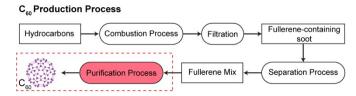
Environmental, Cost, and Chemical Hazards of Using Alternative Green Solvents for Fullerene (C₆₀) Purification

Seyed M. Heidari^a, Eunsang lee^a, Ben Cecil^a, Annick Anctil *^a


^a Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan 48824, United States.

* Corresponding author: (<u>anctilan@msu.edu</u>) Emails: <u>Heidari1@msu.edu</u>, <u>leeeunsa@msu.edu</u>, <u>cecilben@msu.edu</u>, <u>anctilan@msu.edu</u>

Keywords: C₆₀ fullerene purification, nanomaterial manufacturing, Life cycle assessment, Green chemistry, Toxicity, Solvent

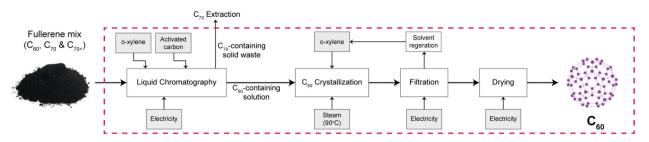
Content: 10 figures and five tables (7 pages)

$S1 - C_{60}$ production process

Fig. S1. C_{60} synthesis procedure – Rectangulars show materials. Red dashed lines demonstrate the study scope of this study, and C_{60} purification is distinguished in the red box.

S2 – Green chemistry principles

Principle #	Description	How we used		
1	Waste prevention instead of cleaning waste after it is formed	N/A		
2	Maximize the incorporation of all used materials into the final products	N/A		
3	Using substances that have little or no toxicity for human health and the environment	We categorized potential solvents based on toxicity scores and identified alternative solvents with lower toxicity.		
4	Design safer chemicals with lower environmental toxicity	We identified non-hazardous alternative solvents to avoid toxifying the final products.		
5	Use less solvents	We categorized potential solvents based on their fullerene solubility to reduce the amount of solvents necessary for fullerene purification.		
6	Minimizing energy	N/A		
7	Using renewable feedstock	We identified plant-based alternative solvents besides petroleum-based solvents.		
8	Avoiding unnecessary derivatization	N/A		
9	Catalytic reagents are better than stoichiometric reagents	N/A		
10	Avoid using undegradable chemicals	N/A		
11	In-process monitoring to avoid generating hazardous materials	We used analytical chemistry (HPLC-UV) to monitor the impurity.		
12	Safer substrates for accident prevention	We determined alternative non-hazardous solvents to reduce accidental release risk.		


Table S1. Green chemistry principles (1)

S3 - Data source for life-cycle assessment

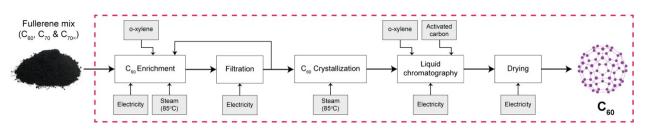
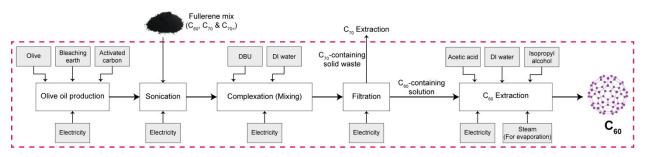

	Description		
1 2 4-trimethylbenzene	Co-production of mesitylene, xylenes, and benzene from naphtha cracking	(2)	
1,8-Diazabicyclo	,8-Diazabicyclo Synthesis of bicyclic amidines from caprolactam by using acrylonitrile		
(5.4.0)undec-7-ene			
Linseed oil	Process modification from Refined sunflower oil (pressing), at processing,	(4)	
	Agri-footprint 5.0; Linseed seed, Ecoinvent 3		
Olive oil	Process modification from olive production, Ecoinvent 3 (4), based on	(4)(5)	
	information on olive oil production(5)		
Centrifuge		(6)	
Mixer	Required energy was estimated based on using industrial-scale equipment.	(7)	
Pump	Required energy was estimated based on using industrial-scale equipment.	(8)	
Ultrasonic bath		(9)	
Ultrasonic probe		(10)	

