Supplementary Information

Jinze Dou1*; Jincheng Wang2; Sami Hietala3; Dmitry V. Evtuguin4; Tapani Vuorinen1*; Jian Zhao2

¹Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland ²State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China ³Department of Chemistry, University of Helsinki, Helsinki, Finland ⁴CICECO/Department of Chemistry, University of Aveiro, Aveiro, Portugal

Corresponding author (and address of all authors):

Dr. Jinze Dou (jinze.dou@aalto.fi), Department of Bioproducts and Biosystems, Aalto University Prof. Tapani Vuorinen (<u>tapani.vuorinen@aalto.fi</u>), Department of Bioproducts and Biosystems, Aalto University Lead Contact's email address: jinze.dou@aalto.fi Supplementary Table 1. Comparative methodologies of hemicellulose purification from switchgrass, wood (or wood pulp) and bark based on the conventional strategy (wood-based) and our strategy (bark).

	methodology	mechanism	substrate	conditions	ref.
	sequential extraction with hot water and alkaline	cleaving ester bonds such as O-acetyl groups that is attached to xylan backbone	thermo-mechanical pulp from eucalyptus wood	2% NaOH, 90°C, 2.5 h	Sun et al. 2014º
conventional strategy	delignification with peracetic acid and followed with DMSO extraction	cleaving lignin's ester bonds	eucalyptus wood	85°C, 30 min, pH 4–5 (delignification with peracetic acid)	Evtugin et al. 2003¹⁰
	high pressure and hot water extraction	acetic acid formation promotes hemicellulose degradation	sulfite pulp from spruce and pine	hot water: 200-240°C, 5- 60 min, 30-50 bars	Borrega et al. 2013 ¹¹
	cellulolytic enzyme- aided extraction	hydrolytic cellulase selectively degrade cellulose	extracted and peracetic acid delignified switchgrass	ball milling and hydrolysis with 30 mg/g cellulase 37°C, 72 h	Ding et al. 2019 ¹²
our strategy	multi-stage pre- treatment followed by peracetic acid delignification and DMSO extraction	elimination of highly peracetic acid reactive components (i.e. extractives; pectin; protein; and tannins)	willow wood; willow bark (whole bark; inner bark; fibre bundle; and parenchyma)	multiple extraction (DCM; acetone; water; citric acid; pepsin; 0.1M NaOH) and peracetic acid delignification	present study

Supplementary Fig. 1 Photographs of the original (O), solid residues after the Soxhlet extraction (E), solid residues after the citric acid treatment (C) from the willow wood (WW). a Pectin purification -> citric acid treated pectin (CAP) and dialysis purified pectin (DCAP). **b** Hemicellulose recovery -> solid residues after the peracetic acid treatment (P) and the solid residues after DMSO extraction (DMSO) along with the purified hemicellulose (H). **c** Dioxane lignin recovery -> solid residues after the multiple extraction (citric acid; pepsin; 0.1M NaOH; dioxane-water) (Dioxane), recovered palish yellow color of dioxane lignin (L) in both precipitated form (under +5°C temperature) and solid form, and the reference lignin samples (WCW and CEL) from the previous study¹⁵ (G: ground sample; G+E: solid residues after grinding and extraction; G+E+B (WCW): solid residues after the grinding, extraction, and ball milling; G+E+B+E (CEL): solid residues after grinding, extraction, ball milling, and cellulytic enzymatic purification).

Supplementary Fig. 2 Photographs of the original (O), solid residues after the Soxhlet extraction (E), solid residues after the citric acid treatment (C) from the willow bark (WB). a Pectin purification -> citric acid treated pectin (CAP) and dialysis purified pectin (DCAP). b Hemicellulose recovery -> solid residues after the peracetic acid treatment (P) and the solid residues after DMSO extraction (DMSO) along with the purified hemicellulose (H). c Dioxane lignin recovery -> solid residues after the multiple extraction (citric acid; pepsin; 0.1M NaOH; dioxane-water) (Dioxane), recovered dioxane lignin (L) in both precipitated form (under +5°C temperature) and solid form, and the reference lignin samples (WCW and CEL) from the previous study¹⁵ (G: ground sample; G+E: solid residues after the grinding and extraction; G+E+B (WCW): solid residues after the grinding, extraction, ball milling; and cellulytic enzymatic purification).

Supplementary Fig. 3 Photographs of the original (O), solid residues after the Soxhlet extraction (E), solid residues after the citric acid treatment (C) from the willow inner bark (WIB). a Pectin purification -> citric acid treated pectin (CAP) and dialysis purified pectin (DCAP). b Hemicellulose recovery -> solid residues after the peracetic acid treatment (P) and the solid residues after DMSO extraction (DMSO) along with the purified hemicellulose (H). c Dioxane lignin recovery -> solid residues after the multiple extraction (citric acid; pepsin; 0.1M NaOH; dioxane-water) (Dioxane), recovered dioxane lignin (L) in both precipitated form (under +5°C temperature) and solid form, and the reference lignin samples (WCW and CEL) from the previous study¹⁵ (G: ground sample; G+E: solid residues after the grinding and extraction; G+E+B (WCW): solid residues after the grinding, extraction, ball milling; and cellulytic enzymatic purification).

Supplementary Fig. 4 Photographs of the original (O), solid residues after the Soxhlet extraction (E), solid residues after the citric acid treatment (C) from the willow bark fiber bundle (WBFB). a Pectin purification -> citric acid treated pectin (CAP) and dialysis purified pectin (DCAP). b Hemicellulose recovery -> solid residues after the peracetic acid treatment (P) and the solid residues after DMSO extraction (DMSO) along with the purified hemicellulose (H). c Dioxane lignin recovery -> solid residues after the multiple extraction (citric acid; pepsin; 0.1M NaOH; dioxane-water) (Dioxane), recovered dioxane lignin (L).

Supplementary Fig. 5 Photographs of the original (O), solid residues after the Soxhlet extraction (E), solid residues after the citric acid treatment (C) from parenchymatous tissues (parenchyma). a Pectin purification -> citric acid treated pectin (CAP). b Hemicellulose recovery -> solid residues after DMSO extraction (DMSO) along with the purified hemicellulose (H); c Dioxane lignin recovery -> solid residues after the multiple extraction (citric acid; pepsin; 0.1M NaOH; dioxane-water) (Dioxane); d Starch test with Lugol's lodine (blue color was formed immediately when a drop of Lugol's solution was dropped on the hemicellulose that is on top of the microscopy slide).

Supplementary Fig. 6 Fractionation scheme of the recovery of pectin; hemicellulose; and dioxane lignin from willow wood (WW); bark (WB); inner bark (WIB); fiber bundle (WBFB) and parenchyma tissues (parenchyma).

Supplementary Fig. 7 Chemical characteristics of the purified parenchyma tissues. a FT-IR. **b** CPMAS NMR spectrum. Parenchyma-N and Parenchyma-Dioxane were included as references for FT-IR comparison.

Supplementary Fig. 8 Detected diethyl ether-soluble 0.1M NaOH hydrolysable tannin-like substances (HTS) from Karin and Klara bark based on GC-MS total-ion chromatogram. Mass spectra of these trimethylsilylated compounds were summarized at Supplementary Fig. 10.

Supplementary Fig. 9 GC-MS total-ion chromatogram of the diethyl ether-soluble HTS from Karin and Klara bark.

Supplementary Fig. 10 Mass spectra of trimethylsilylated diethyl ether-soluble HTS detected from Karin and Klara bark.

Supplementary Table 2. Main diethyl ether soluble HTS (supplementary Fig. 8) obtained from Karin/ Klara bark. MS spectra were referenced with literature and publicly available databases [DB]: NIST Chemistry WebBook [N].

