		80	0.521	0.716	0.950
11		10	0.620	0.837	0.916
12		20	0.609	0.824	0.928
13	P6-Lev	40	0.589	0.824	0.928
14		60	0.565	0.770	0.952
15		80	0.532	0.729	0.912
16		10	0.778	1.030	0.584
17	DACI	20	0.736	0.980	0.630
18	PA2-Lev	40	0.694	0.928	0.677
19		60	0.652	0.876	0.777

Table S9. The Kamlet-Taft empirical parameters of the PC/PDESs.a

20		80	0.587	0.797	0.824
21		10	1.425	1.822	-0.067
22		20	1.417	1.812	-0.058
23	PA4-Lev	40	1.401	1.792	-0.040
24		60	1.392	1.782	-0.082
25		80	0.554	0.757	0.861
26		10	0.609	0.824	0.851
27		20	0.598	0.810	0.864
28	PA6-Lev	40	0.598	0.810	0.889
29		60	0.576	0.784	0.888
30		80	0.554	0.757	0.887

Enter	DDFC	NFM content	_*	~	D
Entry	PDES	(vol%)	π^*	α	β
1		10	0.630	0.850	0.853
2		20	0.640	0.824	0.877
3	P2-Lev	40	0.587	0.797	0.901
4		60	0.521	0.716	1.052
5		80	0.499	0.702	1.140
6		10	0.609	0.824	0.877
7		20	0.576	0.784	0.965
8	P4-Lev	40	0.543	0.743	1.052
9		60	0.476	0.661	1.153
10		80	0.453	0.633	1.253
11		10	0.587	0.797	0.850
12		20	0.554	0.757	0.964
13	P6-Lev	40	0.509	0.702	1.090
14		60	0.464	0.647	1.116
15		80	0.457	0.675	1.140
16		10	0.652	0.876	0.699
17		20	0.609	0.824	0.800
18	PA2-Lev	40	0.554	0.757	0.913
19		60	0.509	0.702	1.014
20		80	0.498	0.688	1.128
21		10	0.663	0.889	0.713
22		20	0.620	0.837	0.839
23	PA4-Lev	40	0.521	0.716	1.027
24		60	0.509	0.702	1.090
25		80	0.498	0.688	1.152
26		10	0.587	0.797	0.850
27	PA6-Lev	20	0.554	0.757	0.939
28		40	0.521	0.716	1.027

Table S10. The Kamlet-Taft empirical parameters of the NFM/PDESs.^a

29	60	0.487	0.675	1.090
30	80	0.464	0.647	1.166

Entry	PDES	DMI content	π*	α	β
v	1210	(vol%)		ŭ	F
1		10	0.673	0.902	0.727
2		20	0.630	0.850	0.775
3	P2-Lev	40	0.565	0.770	0.823
4		60	0.521	0.716	0.899
5		80	0.441	0.619	0.935
6		10	0.609	0.824	1.028
7		20	0.587	0.797	0.978
8	P4-Lev	40	0.554	0.757	0.913
9		60	0.521	0.716	0.925
10		80	0.453	0.633	0.923
11		10	0.554	0.757	0.964
12		20	0.532	0.73	0.938
13	P6-Lev	40	0.509	0.70	0.911
14		60	0.464	0.65	0.936
15		80	0.418	0.59	0.961
16		10	0.673	0.902	0.568
17		20	0.652	0.876	0.565
18	PA2-Lev	40	0.630	0.850	0.535
19		60	0.543	0.743	0.715
20		80	0.441	0.619	0.909
21		10	0.630	0.850	0.697
22		20	0.587	0.797	0.745
23	PA4-Lev	40	0.532	0.729	0.834
24		60	0.476	0.661	0.871
25		80	0.418	0.591	0.935
26		10	0.576	0.784	0.836
27		20	0.532	0.729	0.860
28	PA6-Lev	40	0.487	0.675	0.884
29		60	0.441	0.619	0.935
30		80	0.407	0.577	0.974