Table S2. Data sources for material and energy used in inventory analysis


S4 - Detailed methodology

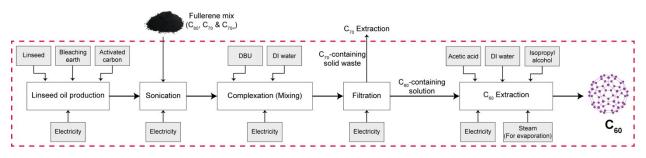
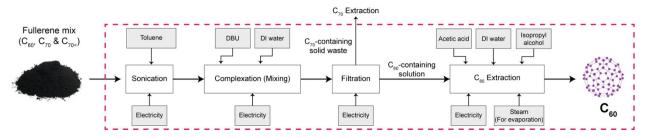

Fig. S2. The process flow of crystallization method (Kwok et al. (11)) - Red dash line shows the system boundary used for life cycle assessment (LCA). Grey boxes show input materials/energy.

Fig. S3. The process flow of crystallization method (Grushko et al. (12)) - Red dash line shows the system boundary used for LCA. Grey boxes show input materials/energy.


Fig. S4. Process flow for P_4 (alternative purification methods using olive oil) - Red dashed line shows the system boundary used for LCA. Grey boxes show input materials/energy. DBU: 1,8-Diazabicyclo[5.4.0]undec-7-ene.

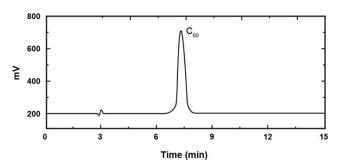

Fig. S5. Process flow for P_6 (alternative purification methods using linseed oil) - Red dashed line shows the system boundary used for LCA. Grey boxes show input materials/energy. DBU: 1,8-Diazabicyclo[5.4.0]undec-7-ene.

Fig. S6. Process flow for P₇ (alternative purification methods using xylene) - Red dashed line shows the system boundary used for LCA. Grey boxes show input materials/energy. DBU: 1,8-Diazabicyclo[5.4.0]undec-7-ene.

Fig. S7. Process flow for P_8 (alternative purification methods using toluene) - Red dashed line shows the system boundary used for LCA. Grey boxes show input materials/energy. DBU: 1,8-Diazabicyclo[5.4.0]undec-7-ene.

S5 – Prescreening solvents to identify replacements for TMB

Fig. S8. HPLC analysis for the baseline process (TMB)

Fig. S9. HPLC analysis for alternative process P₇ (xylene)

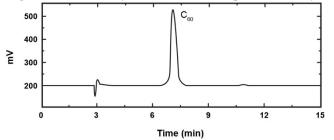


Fig. S10. HPLC analysis for alternative process P₈ (toluene)

S6 – Life cycle cost analysis

Table S3. life cycle cost analysis

Material	Unit	US\$/unit	Year	Ref.		
Crude Oil	kg	\$0.49	2021	(13)		
Bituminous Coal	kg	\$0.06	2019	(14)		
Lignite (brown coal)	kg	\$0.02	2019	(14)		
Anthracite (hard coal)	kg	\$0.11	2019	(14)		
Natural Gas	m3	\$0.12	2020	(15)		

 Table S4. Production rate

Time (hr)	Rate (kg/hr)	Normalized Production Rate
5.12	0.195	1
5.27	0.190	0.972
5.45	0.183	0.939
5.25	0.190	0.975
5.45	0.183	0.939
5.25	0.190	0.975
5.27	0.190	0.972
5.27	0.190	0.972