Detention	Deal	Compounds, detected as methyl ester		MW of	
Retention	Реак	(Me) and/or TMS ester/ether (TMS)	Characteristic fragments m/z	TMS	DB/ Reference
time, min	number	derivatives		derivatives	
Aromatic co	mpound				
12.23	3	Catechol (di TMS ether)	254; 239; 151; 136; 75; 73	254	[N]
		4-Hydroxybenzoic acid (TMS ether; TMS	5		
21.23	4	ester)	282; 267; 223; 193; 126; 73	282	[N]
		Protocatechuic acid (TMS ester; di TMS			
26.68	6	ether)	370; 355; 311; 281; 223; 193; 73	370	[N]
		Isoferulic acid (Me; TMS ester; TMS	338; 323; 308; 293; 249; 219;		
32.55	8	ether)	191; 146; 73	338	[N]
Fatty acids					
Saturated fa	tty acids	(Mono-carboxylic acid)			
			328; 313; 269; 145; 132; 117;		[N]; [Branco et al.
31.90	7	Hexadecanoic acid (TMS ester)	75; 73	328	2020] ⁵⁰
Saturated fo	tty acids	(alpha, omega-dicarboxylic acid)			
			317; 217; 201; 171; 129; 117;		
25.87	5	Azelaic acid (di TMS ester)	75; 73	332	[N]
2-Hydroxyad	ids (aliph	atic)			
5.15	1	Lactic acid (TMS ether; TMS ester)	219; 190; 147; 117; 75; 73	234	[N]
unknown co	mpound				
6.91	2	Unknown compound	233; 205; 147; 131; 75; 73	n.d.	n.d.
40.90	9	Unknown compound	415; 299; 217; 204; 129; 117; 73	n.d.	n.d.
48.82	10	Unknown compound	662; 634; 147; 73	n.d.	n.d.

Supplementary Fig. 11 Carbohydrate composition (% of anhydro sugars in the monosaccharide) from five different samples. a Purified pectin (CAP). b Dialysis treated pectin (DCAP) that is collected through the scheme (Supplementary Fig. 6).

Supplementary Table 3. Structural features of the ethanol precipitated pectin after dialysis (DCA-P) from five different samples: wood; bark; inner bark; fibre bundle; and parenchyma tissues. The relative amount of linkage patterns of each neutral sugar was estimated from volume integrals of ¹H–¹³C correlation contours (Fig. 2).

linkages	abbreviation	WW-DCAP	WB- DCAP	WIB- DCAP	WBFB-DCAP	Parenchy-DCAP
Arabinose Interunit Linkages (%)						
→5)-a-Araf-(1→	A1,5	61	98	82	90	78
→2,3,5)-a-Araf-(1→	A2,3,5	0	2	7	0	13
→2,5)-a-Araf-(1→	A2,5	17	0	11	10	9
β-Araf-(1→	A1	22	0	0	0	0
Rhamnose Interunit Linkages (%)						
→2)-a-Rhap-(1→	R1,2	n.d.	50	57	n.d.	n.d.
→2,4)-a-Rhap-(1→	R1,2,4	n.d.	50	43	n.d.	n.d.
Galactose Interunit Linkages (%)						
β-Galp-(1→	Ga	13	21	6	16	0
→4)-β-Galp-(1→	Ga1,4	87	79	94	84	100

Supplementary Table 4. Chemical shift assignments for dialyzed citric acid extracted pectin (DCA-P) (Supplementary Fig. 6) of willow wood (WW) and bark (WB; WIB; WBFB; and Parenchyma), referenced to TSP-d4 ($\delta C/\delta H$, 0/ 0 ppm).

D 1	x 1 11	C-1	C-2	C-3	C-4	C-5	C-6	CIL CO	GU CO	CUL O
Residue	Label	H-1	H-2	H-3	H-4	H-5;5′	H-6;6'	<u>C</u> H ₃ CO	СН <u>3С</u> О	$\underline{C}H_{3}O$
$(A) = C_{2} + A (C_{2}) M_{2} (1)$	GalpA	102.9	70.8	71.6	82.1	73.5				55.8
\rightarrow 4)- α -GalpA-0-OMe-(1-	(OMe)	5.4	3.7	4.11	4.31	5.1				3.81
	GalpA	102.9	71.6	73.7	n.d.	73.5		23.5		
\rightarrow 4)- α -GalpA-3-OAc-(1 \rightarrow	(OAc)	5.4	4.11	5.14	n.d.	5.1		2.19		
\rightarrow 3 4)- α -GalnA-(1 \rightarrow	GalnA1.3.4	101.5	n.d.	n.d.	n.d.	n.d.				
(1) & Supri (1)	<i>Sup</i> 111,0,1	5.08	n.d.	n.d.	n.d.	n.d.				
$(4) = C_{-1} + (1)$	CalmA	102.9	69.3	69.7	83.2	74.2				
\rightarrow 4)- α -OalpA-(1 \rightarrow	GalpA	5.4	3.83	3.9	4.27	4.73				
$(5) \approx Amof(1)$	٨	110.6	84.2	79.5	85.4	69.4				
\rightarrow 5)- α -Alaj- $(1\rightarrow$	A _{1,5}	5.09	4.15	3.98	4.22	3.81				
(2) = A = f(1)	٨	109.4	84.2	87	84.5	64.1				
\rightarrow 5)- α -Araj-(1 \rightarrow	A _{1,3}	5.26	4.31	4.07	4.23	3.84;3.73				
\rightarrow 2,3,5)- α -Araf-(1 \rightarrow	•	110.1	87.96	83.3	85.2	69.2				
	A _{2,3,5}	5.18	4.32	4.26	4.3	3.95				
$\rightarrow 2,5$)- α -Araf-(1 \rightarrow A _{2,5}	٨	110.1	89.6	n.d.	n.d.	n.d.				
	A _{2,5}	5.18	4.17	n.d.	n.d.	n.d.				
0 • C(1	A 0	102.7	79.7	76.5	85.2	65.5				
p-Araj-(1→	A ₁ -p	5.42	4.03	3.98	3.91	3.82				
a Amof(1)	A a	112.3	79.7	76.5	85.2	65.5				
α -Araj-(1 \rightarrow	Α ₁ -α	5.25	4.03	3.98	3.91	3.82				
λ_{2} = Dhen (1)	D1 2	112.2	78.3	69.7	73.4	72.9	19.6			
→2)-a-Kiiap-(1→	K1,2	5.26	4.18	3.89	3.43	3.67	1.26			
(1)	D1 2 4	112.2	78.3	72.7	84	69.9	19.6			
→2,4)-d-Kiidp-(1→	K1,2,4	5.26	4.18	4.06	3.79	3.87	1.26			
0.0.1.(1	0	106.1	74.7	75	n.d.	77.6	63.6			
p -Gal p -(1 \rightarrow	Ga	4.52	3.53	3.65	n.d.	3.72	3.84			
(4) 0 C - 1- (1)	C-14	107.4	75.9	76.4	80.7	79.8	63.7			
\rightarrow 4)-p-Gal <i>p</i> -(1 \rightarrow	Ga1,4	4.65	3.69	3.78	4.17	3.67	3.83			
4) - D Cl (1	0/1.4	102.5	74.5	76.5	79.7	74.2	63.7			
\rightarrow 4)- α -D-Glcp-(1 \rightarrow	511,4	5.41	3.64	3.98	3.66	3.84	3.83			
α-Xyl-(1→	Y	101.5	71.6	79.4	70.1	63.1 (5a); 5b overlap				
	X	5.08	3.82	3.84	4.34	3.46 (5a);5b overlap				

Supplementary Fig. 12 Overall chemical composition (% of the dry mass) (left) and carbohydrate composition (% of anhydro sugars in the monosaccharide) (right) from five different samples. a Willow wood. b Willow bark. c Willow inner bark. d Willow bark fibre bundle. e Parenchyma tissues that are collected from their original form (O), solid residues after the citric acid treatment (C), solid residues after the peracetic acid delignification (P), solid residues after the DMSO extraction (DMSO), and the recovered hemicellulose (H). (Supplementary Fig. 6)

Supplementary Fig. 13 NMR spectrum of the purified hemicellulose from wood (WW); bark (WB); inner bark (WIB); fiber bundle (WB FB) and parenchyma tissues (Parenchyma). a ¹H. b ¹³C. For full spectrum of the ¹³C spectra, see Supplementary Fig. 15. For assignments, see Supplementary Table 5–6.