Table S11. The Kamlet-Taft empirical parameters of the DMI/PDESs.^a

	DDDG	Cyrene content	<u>.</u>			
Entry	PDES	(vol%)	π*	α	β	
1		10	0.727	0.967	0.771	
2		20	0.694	0.928	0.755	
3	P2-Lev	40	0.663	0.889	0.713	
4		60	0.620	0.837	0.761	
5		80	0.587	0.797	0.824	
6		10	0.673	0.902	0.804	
7		20	0.652	0.876	0.803	
8	P4-Lev	40	0.630	0.850	0.827	
9		60	0.620	0.837	0.813	
10		80	0.598	0.810	0.864	
11		10	0.587	0.797	1.003	
12		20	0.586	0.784	0.990	
13	P6-Lev	40	0.577	0.797	0.952	
14		60	0.567	0.797	0.927	
15		80	0.556	0.784	0.888	
16		10	0.908	1.190	0.384	
17		20	0.878	1.141	0.429	
18	PA2-Lev	40	0.778	1.092	0.474	
19		60	0.673	1.055	0.508	
20		80	0.576	0.837	0.735	
21		10	0.888	1.166	0.537	
22		20	0.878	1.153	0.548	
23	PA4-Lev	40	0.778	1.030	0.661	
24		60	0.673	0.902	0.779	
25		80	0.576	0.784	0.836	
26		10	0.576	0.784	0.939	
27		20	0.576	0.784	0.914	
28	PA6-Lev	40	0.576	0.784	0.888	
29		60	0.565	0.770	0.875	
30		80	0.576	0.784	0.836	

Table S12. The Kamlet-Taft empirical parameters of the Cyrene/PDESs.a

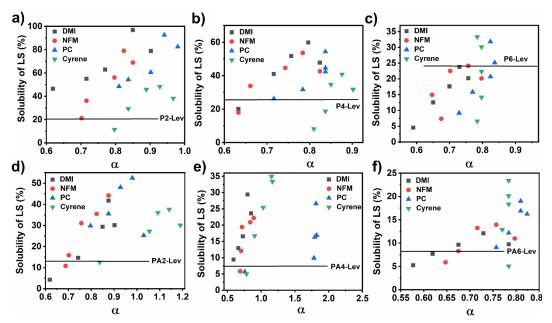


Fig. S4. The correlation between the LS solubility and the α value of the corresponding solvent (the line represents the solubility of the lignin in PDESs, and the data above the line indicated that lignin was promoted to dissolve by adding co-solvents).

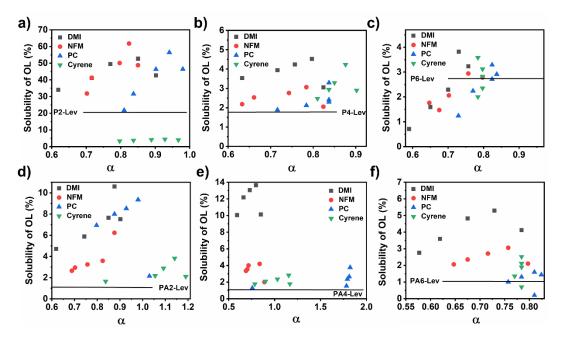


Fig. S5. The correlation between the OL solubility and the α value of the corresponding solvent (the line represents the solubility of the lignin in PDESs, and the data above the line indicated that lignin was promoted to dissolve by adding co-solvents).

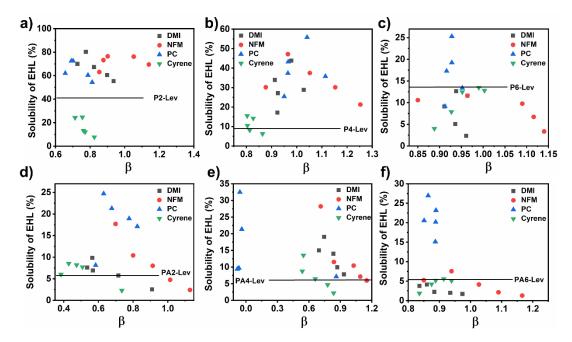


Fig. S6. The correlation between the EHL solubility and the β value of the corresponding solvent (the line represents the solubility of the lignin in PDESs, and the data above the line indicated that lignin was promoted to dissolve by adding co-solvents).

