Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2023

Title: Biobased sunscreen fabrication using Zn-porphyrins from engineered *Corynebacterium glutamicum*

Authors:

Young Jin Ko^{a,b}, Jeong-Joo Oh^c and Sung Ok Han^{a,b,*}

Affiliations

^a Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea

^b Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Korea

^c Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841,

Korea

* Corresponding author:

Email address: samhan@korea.ac.kr

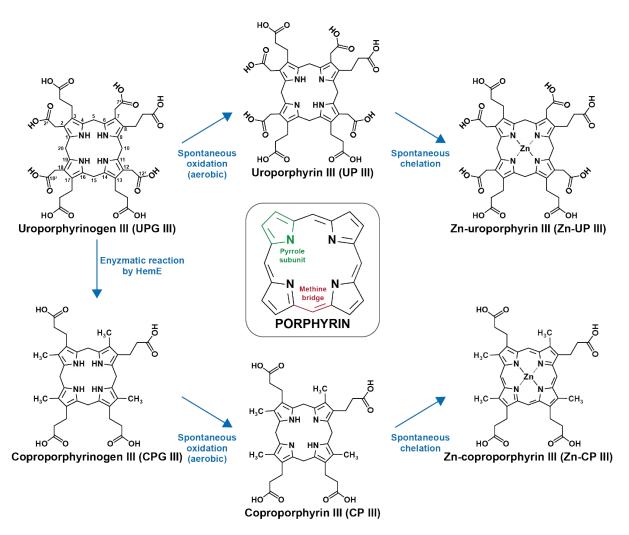
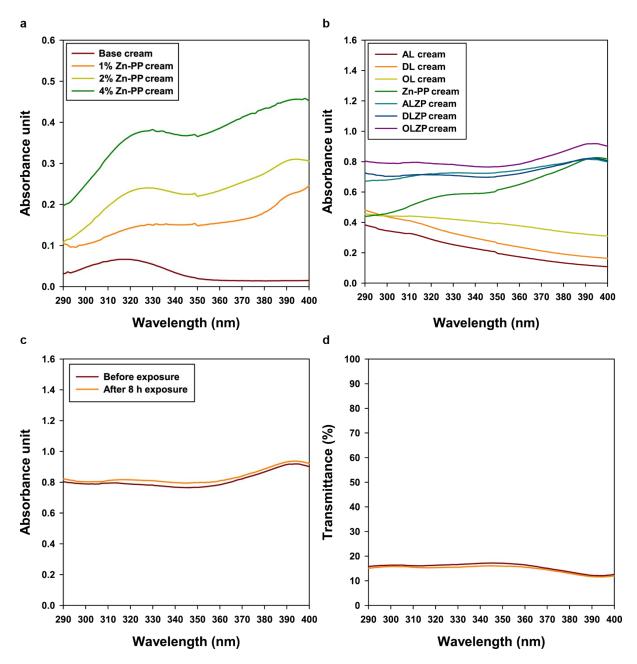



Fig. S1 Chemical structures of porphyrins including UPG III, CPG III, UP III, CP III, Zn-UP III, and

Zn-CP III.

Fig. S2 Sunscreen performance of the creams including Zn-PPs and/or several lignins against UV light. (a) UV absorbance (290 nm to 400 nm) of the creams containing 1, 2, and 4% Zn-PPs were measured. (b) UV absorbance of the creams containing 4% each lignin, such as AL, DL, and OL, and/or 4% Zn-PPs were measured. (c) UV absorbance and (d) transmittance of the creams containing 4% OL and Zn-PPs were measured before or after 8 h UV exposure. The experiments were conducted three times.