	abbreviation	ww	WB	WIB	WBFB	parenchyma	Yuan et al. 2010 ³⁴	Sun et al. 2013 ⁹	authentic starch
(1-4)-β-D-Xylp (1)	Xy-1	4.38	4.38	4.38	4.38	4.38	4.41	4.28	
(1-4)-β-D-Xylp (5b)	Xy-5b	4.00	4.00	4.00	4.00	4.00	4.04	3.92	
(1-4)-β-D-Xylp (4)	Xy-4	3.58	3.58	3.58	3.58	_	3.72	3.61	
(1-4)-β-D-Xylp (3)	Ху-З	3.42	3.42	3.42	3.42	3.42	3.50	3.34	
(1-4)-β-D-Xylp (5a)	Xy-5a	3.27	3.27	3.27	3.27	3.27	3.32	3.22	
(1-4)-β-D-Xylp (2)	Xy-2	3.20	3.20	3.20	3.20	3.20	3.23	3.13	
4-O-Me-α-D-Glucuronic acid (C1H1)	Xy-MG-1	5.06	5.06	5.06	5.06	5.06	5.22	5.13	
4-O-Me-α-D-Glucuronic acid (C5H5)	Xy-MG-5	4.26	4.26	4.26	4.26	4.26	-	4.15	
4-O-Me-α-D-Glucuronic acid (C2H2)	Xy-MG-2	3.47	3.47	3.47	3.47	3.47	-	3.49	
methoxy group	Xy-MG-OCH3	3.33	3.33	3.33	-	_	3.40	3.34	
acetyl CH3 (-C=O CH3)	Xy-Acetyl	2.01	2.01	2.01	2.01	2.01	—	—	
(1-4)-β-D-Xylp-1-O-(4-OMe-a-D- GlcpA)	Ху-1'	4.49	4.49	4.49	4.49	-	4.58	_	
Starch (1)	St-1					5.23			5.228
Starch (2)	St-2					3.44			3.44
Starch (3)	St-3					3.82			3.82
Starch (4)	St-4					3.49			3.49
Starch (5)	St-5					3.73			3.73
Starch (6a)	St-6a					3.77			3.77
Starch (6b)	St-6b					3.68			3.68

Supplementary Table 5. Assignments of the ¹H NMR spectra of willow hemicelluloses (WW; WB; WIB; WBFB; Parenchyma) in comparison to the literatures^{9, 34} and authentic starch.

Supplementary Table 6. Assignments of the ¹³C NMR spectra of willow hemicelluloses (WW; WB; WIB; WBFB; Parenchyma) in comparison to the literatures^{9,34,39,38} and authentic starch.

	abbreviation	ww	WB	WIB	WBFB	parench yma	Yuan et al. 2010 ³⁴	Sun et al. 2014 ⁹	Nobre et al. 2018 ³⁹	Nishimura et al. 2018 ³⁸	authentic starch
4-O-Me-α-D- Glucuronic acid(C6H6) GlcpA	Xy-MG-6	169.30	169.30	169.30	169.30	-	173.4	177.1	_	-	
(1-4)-β-D-Glcp (C1H1) or glucomannan C1'/H1' (glucose)	GLMA-1'	_	102.99	102.99	102.99	102.99	-	-	_	103.1	
(1-4)-β-D-Xylp (C1H1)	Xy-1	102.00	102.00	102.00	102.00	102.00	101.73	102	-	-	
glucomannan (1) (mannose branch side)	GLMA-1	-	100.40	100.40	100.40	100.40	-	-	-	100.6	
(1-4)-β-D-Xylp (C1'H1')	Xy-1'	101.20	-	-	101.20	101.20	-	-	-	-	
galactomannan (1)	GAMA-1	-	99.29	99.29	99.29	99.29	-	-	100.62	_	
4-O-Me-α-D- Glucuronic acid (C1H1) GlcpA	Xy-MG-1	97.60	_	_	_	-	97.6	97.5	-	-	
4-O-Me-α-D- Glucuronic acid (C4H4) GlcpA	Xy-MG-4	82.00	-	-	-	-	82.49	82.7	-	-	
(1-4)-β-D-Xylp (C2'H2')	Xy-2'	77.00	77.00	77.00	77.00	77.00	-	-	-	_	
(1-4)-β-D-Xylp (4)	Xy-4	75.76	75.76	75.76	75.76	75.76	76.42	76.0	-	_	
(1-4)-β-D-Xylp (3)	Xy-3	75.00	75.00	75.00	75.00	75.00	73.73	74.9	_	-	
galactomannan (5)	GAMA-5		74.20	74.20	74.20	74.20	-	-	74.05	_	
(1-4)-β-D-Xylp (2)	Xy-2	73.20	73.20	73.20	73.20	73.20	72.76	73.3	-	_	
glucomannan (3)	GLMA-3	-	-	-	-	72.83	_	-	_	71.0	
4-O-Me-α-D- Glucuronic acid (C3H3) GlcpA	Xy-MG-3	72.20	72.20	72.20	72.20	_	_	-	_	-	
4-O-Me-α-D- Glucuronic acid (C5H5) GlcpA	Xy-MG-5	72.10	72.10	72.10	72.10	-	72.27	72.2	-	-	
glucomannan (2)	GLMA-2 or GAMA-3	-	-	-	-	71.84	-	-	-	70.5	
4-O-Me-α-D- Glucuronic acid (C2H2) GlcpA	Xy-MG-2	71.60	71.60	71.60	71.60	-	71.33	-	-	-	
(1-4)-β-D-Xylp (5)	Xy-5	63.60	63.60	63.45	63.45	63.60	63.02	63.4	-	-	
branched galactose of GAMA (6)	GAMA-6'	-	-	-	-	60.57	-	-	61.80	-	
4-O-Me-α-D- Glucuronic acid (methoxyl) GlcpA	Xy-MG-OCH3	56.20	56.20	56.17	56.17	56.20	-	-	_	_	
unknown	unknown	40.41	40.41	40.41	40.41	40.41	-	-	-	_	
acetyl CH3	Xy-Acetyl	20.85	20.83	20.83	20.83	-		_		-	
unknown	unknown	18.54	18.54	18.54	18.54	-	-	-	-	-	
Starch (1)	St-1					100.39					100.40
Starch (2)	St-2					72.15					72.13
Starch (3)	St-3					73.45					73.45
Starch (4)	St-4					79.15					79.16
Starch (5)	St-5					71.76					71.80
Starch (6)	St-6					60.63					60.62

Supplementary Fig. 14 FT-IR spectrum of five different samples. a Willow wood. **b** Willow bark. **c** Willow inner bark. **d** Willow bark fibre bundle. **e** Parenchyma tissues that are collected from their original form (O), solid residues after peracetic acid delignification (P), solid residues after the DMSO extraction (DMSO), and the recovered hemicellulose (H). The assignment of FT-IR spectrum is summarized at **Supplementary Table 7**.

Supplementary Table 7. The main functional group assignment of recovered hemicellulose fractions from willow wood and bark in FT-IR spectra based on the literature¹².

wave numbers (cm ⁻¹)	functional group	compounds
1154; 1156; 1164	-C-O-C fragment	arabinosyl side branches, pyranose ring skeletal (hemicellulose)
1236	 COOH vibration stretching of glucuronic acid (Xy-MG) 	glucuronic acid (hemicellulose)
1376	C-CH3 stretching; C–H vibration of polysaccharides	cellulose
1500	lignin aromatics	lignin
1594 or 1603	lignin aromatics	lignin
1628	C=O stretching carboxylation or from the contribution of protein amide group	protein
1735	C=O stretching of hemicellulose	hemicellulose

Supplementary Fig. 15 NMR spectrum of the purified hemicellulose (H) and authentic starch in the solvent of DMSO-*d6*/ pyridine-*d5* (v/v, 4/1). a ¹³C of Willow wood (integral ratio of Xy-MG-OCH3/ Xy-MG-6 = 1/2.8323). b ¹³C of willow bark (integral ratio of Xy-MG -OCH3/ Xy-MG-6 = 1/9.0533). c ¹³C of willow inner bark (integral ratio of Xy-MG -OCH3/ Xy-MG-6 = 1/0.6501). d ¹³C of willow bark fiber bundle (integral ratio of Xy-MG - OCH3/ Xy-MG-6 = 1/0.3737). e ¹³C of parenchyma tissues. f ¹H NMR of authentic starch. g ¹³C NMR of authentic starch.