Fig. S7. The correlation between the LS solubility and the β value of the corresponding solvent (the line represents the solubility of the lignin in PDESs, and the data above the line indicated that lignin was promoted to dissolve by adding co-solvents).

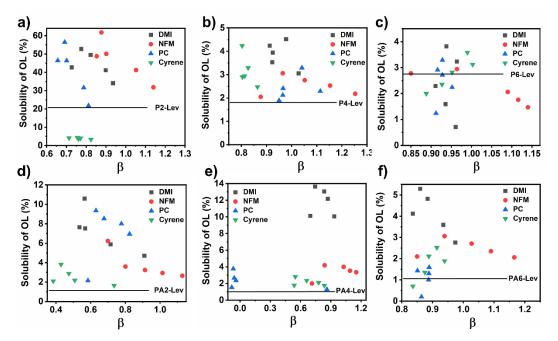


Fig. S8. The correlation between the OL solubility and the β value of the corresponding solvent (the line represents the solubility of the lignin in PDESs, and the data above the line indicated that lignin was promoted to dissolve by adding co-solvents).

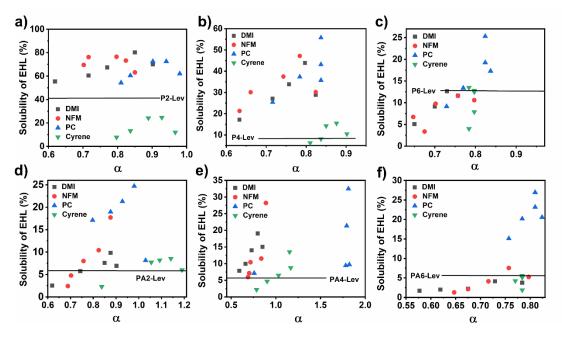


Fig. S9. The correlation between the EHL solubility and the α value of the corresponding solvent (the line represents the solubility of the lignin in PDESs, and the data above the line indicated that lignin was promoted to dissolve by adding co-solvents).

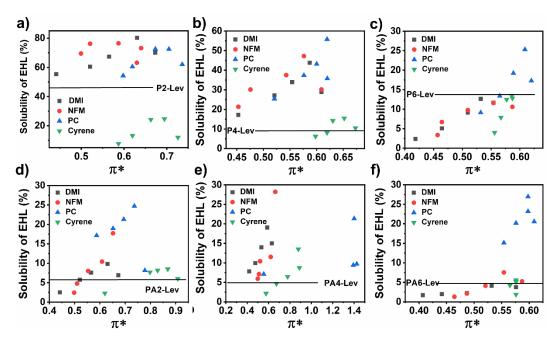


Fig. S10. The correlation between the EHL solubility and the π^* value of the corresponding solvent (the line represents the solubility of the lignin in PDESs, and the data above the line indicated that lignin was promoted to dissolve by adding co-solvents, and the critical value of π^* was 0.441, 0.452, 0.587, 0.520, 0.418 and 0.554 in P2-Lev, P4-Lev, P6-Lev, PA2-Lev, PA4-Lev, and PA6-Lev, respectively).

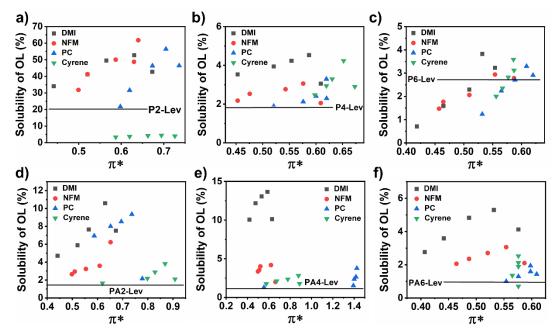


Fig. S11. The correlation between the OL solubility and the π^* value of the corresponding solvent (the line represents the solubility of the lignin in PDESs, and the data above the line indicated that lignin was promoted to dissolve by adding co-solvents, and the critical value of π^* was 0.441, 0.452, 0.531, 0.441, 0.418 and 0.406 in P2-Lev, P4-Lev, P6-Lev, PA2-Lev, PA4-Lev, and PA6-Lev, respectively).