S7 – Chemical hazard analysis

Solvents	Health (Blue)	Flammability (Red)	Reactivity (Yellow)	Special (white)	Hazardous score	Ref.
1,2,4-trymethilbenzene (TMB)	2	2	0	0	1.33	(16)
AcOH	3	2	0	0	1.67	(16)
DBU (1,8-	3	1	0	0	1.33	(17)
Diazabicyclo[5.4.0]und ec-7-ene)						
Heptane	1	3	0	0	1.33	(16)
IPA	2	3	0	0	1.67	(16)
Linseed oil	0	1	0	0	0.33	(18)
Olive oil	1	1	0	0	0.67	(18)
Toluene	3	3	0	0	2.00	(16)
Xylene	3	3	0	0	2.00	(16)

Table S5. Solvent chemical hazard scores based on NFPA.

Reference:

- 1. P.G. Jessop, S. Trakhtenberg and J. Warner, The Twelve Principles of Green Chemistry, *Innovations in Industrial and Engineering Chemistry*, American Chemical Society, 2008, 401–36.
- 2. T. Y. Yan, Pseudocumene and mesitylene production and coproduction thereof with xylene, US5004854, 1987.
- 3. E. Lee, C. J. Andrews and A. Anctil, An Iterative Approach to Evaluate and Guide Fine Chemical Processes: An Example from Chloroaluminum Phthalocyanine for Photovoltaic Applications, *ACS Sustain Chem Eng.*, 2018, 6(7), 8230–7.
- 4. Swiss Centre For Life Cycle Inventories, Ecoinvent Database 3.3. Vol. 2.0, Ecoinvent Centre, 2016.
- 5. A. Thomas, B. Matthäus and H. J. Fiebig, Fats and Fatty Oils, *Ullmann's Encyclopedia of Industrial Chemistry*, Wiley-VCH Verlag GmbH & Co. KGaA, 2015, 1–84.
- 6. P. M. Doran, CH11 Unit Operations, *Bioprocess Engineering Principles (Second Edition)*, 2013, 445–595.
- Catalog, Industrial scale mixer, Amixon, Germany,
 <u>https://pdf.directindustry.com/pdf/amixon-gmbh/conical-mixer-type-am/29438-142837.html</u> (accessed, 26 Feb 2021).
- 8. Catalog part, Industrial scale oil Sealed Vacuum Pumps (TRIVAC), Leybold Company, 2016, P21, P25, & P29.
- 9. Industrial Ultrasonic Bath, <u>https://www.toolots.com/ultrasonic-cleaner-66-6gal-2400w-28-56khz-ce-certified-made-in-taiwan.html</u> (accessed 1 March 2021)
- 10. Industrial scale sonicator (Q2000 Sonicator), <u>https://homogenizers.net/products/q2000-sonicator</u> (accessed 12 March 2021).
- 11. K. S. Kwok, Y. C. Chan, K. M. Ng, Separation of fullerenes C₆₀ and C₇₀ using a crystallization-based process, *AIChE J*, 2009, 56(7), 1801–12.
- 12. Y. S. Grushko, V. P. Sedov, V. Shilin, Technology for manufacture of pure fullerenes C₆₀, C₇₀ and a concentrate of higher fullerenes, *Russ J Appl Chem*, 2007, 80(3), 448–55.
- 13. Petroleum & Other Liquids, U.S. Energy Information Administration (EIA).
- Energy Information Administration (EIA), Annual Coal Report 2019, US Dep Energy. 2020.
- 15. United States Natural Gas Industrial Price (Dollars per Thousand Cubic Feet).
- 16. Fisher Scientific, <u>https://www.fishersci.com</u>
- 17. MSDS for DBU (1,8-Diazabicyclo[5.4.0]undec-7-ene), NFPA, https://datasheets.scbt.com/sc-251609.pdf (accessed 10 May 2021)
- 18. Certificate of Analysis For Olive Oil, Sigma-Aldrich, <u>https://www.sigmaaldrich.com/catalog/CertOfAnalysisPage.do?symbol=O1514&LotNo=</u> <u>BCCB9747&brandTest=SIGMA&returnUrl=%2Fproduct%2FSIGMA%2FO1514</u>