Supplementary Table 8. Assignments of the ¹H–¹³C correlation peaks in the 2D-HSQC spectra of willow hemicelluloses (WW; WB; WIB; WBFB; and Parenchyma) in comparison to the literatures^{9,12,34,39,38} and authentic starch.

full name	abbreviations	WW (solvent of DMSO-d6/ pyridine- d5)	WB (DMSO-d6/ pyridine- d5)	WIB (DMSO- <i>d6/</i> pyridine- <i>d5</i>)	WBFB (DMSO- <i>d6/</i> pyridine- <i>d5</i>)	parenchyma (DMSO- <i>d6/</i> pyridine- <i>d5</i>)	Nishimura et al. 2018 ³⁸ (DMSO- <i>d6</i>)	Nobre et al. 2018 ³⁹ (D2O)	Ding et al. 2019 ¹² (D2O)	Yuan et al. 2010 ³⁴ (D2O)	Sun et al. 2014 ⁹ (D2O)
acetyl CH3	Xv-Acetyl	20.5/1.99	20.5/1.99	20.5/1.99	20.5/1.99	20.5/1.99	_	_	22.7/1.9	_	_
(1-4)-β-D-Xvlp (5b)	Xv-5b	63.0/3.98	63.0/3.98	63.0/3.98	63.0/3.98	63.0/3.98	_	_	62.3/4.2	63.02/4.04	63.1/3.98
(1-4)-β-D-Xvlp (5a)	Xv-5a	62.9/3.29	62.9/3.29	62.9/3.29	62.9/3.29	62.9/3.29	_	_	62.5/3.4	63.02/3.32	63.1/3.28
(1-4)-β-D-Xvlp (2)	Xv-2	72.4/3.16	72.4/3.16	72.4/3.16	72.4/3.16	72.4/3.16	_	_	72.2/3.2	72.76/3.23	73.0/3.19
(1 4) 8 D Xule (2)	×, 2	71.0/2.20	71.0/2.20	71.0/2.20	71.0/2.20	71.0/2.20			75.0/2.4	72 72/2 50	74 5 /2 41
(1-4)-p-D-Xyip (3)	Ху-3	/1.8/3.30	/1.8/3.30	/1.8/3.30	/1.8/3.30	/1.8/3.30	_	_	75.0/3.4	/3./3/3.50	74.5/3.41
(1-4)-β-D-Xylp (4)	Xy-4	75.5/3.68	75.5/3.68	75.5/3.68	75.5/3.68	75.5/3.68	_	-	75.7/3.8	76.42/3.72	76.0/3.67
(1-4)-β-D-Xylp (C1H1)	Xy-1	101.9/4.37	101.9/4.37	101.9/4.37	101.9/4.37	101.9/4.37	_	-	101.1/4.4	101.73/4.41	_
2-O-acetyl-β-D-Xylp (2)	Xy-2-O-Ac-2	73.1/4.63	73.1/4.63	73.1/4.63		_	_	-	73.6/4.6	_	_
2-O-acetyl-β-D-Xylp (1)	Xy-2-O-Ac-1	99.6/4.57	99.6/4.57	99.6/4.57	-	-	-	-	99.4/4.6	-	-
3-O-acetyl-β-D-Xylp (1)	Xy-3-O-Ac-1	101.9/4.39	101.9/4.39	101.9/4.39	_	_	_	-	101.9/4.3	_	_
3-O-acetyl-β-D-Xylp (3)	Xy-3-O-Ac-3	74.66/4.92	74.66/4.92	74.66/4.92	_	-	_	-	-	_	_
2.3-di-O-Ac-b-D-Xylp	Xy-2,3-di-O- Ac-1	-	-	-	-	99.09/4.75	-	-	-	-	-
4-O-Me-α-D-Glucuronic acid(C1H1) GlcpA	Xy-MG-1	97.2/5.31	-	-	_	_	-	-	97.5/5.3	97.60/5.22	97.4/5.19
4-O-Me-α-D-Glucuronic acid(C2H2) GlcpA	Xy-MG-2	71.72/3.57	-	_	_	_	_	_	_	71.33/3.52	71.5/3.46
4-O-Me-α-D-Glucuronic acid(C3H3) GlcpA	Xy-MG-3	71.81/3.74	-	_	-	_	_	-	-	72.18/3.70	72.2/3.60
4-O-Me-α-D-Glucuronic acid(C4H4) GlcpA	Xy-MG-4	81.3/3.23	-	-	-	_	-	-	81.7/3.23	82.49/3.16	82.4/3.11
4-O-Me-α-D-Glucuronic acid(C5H5) GlcpA	Xy-MG-5	70.18/4.01	-	-	-	_	-	-	-	72.27/4.25	72.1/4.22
4-O-Me-α-D-Glucuronic acid (methoxyl) GlcpA	Xy-MG-OCH3	55.8/3.46	55.8/3.46	55.8/3.46	55.8/3.46	—	-	-	55.6/3.8	-	-
galactomannan (1)	GAMA-1	-	98.9/4.76	98.9/4.76	98.9/4.76	-	-	100.62/4.74	_	-	-
galactomannan (2)	GAMA-2	-	70.2/4.02	70.2/4.02	70.2/4.02	-	-	70.59/4.12	-	-	-
galactomannan (3)	GAMA-3	-	71.73/3.77	71.73/3.77	71.73/3.77	_	_	71.83/3.79	-	_	-
galactomannan (4)	GAMA-4	_	76.06/3.78	76.06/3.78	76.06/3.78	_	_	77.36/3.86	_	_	_
galactomannan (5)	GAMA-5	_	74.02/3.65	74.02/3.65	74.02/3.65	_	_	74.05/3.64	_	_	_
galactomannan (6)	GAMA-6	_	66.6/4.12	66.6/4.12	66.6/4.12	_	_	67.22/3.96	_	_	_
branched galactose of GAMA (1)	GAMA-1'	_	97.3/5.34	97.3/5.34	97.3/5.34	97.3/5.34	_	99.48/5.02	_	_	_
branched galactose of GAMA (2)	GAMA-2'	_	67.7/3.74	67.7/3.74	67.7/3.74	67.7/3.74	_	68.55/3.80	_	_	-
branched galactose of GAMA (3)	GAMA-3'	_	71.1/3.84	71.1/3.84	71.1/3.84	71.1/3.84	_	70.10/3.92	-	_	_
branched galactose of GAMA (4)	GAMA-4'	_	70.9/4.02	70.9/4.02	70.9/4.02	70.9/4.02	_	69.96/4.00	_	_	_
branched galactose of GAMA (5)	GAMA-5'	_	71.92/3.86	71.92/3.86	71.92/3.86	71.92/3.86	_	71.42/3.89	_	_	-
branched galactose of GAMA (6)	GAMA-6'	_	60.88/3.67	60.88/3.67	60.88/3.67	60.88/3.67	_	61.80/3.76	_	_	_
glucomannan C1'/H1' (glucose)	GLMA-1'	103.1/4.25	103.1/4.25	103.1/4.25	103.1/4.25	102.6/4.45	100.5/4.54	-	-	-	102.1/4.34
glucomannan (1) (mannose branch side)	GLMA-1	-	101.2/4.49	101.2/4.49	101.2/4.49	101.2/4.49	100.6/4.46	-	-	_	-
glucomannan (2)	GLMA-2	_	71.82/3.59	71.82/3.59	71.82/3.59	71.82/3.59	70.5/3.65	_	_	_	_
glucomannan (3)	GLMA-3	_	72.82/3.72	72.82/3.72	72.82/3.72	72.82/3.72	71.0/3.62	_	_	_	_
glucomannan (4)	GLMA-4	-	76.97/3.76	76.97/3.76	76.97/3.76	76.97/3.76	78.0/3.76	-	-	-	-
glucomannan (5)	GLMA-5	-	69.3/3.87	69.3/3.87	69.3/3.87	69.3/3.87	69.0/3.64	_	-	-	-
glucomannan (6)	GLMA-6	_	68.7/3.73	68.7/3.73	68.7/3.73	68.7/3.73	68.1/3.48	_	-	_	_
Starch (1)	St-1					100.08/ 5.228					
Starch (2)	St-2					72.05/3.44					
Starch (3)	St-3					73.07/3.82					
Starch (4)	St-4					79.03/3.49					
Starch (5)	St-5					71.69/3.73					
Starch (6a)	St-6a					60.44/3.77					
Starch (6b)	St-6b					60.33/3.68					

Supplementary Fig. 16 2D heteronuclear single quantum coherence (HSQC) NMR spectrum ($\delta C/\delta H$, 0– 160/0–8.3 ppm) of the purified hemicellulose. a Willow wood. b Willow bark. c Willow inner bark. d Willow bark fiber bundle. e Parenchyma tissues. The phenylalanine protein ($\delta C/\delta H$, 129/7.20 ppm)⁵ was identified and highlighted in red circle.