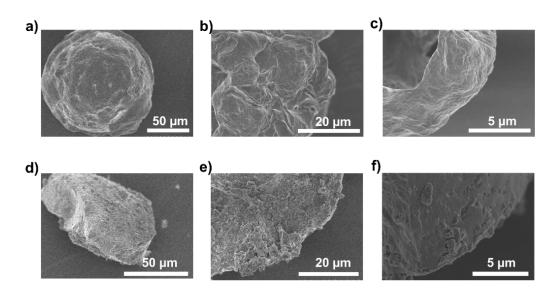


Fig. S12. SEM images of a), b) and c) initial LS and d), e) and f) regenerated LS.

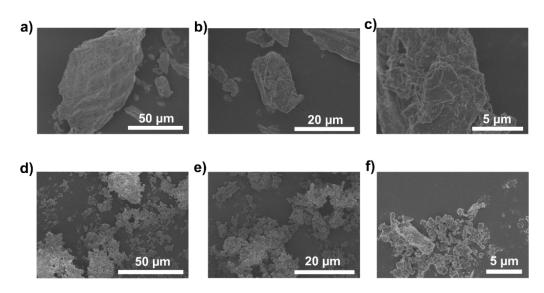


Fig. S13. SEM images of a), b) and c) initial OL and d), e) and f) regenerated OL.

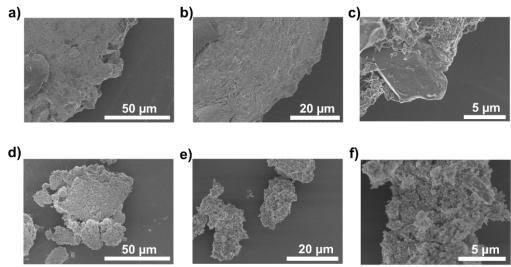


Fig. S14. SEM images of a), b) and c) initial EHL and d), e) and f) regenerated EHL.

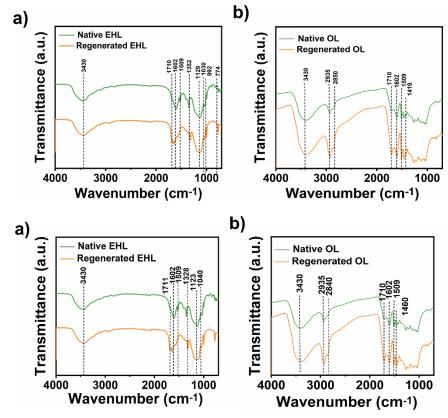


Fig. S15. The FT-IR of native and generated lignins

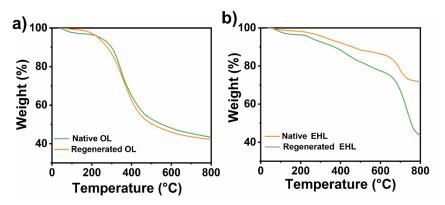


Fig. S16. TGA of initial and regenerated lignin

Table S13. Sugar content and molecular weight of three lignin samples.

Samples	Sugar (%)						Purity (%)	Molecular weight (g mol ⁻¹)		PDI ^a
	Glucose	Xylose	Arabinose	Galactose	Uronic acid	Total sugars	. (/0)	M _w	M _n	
EHL	2.27	ND ^b	ND	ND	0.16	2.43	97.57	2173	1145	1.90
OL	ND	0.28	0.06	ND	0.02	0.36	99.64	2521	1240	2.03
LS	0.32	2.53	1.95	1.04	0.05	5.89	94.11	1413	1258	1.12
^a PDI: Pol ^b ND: Not	ydispersity Detected.	index.								

Sampla		Mas	s fraction (%)	
Sample	N	С	Н	S	0
EHL	0.67	59.27	5.74	0.16	20.00
LS	0.66	31.26	3.97	6.40	24.62
OL	0.38	62.00	6.19	0.04	20.30

Table S14. Element analysis of different lignin