Plasmids and Strains	Characteristics	Reference
Plasmid		
pEKEx2	<i>C. glutamicum-E. coli</i> shuttle vector, P _{tac} , lacI, Kan ^R , pBL1 ori	Lab stock
pEKEx2::ALDt	pEKEx2 carrying <i>hemA^M, hemL</i> , and <i>dtxR</i> genes	1
pEKEx2::ALSDtE	pEKEx2 carrying <i>hemA^M, hemL, alaS, dtxR,</i> and <i>hemE</i> genes	2
pMTC	<i>C. glutamicum-E. coli</i> shuttle vector, P _{tac} , Amp ^R , CmR ^R , pCG1 ori	Lab stock
pMTC-HrtBA	pMTC carrying <i>hrtB</i> and <i>hrtA</i> genes from <i>C. glutamicum</i>	This study
Strains		
<i>Ε. coli</i> DH5α	F ⁻ , deoR, endA1, gyrA96, hsdR17(rk⁻mk⁺), recA1, relA1,supE44, thi-1, Δ(lacZYA- argF)U169, (Phi80lacZdelM15)	Invitrogen
<i>C. glutamicum</i> ATCC 14067	L-glutamate producing strain	ATCC
ALDt-c	<i>C. glutamicum</i> ATCC 14067 harboring pEKEx2::ALDt and pMTC	This study
ALDt-Hr	<i>C. glutamicum</i> ATCC 14067 harboring pEKEx2::ALDt and pMTC-HrtBA	This study
ALSdtE-c	<i>C. glutamicum</i> ATCC 14067, harboring pEKEx2::ALSDtE and pMTC	This study
ALSDtE-BA	<i>C. glutamicum</i> ATCC 14067, harboring pEKEx2::ALSDtE and pMTC-HrtBA	This study

 Table S1 Plasmids and strains constructed in this study.

Strain	Content (%)			
(Condition)	UP III	CP III	Zn-UP III	Zn-CP III
ALSDtE-c (Flask)	19.5%	80.5%	N.D. ª	N.D.
ALSDtE-Hr (Flask)	28.6%	71.4%	N.D.	N.D.
ALSDtE-c (Flask with ETB10 and ZnSO ₄)	N.D.	N.D.	21.5%	78.5%
ALSDtE-Hr (Flask with ETB10 and ZnSO ₄)	N.D.	N.D.	64.2%	35.8%
ALSDtE-c (Flask with ETB25 and ZnSO ₄)	N.D.	N.D.	24.6%	75.4
ALSDtE-c (Flask with ETB50 and ZnSO ₄)	N.D.	N.D.	25.6%	74.4
ALSDtE-c (Flask with ETB100 and ZnSO ₄)	N.D.	N.D.	25.6%	74.4%
ALSDtE-c (Fed-batch)	N.D.	N.D.	28.9%	71.1%
ALSDtE-c (Fed-batch with ETB)	N.D.	N.D.	77.6%	22.4%
ALSDtE-c (Purified from fed-batch)	N.D.	N.D.	29.8%	70.2%
^a N.D.		means	"not	detected".

Table S2 The contents of UP III, CP III, Zn-UP III, and Zn-CP III in the supernatant of each fermentation or purification sample.

Lignins	Number average molecular weight (Mn)	weight average molecular weight (Mw)
Alkaline lignin (AL)	6478	12097
Delkaline lignin (DL)	7471	19917
Olganosolv lignin (OL)	10057	22753

Table S3 The molecular weights of the lignins used in this study.

Table S4 The *in vitro* SPF value of OLZP at 0 h and after 8 h.

Cream	SPF (0 h)	SPF (8 h)
OLZP	6.21 ± 0.69	6.47 ± 0.55

References

- 1. Y. J. Ko, Y. C. Joo, J. E. Hyeon, E. Lee, M. E. Lee, J. Seok, S. W. Kim, C. Park and S. O. Han, *Sci. Rep.*, 2018, **8**.
- Y. J. Ko, M. Kim, S. K. You, S. K. Shin, J. Chang, H. J. Choi, W. Y. Jeong, M. E. Lee, D. H. Hwang and S. O. Han, *Metab. Eng.*, 2021, 66, 217-228.