Supplementary Fig. 17 SEC molecular weight (Mw) spectrum distributions of willow samples (WW; WB; WIB; WBFB; and Parenchyma tissues) from the fractionation scheme supplementary Fig. 6. a Hemicellulose. b Purified "cellulose" (extracted as a side fraction from the DMSO purification of hemicellulose). For their real molecular weight (MW) values, see Supplementary Table 9.

Supplementary Table 9. SEC molecular weight (Mw) spectrum distributions that is measured by gelpermeation chromatography (GPC). a Purified hemicellulose. b Purified cellulose.

		h	emicellulos	se				cellulose		
	Mn (I-D-)	Mw (LDa)	Mz	Mp	PD	Mn (hDa)	Mw (IsDa)	Mz	Mp	PD
	(KDa)	(KDa)	(KDa)	(KDa)		(KDa)	(KDa)	(KDa)	(KDa)	
WW	39.0	41.6	44.6	39.8	1.1	69.1	280.0	455.3	348.2	4.1
WB	27.4	38.5	49.1	35.7	1.4	47.4	238.8	446.6	402.3	5.0
WIB	32.9	45.8	59.9	43.8	1.4	48.9	231.9	428.1	335.1	4.8
WBFB	16.2	27.1	40.8	24.7	1.7	35.4	151.5	325.0	152.5	4.3
Parenchyma	9.3	14.4	21.1	17.0	1.6	36.4	262.8	400.8	35.4	8.9

Supplementary Table 10. Determination of the "Klason Lignin" (100 %) from the 1) original biomass (as received); 2) "all-pretreatment" refers to the solid residue after extraction treatment (DCM/ acetone/ water), pepsin treatment, and 0.1M NaOH treatment; 3) refers to the solid residue after "all-pretreatment" plus the dioxane-water extraction treatment. Calculation of 'klason lignin' removal (100%) = (Klason lignin (2)-Klason lignin (3))/ Klason lignin (2). Standard deviations are included in the parenthesis.

	1) original	2) after "all-pretreatment"	3) after "dioxane-extraction"	"klason lignin" removal
ww	0.19 (0.01)	0.19	0.03 (0.004)	0.84
WB	0.28 (0.01)	0.16	0.12 (0.014)	0.22
WIB	0.17 (0.001)	0.07	0.04 (0.001)	0.42
WBFB	0.17 (0.01)	0.10	0.05 (0.008)	0.52

Supplementary Fig. 18 Overall chemical composition (% of the dry mass) (left) and carbohydrate composition (% of anhydro sugars in the monosaccharide from the dry mass) (right) from five different samples. a Willow wood. b Willow bark. c Willow inner bark. d Willow bark fiber bundle. e Parenchyma tissues that are collected from their original form (O), 0.1M NaOH treated solid residue (N), and solid residues after the dioxane extraction (Dioxane) (Supplementary Fig. 6). For abbreviations, see Supplementary Fig. 1–5. Standard deviations are included as the error bars.

Supplementary Fig. 19 FT-IR spectrum of four different samples that is collected from their original form (O), 0.1M NaOH treated solid residue (N), solid residues after the dioxane/ water extraction (Dioxane), and the recovered dioxane lignin (L) (Supplementary Fig. 6). a Wood. b Bark. c Inner bark. d Fiber bundle. For abbreviations, see Supplementary Fig. 1–5.

¹³ C shift [ppm]	assignment
20.9	C4-C8 of the interflavonoid linkages of tannin or some aliphatic fats (aliphatic chains); extractive fats
30.3	aliphatic methylenes linked to carboxylic moieties in suberin
33.2	 —OCH methylene adjacent to ester groups in suberin
56.1	M—COOCH3 in pectin
62.6 and 65.1	C6 carbon of non-crystalline and crystalline cellulose
72.40	C2,3,5 of cellulose
75.0	C2,3,5 of cellulose and hemicellulose
83.9	C4 carbon of non-crystalline cellulose
89.0	C4 carbon of crystalline cellulose
105.4	C1 carbon of cellulose
118.9	C2,6 aromatic carbons of syringyl in lignin
136.4	C1 aromatic carbons of syringyl in lignin
148	C4 aromatic carbons of syringyl in lignin
154	C3 and C5 aromatic carbons of syringyl in lignin
174.3	carboxyl groups of hemicelluloses or suberin

Supplementary Table 11. Assignments of the dioxane lignin in the CP/MAS NMR spectra from willow wood (WW) and bark (WB; WIB; WBFB; and Parenchyma).

Supplementary Table 12. Assignments of the ¹³C–¹H correlation peaks in the 2D HSQC spectra of dioxane lignin (Supplementary Fig. 5) from willow wood (WW) and bark (WB; WIB; WBFB; and Parenchyma).

label	δC/δ H (ppm)	assignment
B _β	53.3/3.51	C_{β} – H_{β} in phenylcoumaran substructures (B)
C _β	53.8/3.10	$C_{\beta}-H_{\beta}$ in $\beta-\beta'$ resinol substructures (C)
−OCH ₃	55.6/3.74	C–H in methoxyls
Aγ	59.8/3.76 and 58.9/3.52	C_{γ} – H_{γ} in γ -hydroxylated β -O-4' substructures (A)
Bγ	62.9/3.77	C_{γ} –H $_{\gamma}$ in phenylcoumaran substructures (B)
Cγ	71.2/3.87 and 71.1/4.22	C_{γ} – H_{γ} in β – β' resinol substructures (C)
Aα	71.9/5.03	C_{α} – H_{α} in β -O-4' substructures (A) linked to S-unit
$A_{\beta(H/G)}$	84.0/4.45	$C_{\beta}\text{-}H_{\beta}$ in $\beta\text{-}O\text{-}4'$ substructures (A) linked to H- and G- unit
Cα	85.1/4.72	C_{α} -H _{α} in β - β ' resinol substructures (C)
$A_{\beta(S)}$	86.1/4.25	C_{β} – H_{β} in β -O-4' substructures linked (A) to S unit
Bα	87.2/5.59	C_{α} – H_{α} in phenylcoumaran substructures (B)
S _{2,6}	104.2/6.80 and 106.5/7.40	C_2 - H_2 and C_6 - H_6 in etherified syringyl units (S)
G ₂	110.8/6.95 and 111.3/7.10	C_2-H_2 in guaiacyl units (G)
FA_{β}	114.28/ 6.51	C_{β} -H _{β} in ferulic acid substructures (FA)
G_5/G_6	114.8/6.80 and 119.1/6.90	C_5-H_5 and C_6-H_6 in guaiacyl units (G)
FA_{α}	144.39/ 7.61	C_{α} -H _{α} in ferulic acid substructures (FA)

Supplementary Fig. 20 CPMAS NMR spectrums of four different samples that are collected from their original form (O), 0.1M NaOH treated solid residue (N), solid residues after the dioxane extraction (Dioxane), and the recovered dioxane lignin (L). a Wood. b Bark. c Inner bark. d Fiber bundle. The cellulytic enzyme lignin (CEL) is also included as the reference for comparison.¹⁵

Supplementary Fig. 21 Quantitative liquid state ¹³C NMR spectrum of the recovered dioxane lignin (DMSO-d6/pyridine-d5, v/v 4/1; 1,3,5-trioxane as the internal standard). a Willow wood (WW). b Willow bark (WB). c Willow inner bark (WIB). d Willow bark fibre bundle (WB FB).

Supplementary Fig. 22 HSQC NMR spectrum of the recovered dioxane lignin (DMSO-d6/pyridine-d5, v/v 4/1). a Willow wood (WW). b Willow bark (WB). c Willow inner bark (WIB). d Willow bark fibre bundle (WB FB).

Supplementary Fig. 23 The SEC elution profile of different lignin. **a** Willow dioxane lignin (WW; WB; WIB; WBFB). **b** Different WW lignin (Dioxane lignin, CEL, and WCW). **c** Different WB lignin (Dioxane lignin, CEL, and WCW). **d** Different WIB lignin (Dioxane lignin, CEL, and WCW). For abbreviations, see **Supplementary Fig. 1–5**.

Supplementary Table 13. Average molecular weight (g/mol) of the dioxane lignin fractions in comparison to the whole cell wall (WCW) and cellulytic enzyme lignin (CEL)¹⁵ fractions from both hybrids of Klara and Karin. Mn: number-average molecular weight; Mw: weight-average molecular weight which can be averaged according to the weight of molecules; Mp: peak maximum molar mass.

source	sample	abbreviations	Mn	Mw	PDI	Мр
This study	Klara WW dioxane Lignin	WW_L	1575	12260	7.8	24330
This study	Klara WB dioxane Lignin	WB_L	1951	12740	6.5	24470
This study	Klara WIB dioxane Lignin	WIB_L	2187	11130	5.1	24370
This study	Klara WB FB dioxane Lignin	WBFB_L	2613	12370	4.7	24440
Dou et al. 2017 ¹⁵	Karin wood ww-wcw	WW_WCW	365.2	7768	21.3	161.4
Dou et al. 2017 ¹⁵	Karin wood ww-el	WW_CEL	699.3	12940	18.5	36400
Dou et al. 2017 ¹⁵	Karin bark WCW	WB_WCW	1059	5769	5.4	1437
Dou et al. 2017 ¹⁵	Karin bark enzyme lignin	WB_CEL	1027	4348	4.2	1524
Dou et al. 2017 ¹⁵	Karin inner bark WCW	WIB_WCW	1036	5040	4.9	1469
Dou et al. 2017 ¹⁵	Karin inner bark enzyme Lignin	WIB_CEL	2295	16340	7.1	28540

Supplementary Table 14. The light green coloured cells indicate the tailored enzyme cocktail after screening and selection based on structural features of pectin and hemicellulose of willow wood (WW). Screening % refers to the percentages of candidate enzymes that can be ruled out theoretically based on structural characteristics of the substrate (i.e., WW). Literatures refer to **Table 4**.

Substrate (screening	Specif ic	Cleaving glycosidic bond	Enzyme	EC number	CAZy family	Abbrevi ation	Characteristics on the preferred structural features of the substrate
%)	area		nolvgalacturona	3 2 1 67	GH28	Exo-PG	nrefer non-esterified HG, show decreasing activity
			se	3.2.1.15	GH28	Endo-PG	with increasing degree of methyl-esterification
			polymethyl			Endo-	HG with at least 75% of the carboxyl groups are
		clopyo g (1.4)	galacturonase	3.2.1	GH28	PMG	esterified
	HG	cleave α-(1,4)- glycosidic bonds of GalpA backbone	pectate lyase	4.2.2.2	PL1/PL2 /PL3/PL 9/PL10	Endo- PGL	low methyl-esterified HG/non-esterified HG
			pectin lyase	4.2.2.10	PL1	Endo- PNL	highly methyl-esterified HG
			xylogalacturona n hydrolase	3.2.1	GH28	Endo- XGH	cleaves the β-Xylp substituted GalpA backbone, prefers to act between two xylosidated GalA units
	HG		pectin methyl esterase	3.1.1.11	CE8	PME	esterified HG
	(side	active on the side chains of HG	pectin/rhamno	3.1.1.6	CE12	PAE,	
Destin (24)	chain)		galacturonan	2.1.1.00	0510	RGAE	acetylated HG/ acetylated RG
Pectin (84)		cloavo (1.2)	acetyl esterase	3.1.1.86	CE16	PAE	
		glycosidic bonds between D-GalpA and L-Rhap	nds rhamnogalactur 3.2. alpA hydrolase 1		GH28	Endo- RGH	activity is not hindered by galactose substitutions on the RG-I backbone
		cleave α-(1,4) glycosidic bonds between Rhap and GalpA	rhamnogalactur	4.2.2.23	PL4	Endo- RGL	activity is increased by removal of acetyl groups and Ara side chains, decreased by removal of Gal side chains
	RG-I		onan iyase	4.2.2.23	PL11	Endo- RGL	prefer RG-I backbone having galactan side chains without acetyl substitution
		cleave glycosidic	endo-α-L-1,5-	3.2.1.99	GH43	Endo-	random hydrolyzing α -(1,4)-glycosidic bonds of
			endo-β-1,4-	2.2.4.00	01152	Ara Endo-	arabinan random hydrolyzing β -(1,4)-glycosidic bonds of
		arabinan/galactan	galactanase	3.2.1.89	GH53	Gal	arabinogalactan I
			endo-β-1,6- galactanase	3.2.1.16 4	GH30	Endo- Gal	random hydrolyzing β-(1,6)-glycosidic bonds of arabinogalactan II
		cleave β-(1,4)- glycosidic bonds of xylan backbone	endo-1,4-β- xylanase	3.2.1.8	GH10		require two unsubstituted consecutive Xylp,
	xylan (main chain)					Endo-	higher tolerance to substituents than GH10
					GH11	Xyn	prefer unsubstituted xylan, require three
			arabinoxylanas e	3.2.1	GH5		hydrolyzing arabinoxylan but does not attack unsubstituted xylan
			glucuronoxylan	3.2.1.13 6	GH30		hydrolyzing glucuronoxylan but does not attack
					CE1		action on 2,3-di-O-acetylated Xylp in xylan
					CE3		deacetylated for O-2 or O-3 monoacetylated Xylp in xylan
			esterase	3.1.1.72	CE4	AcXE	deacetylated effectively for singly 2- or 3-O-
					CEE		acetylated Xylp residues in xylan
					CES	-	descetulated for 2.2 di O acetulated Xylp III Xylali
					CLU		hydrolyzing $(1 \rightarrow 3)$ - α -l-arabinofuranosyl residues
hemicellul ose (70)	xylan (side	active on the side			GH43		of doubly substituted xylopyranosyl residues in arabinoxylan
	chain	chains of xylan					release (1 \rightarrow 2) and (1 \rightarrow 3)- α -L-arabinofuranosyl
	5)		α-L-	22155	GH51	Abf	residues from mono-substituted xylopyranosyl
			dase	3.2.1.55		ADT	specific for Q-3 linked arabinofuranosyl residues
			4450		GH54		Xylp is mono-substituted or di-substituted
							removing arabinofuranosyl residues linked in
					GH62		position O-2 or O-3 of mono-substituted xylose
			<i>a</i> -	3 2 1 13			units in arabinoxylan
			glucuronidase	9	GH115		from polymeric xylan
		cleave β-(1,4)-			GH5		prefer glucomannan
	mann	glycosidic bonds of mannan backbone	endo-β-1,4- mannanase	3.2.1.78	GH26	Man	prefer galactomannan
	an	cleave T-α-(1,6)-		3.2.1.22			removing the g 1.6 linked d relectory report
		glycosidic bonds of galactomannan	α-galactosidase		GH27		substituents attached to the mannan backbone

Supplementary Table 15. The light green colored cells indicate the tailored enzyme cocktail after screening and selection based on structural features of pectin and hemicellulose of willow bark (WB). Screening % refers to the percentages of candidate enzymes that can be ruled out theoretically based on structural characteristics of the substrate (i.e., WB). Literatures refer to Table 4.

Substrate	Specif	Cleaving glycosidic	F	EC	CAZy	Abbre	Characteristics on the preferred structural features of		
(screening %)	area	bond	Enzyme	numb er	family	viatio	the substrate		
			polygalacturonas	3.2.1. 67	GH28	Exo- PG	prefer non-esterified HG, show decreasing activity with		
			e	3.2.1. 15	GH28	Endo- PG	increasing degree of methyl-esterification		
		cleave α-(1,4)- glycosidic bonds of GalpA backbone	polymethyl galacturonase	3.2.1. -	GH28	Endo- PMG	HG with at least 75% of the carboxyl groups are esterified		
	HG		pectate lyase	4.2.2. 2	PL1/P L2/PL 3/PL9 /PL10	Endo- PGL	low methyl-esterified HG/non-esterified HG		
			pectin lyase	4.2.2. 10	PL1	Endo- PNL	highly methyl-esterified HG		
			xylogalacturonan hydrolase	3.2.1. -	GH28	Endo- XGH	cleaves the β -Xylp substituted GalpA backbone, prefers to act between two xylosidated GalA units		
			pectin methyl esterase	3.1.1. 11	CE8	PME	esterified HG		
Pectin (58)	HG (side	active on the side	pectin/rhamnogal	3.1.1.	CE12	PAE,			
	chain)	chains of HG	acturonan acetyl esterase	6 3.1.1. 86	CE16	PAE	acetylated HG/ acetylated RG		
		cleave α-(1,2) glycosidic bonds between D-GalpA and L-Rhap	rhamnogalacturo nan I hydrolase	3.2.1. 171	GH28	Endo- RGH	activity is not hindered by galactose substitutions on the RG-I backbone		
		cleave α-(1,4) glycosidic bonds between Rhap and GalpA	rhamnogalacturo	4.2.2. 23	PL4	Endo- RGL	activity is increased by removal of acetyl groups and Ara side chains, decreased by removal of Gal side chains		
	RG-I		nan lyase	4.2.2. 23	PL11	Endo- RGL	prefer RG-I backbone having galactan side chains without acetvl substitution		
		cleave glycosidic bonds of	endo-α-L-1,5-	3.2.1.	GH43	Endo-	random hydrolyzing α -(1,4)-glycosidic bonds of arabinan		
			endo-β-1,4-	3.2.1.	GH53	Endo-	random hydrolyzing β-(1,4)-glycosidic bonds of		
		arabinan/galactan	galactanase endo-β-1,6- galactanase	89 3.2.1.	GH30	Gal Endo-	arabinogalactan I random hydrolyzing β-(1,6)-glycosidic bonds of arabinogalactan II		
		cleave β-(1,4)- glycosidic bonds of xylan backbone	galactallase	164	CU10	Gai	require two unsubstituted consecutive Xylp, higher		
	wdan		endo-1,4-β- xylanase	3.2.1. 8	GH10	Endo- Xyn	tolerance to substituents than GH10 prefer unsubstituted xylan, require three unsubstituted		
	(main			2.2.1	GHII		consecutive Xylp		
	chain)		arabinoxylanase	abinoxylanase -			xylan		
			glucuronoxylanas e	3.2.1. 136	GH30		hydrolyzing glucuronoxylan but not attack unsubstituted xylan		
					CE1		action on 2,3-di-O-acetylated Xylp in xylan		
					CE3		deacetylated for O-2 or O-3 monoacetylated Xylp in xylan		
			acetyl xylan esterase	3.1.1. 72	CE4	AcXE	deacetylated effectively for singly 2- or 3-O-acetylated Xylp residues in xylan		
					CE5		prefer O-2 monoacetylated Xylp in xylan		
hemicellul	vulan				CE6		deacetylated for 2,3-di-O-acetylated Xylp in xylan		
ose (35)	(side	active on the side			GH43		hydrolyzing (1→3)-α-l-arabinofuranosyl residues of doubly substituted xylopyranosyl in arabinoxylan		
	s)	chains of xylan	α-L-	3.2.1.	GH51		release $(1 \rightarrow 2)$ and $(1 \rightarrow 3)$ - α -L-arabinofuranosyl residues from mono-substituted xylopyranosyl residues		
			arabinofuranosid ase	55	GH54	Abf	in arabinoxylan specific for O-3 linked arabinofuranosyl residues, Xylp is		
					GH62		remove arabinofuranosyl residues linked in 0-2 or 0-3		
			α-glucuroni dase	3.2.1.	GH11 5		remove 4-O-methyl glucuronic acid side groups from		
			ando-R-1.4	2.2.1	GH5		prefer glucomannan		
	mann	glycosidic bonds	mannanase	78	GH26	Man	prefer galactomannan		
	an	cleave T-α-(1,6)- glycosidic bonds of galactomannan	α-galactosidase	3.2.1. 22	GH27		remove the α -1,6-linked d-galactopyranosyl substituents attached to the mannan backbone		

Supplementary Table 16. The light green colored cells indicate the tailored enzyme cocktail after screening and selection based on structural features of pectin and hemicellulose of willow bark fiber bundle (WBFB). Screening % refers to the percentages of candidate enzymes that can be ruled out theoretically based on structural characteristics of the substrate (i.e., WBFB). Literatures refer to Table 4.

Substrate (screening %)	Specif ic area	Cleaving glycosidic bond	Enzyme	EC numb er	CAZy family	Abbrevi ation	Characteristics on the preferred structural features of the substrate		
			polygalacturona	3.2.1. 67	GH28	Exo-PG	prefer non-esterified HG, show decreasing activity		
			se	3.2.1. 15	GH28	Endo-PG	with increasing degree of methyl-esterification		
		cleave α-(1,4)-	polymethyl galacturonase	3.2.1. -	GH28	Endo- PMG	HG with at least 75% of the carboxyl groups are esterified		
	HG	glycosidic bonds of GalpA backbone	pectate lyase	4.2.2. 2	PL1/PL2 /PL3/PL 9/PL10	Endo- PGL	low methyl-esterified HG/non-esterified HG		
			pectin lyase	4.2.2. 10	PL1	Endo- PNL	highly methyl-esterified HG		
			xylogalacturona n hydrolase	3.2.1. -	GH28	Endo- XGH	cleaves the β -Xyl p substituted Gal p A backbone, prefers to act between two xylosidated GalA units		
			pectin methyl esterase	3.1.1. 11	CE8	PME	esterified HG		
De ativa (C2)	HG (side	active on the side chains of HG	pectin/rhamno	3.1.1. 6	CE12	PAE, RGAE			
Pectin (63)	chain)		galacturonan acetyl esterase	3.1.1. 86	CE16	PAE	acetylated HG/ acetylated RG		
		cleave α-(1,2) glycosidic bonds between D-GalpA and L-Rhap	rhamnogalactur onan I hydrolase	3.2.1. 171	GH28	Endo- RGH	activity is not hindered by galactose substitutions on the RG-I backbone		
		cleave α-(1,4) glycosidic bonds between Rhap and GalpA cleave glycosidic bonds of arabinan/galactan	rhamnogalactur	4.2.2. 23	PL4	Endo- RGL	activity is increased by removal of acetyl groups and Ara side chains, decreased by removal of Gal side chains		
	RG-I		onan iyase	4.2.2. 23	PL11	Endo- RGL	prefer RGI backbone having galactan side chains without acetyl substitution		
			endo-α-L-1,5- arabinanase	3.2.1. 99	GH43	Endo- Ara	random hydrolyzing α -(1,4)-glycosidic bonds of arabinan		
			endo-β-1,4- galactanase	3.2.1. 89	GH53	Endo- Gal	random hydrolyzing β-(1,4)-glycosidic bonds of arabinogalactan I		
			endo-β-1,6- galactanase	3.2.1. 164	GH30	Endo- Gal	random hydrolyzing β -(1,6)-glycosidic bonds of arabinogalactan II		
		cleave β-(1,4)- glycosidic bonds of xylan backbone	endo-1,4-β-	3.2.1.	GH10	Endo-	require two unsubstituted consecutive Xylp, higher tolerance to substituents than GH10		
	xylan (main chain)		xylanase	8	GH11	Xyn	prefer unsubstituted xylan, require three unsubstituted consecutive Xylp		
			arabinoxylanas e	3.2.1. -	GH5		hydrolyzing arabinoxylan but does not attack unsubstituted xylan		
			glucuronoxylan ase	3.2.1. 136	GH30		hydrolyzing glucuronoxylan but does not attack unsubstituted xylan		
				244	CE1		action on 2,3-di-O-acetylated Xylp in xylan		
		active on the side chains of xylan			CE3		deacetylated for O-2 or O-3 monoacetylated Xylp in xylan		
			esterase	72	CE4	AcXE	deacetylated effectively for singly 2- or 3-O- acetylated Xylp residues in xylan		
					CE5		prefer O-2 monoacetylated Xylp in xylan		
hemicellul ose (88)	xylan (side				CE6 GH43	Abf	deacetylated for 2,3-di-O-acetylated Xylp in xylan hydrolyzing (1→3)-α-l-arabinofuranosyl residues of doubly substituted xylopyranosyl residues in arabinoxylan		
	s)		α-L- arabinofuranosi	3.2.1.	GH51		releasing $(1 \rightarrow 2)$ and $(1 \rightarrow 3)$ - α -L- arabinofuranosyl residues from mono-substituted xylopyranosyl in arabinoxylan		
			dase	55	GH54		specific for O-3 linked arabinofuranosyl, Xylp is mono-substituted or di-substituted		
					GH62		removing arabinofuranosyl residues linked in O-2 or O-3 of mono-substituted xylose units in arabinoxylan		
			α- glucuronidase	3.2.1. 139	GH115		removing -MG side groups from polymeric xylan		
		cleave β-(1,4)- glycosidic bonds of	endo-β-1,4-	3.2.1.	GH5	Man	prefer glucomannan		
	mann an	mannan backbone	mannanase	/8	GH26		prefer galactomannan		
an		glycosidic bonds of galactomannan	α-galactosidase	3.2.1. 22	GH27		removing the α -1,6-linked d-galactopyranosyl substituents attached to the mannan backbone		

Supplementary Table 17. The light green colored cells indicate the tailored enzyme cocktail after screening and selection based on structural features of pectin and hemicellulose of parenchyma tissues (Parenchyma). Screening % refers to the percentages of candidate enzymes that can be ruled out theoretically based on structural characteristics of the substrate (i.e., Parenchyma). Literatures refer to Table 4.

Substrate (screening %)	Specifi c area	Cleaving glycosidic bond	Enzyme	EC number	CAZy famil y	Abbrevi ation	Characteristics on the preferred structural features of the substrate
			polygalacturona	3.2.1.67	GH28	Exo-PG	prefer non-esterified HG, show decreasing activity
			polymethyl	3.2.1.15	GH28	Endo-PG Endo-	HG with at least 75% of the carboxyl groups are
			galacturonase	3.2.1	GH28	PMG	esterified
	HG	cleave α-(1,4)- glycosidic bonds of GalpA backbone	pectate lyase	4.2.2.2	PL1/P L2/PL 3/PL9 /PL10	Endo- PGL	low methyl-esterified HG/non-esterified HG
			pectin lyase	4.2.2.10	PL1	Endo- PNL	highly methyl-esterified HG
			xylogalacturona n hydrolase	3.2.1	GH28	Endo- XGH	cleaves the β -Xylp substituted GalpA backbone, prefers to act between two xylosidated GalA units
	HG		pectin methyl esterase	3.1.1.11	CE8	PME	esterified HG
Destin (62)	(side chain)	chains of HG	pectin/rhamno galacturonan	3.1.1.6	CE12	PAE, RGAE	acetylated HG/ acetylated RG
Pectin (63)			acetyl esterase	3.1.1.86	CE16	PAE	
		cleave α-(1,2) glycosidic bonds between D-GalpA and L-Rhap	rhamnogalactur onan I hydrolase	3.2.1.17 1	GH28	Endo- RGH	activity is not hindered by galactose substitutions on the RG-I backbone
		cleave α-(1,4) glycosidic bonds between Rhap and GalpA	rhamnogalactur	4.2.2.23	PL4	Endo- RGL	activity is increased by removal of acetyl groups and Ara side chains, decreased by removal of Gal side chains
	RG-I		onan lyase	4.2.2.23	PL11	Endo- RGL	prefer RGI backbone having galactan side chains without acetyl substitution
		cleave glycosidic bonds of arabinan/galactan	endo-α-L-1,5- arabinanase	3.2.1.99	GH43	Endo- Ara	random hydrolyzing α -(1,4)-glycosidic bonds of arabinan
			endo-β-1,4-	3.2.1.89	GH53	Endo-	random hydrolyzing β-(1,4)-glycosidic bonds of
			endo-β-1,6-	3.2.1.16	GH30	Endo- Gal	random hydrolyzing β -(1,6)-glycosidic bonds of arabinogalactan II
	xylan (main chain)	cleave β-(1,4)- glycosidic bonds of xylan backbone	endo-1,4-β- xylanase	3.2.1.8	GH10	Endo-	require two unsubstituted consecutive Xylp, higher tolerance to substituents than GH10
					GH11	Xyn	prefer unsubstituted xylan, require three
			arabinoxylanas e	3.2.1	GH5		hydrolyzes arabinoxylan but does not attack unsubstituted xylan
			glucuronoxylan ase	3.2.1.13 6	GH30		hydrolyzes glucuronoxylan but does not attack unsubstituted xylan
					CE1		action on 2,3-di-O-acetylated Xyl <i>p</i> in xylan
					CE3		deacetylated for O-2 or O-3 monoacetylated Xylp in
			acetyl xylan esterase	3.1.1.72	CE4	AcXE	xylan deacetylated effectively for singly 2- or 3-O-
					CE5	-	prefer O-2 monoacetylated Xylan
					CE6		deacetylated for 2 3-di-O-acetylated Xylp in xylan
hemicellul ose (65)	xylan (side	active on the side chains of xylan	ne side xylan α-L- arabinofuranosi dase		GH43	. Abf	hydrolyse $(1 \rightarrow 3)$ - α -l-arabinofuranosyl residues of doubly substituted xylopyranosyl residues in arabinoxylan
)			3.2.1.55	GH51		release $(1 \rightarrow 2)$ and $(1 \rightarrow 3)$ - α -L-arabinofuranosyl residues from mono-substituted xylopyranosyl residues in arabinoxylan
					GH54		specific for O-3 linked arabinofuranosyl residues, Xylp is mono-substituted or di-substituted
					GH62		removing arabinofuranosyl residues linked in position O-2 or O-3 of mono-substituted xylose units in arabinoxylan
			α- glucuronidase	3.2.1.13 9	GH11 5		removing 4-O-methyl glucuronic acid side groups from polymeric xylan
		cleave β-(1,4)-	endo-β-1,4-	2.2.6.72	GH5		prefer glucomannan
	mann	glycosidic bonds of mannan backbone	mannanase	3.2.1.78	GH26	Man	prefer galactomannan
	an	cleave T-α-(1,6)- glycosidic bonds of galactomannan	α-galactosidase	3.2.1.22	GH27		remove the α -1,6-linked d-galactopyranosyl substituents attached to the mannan backbone

Supplementary Table 18. The summarized characterization techniques that were applied at this study for all samples of WW; WB; WIB; WBFB; Parenchyma.

category	code	notes	HPA EC	FT-IR	¹ H/ ¹³ C nmr	HSQC nmr	CP/MAS nmr	staining	GPC (SEC)	HP LC	GC- MS
original	0	raw sample	_	-			_	_		_	
multiple	E	solid residues after extraction with DCM/ acetone/ water									
treatmen t	С	solid residues after citric acid extraction	_								
	N	solid residues after 0.1M NaOH treatment	_	_			_			_	
	Ρ	solid residues after peracetic acid treatment	_	_						_	
	HTS	hydrolysable tannin- like substances									_
	CAP; DCA-P	purified pectin; dialysis treated pectin	_			_			_		
purified	DMSO	solid residues after DMSO extraction	_	_							
substanc es	н	purified hemicellulose	_	_	_	_		— (parench yma alone)	_		
	Dioxan e	solid residues after dioxane lignin purification	_	_			_			_	
	L	purified dioxane lignin		-	—	—	_		-		
	WCW; CEL	Dou et al. 2018 ¹⁵					_		_		