Supporting information

Synergistically Interactive MnFeM (M=Cu, Ti, and Co) Sites Porous g-C₃N₄ Fiber-like Nanostructures for an Enhanced Green Hydrogen Production

Belal Salah^{a,b†}, Ahmed Abdelgawad^{a,b†}, Qingqing Lu^c, Adewale K. Ipadeola^{a,b}, Rafael Luque^{d,e}, and Kamel Eid^a*

- a. Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar.
- b. Center for advanced materials, Qatar University, Doha 2713, Qatar
- c. Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
- d. Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation
- e. Universidad ECOTEC, Km 13.5 Samborondón, Samborondón, EC092302, Ecuador. [‡]Contributed equally to this work.

*Corresponding author E-mail: kamel.eid@qu.edu.qa

Experimental

Chemicals and Materials

Copper (II) chloride ((CuCl₂.2H₂O), 99.99 %), cobalt (II) chloride ((CoCl₂.2H₂O), 99.99 %), (melamine, 99 %), manganese (II) chloride monohydrate (MnCl₂·H₂O), Iron (II) chloride tetrahydrate (FeCl₂·4H₂O), titanium (IV) isopropoxide Ti[OCH(CH₃)₂]₄, ethanol solution ((CH₃CH₂-OH), 99.8 %), nitric acid ((HNO₃), 70 %), and commercial Pt/C catalyst (10 wt.% Pt) were purchased from Sigma-Aldrich Chemie GmbH.

Synthesis of MnFeCu/g-C₃N₄

Porous MnFeCu/g-C₃N₄ fiber-like nanostructures were synthesized based on our previous report but with changing reaction parameters and conditions along with utilizing ultrasonic treatment^{1, 2}. This includes a dispersion of melamine (4 g) in an aqueous solution of ethanol (200 mL), MnCl₂.2H₂O (2mL, 10 mM), FeCl₂.4H₂O (2mL, 10 mM), and CuCl₂.2H₂O (2mL,10 mM) via ultrasonic treatment for 10 min. This is followed by slow addition of 60 mL HNO₃ (0.1 M) and then left under magnetic stirring for 1 h. Finally, the obtained precipitate was filtrated and washed with ethanol/H₂O (3/1 v/v) for 4 times and dried at 100 °C for 2 h. The obtained powder was annealed at 550 °C (10° /min, 5°/min heating rate) for 2 h under N₂.

This method was also used to prepare porous $MnFeTi/gC_3N_4$ and $MnFeCo/g-C_3N_4$ fiber-like nanostructures, but with the replacement of $CuCl_2.2H_2O$ with $Ti[OCH(CH_3)_2]_4$ and $CoCl_2.2H_2O$, respectively.

Metal-free $g-C_3N_4$ was formed using the same method, but without metal precursors.

Materials Characterization

The scanning electron microscope ((SEM), Hitachi S-4800, Hitachi, Tokyo, Japan)) and the transmission electron microscope ((TEM), TecnaiG220, FEI, Hillsboro, OR, USA), equipped with high-angle annular dark-field scanning transmission electron microscopy (HAADF-SEM), and energy dispersive spectrometer (EDX) was used for investigation of the morphology and composition. The X-ray photoelectron spectroscopy (XPS) spectra were recorded on a Thermo ESCALAB 250 spectrometer, while the X-ray diffraction spectra were measured on an X-ray diffractometer (X'Pert-Pro MPD, PANalytical Co.). The inductively coupled plasma optical emission spectrometry (ICP-OES, Agilent 5800) was used for elemental composition.

Electrochemical HER

The cyclic voltammogram (CVs), linear sweep voltammogram (LSV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA) tests were measured on Gamry potentiostat (Reference 3000, Gamry Co., Warminster, PA, USA). This is using a three-electrode cell of Pt wire (3 mm) as a counter electrode, Ag/AgCl as a reference electrode, and glassy carbon electrode (GCE) ((\emptyset 5 mm x 1 mm) as a working electrode. The GCE was initially polished with 0.3 and 0.05 µm of alumina slurry and then rinsed by double deionized H₂O three times under sonication, followed by deposition the 10-20 µl catalyst ink (2mg/mL in isopropanol/H₂O/Nafion (5 wt.%) (4/1/0.05 v/v/v) on the working electrodes through volumetric casting and then left to dry under vacuum at 80 °C. The metal loading (i.e. Pt or MnFeM) of each catalyst on the GCE was adjusted to 0.004 mg_{metal} /cm² based on the ICP-OES data. The obtained HER currents were corrected against Ohmic potential drop, and the potentials were normalized to the reversible hydrogen electrode (RHE) using equation (Eqn. 1). $E_{RHE} = E_{Ag/AgCl} + 0.197 V + 0.059 x pH$ (Eqn. 1)

The mass activity (MA) was calculated at 0.4V using the following equation (Eqn. 2)

MA=J_{HER}/M (Eqn. 2)

Where J_{HER} is the HER current density, and M is the metal (Pt or MnFeM) loading on the GCE.

The specific activity (SA) was calculated at 0.4V using the following equation (Eqn. 3)

SA=J_{HER}/MxECSA (Eqn. 3)

Where ECSA is the electrochemical active surface.

The turnover frequency (TOF) was calculated using the following equation (Eqn. 4)

 $TOF = (J_{HER} \times F) / (n \times A) (Eqn. 4)$

Where F is the Faraday constant (96,485 C/mol), n is the number of electrons transferred per H₂, and A is the surface area of the catalyst.

Table S1. Comparison of the hydrogen production (electrocatalytic and/or photocatalytic) of carbon nitride-based nanostructured catalysts with literature

Catalyst	Preparation Method	Metal	Metal	Morphology of	Catalytic reaction	Electrolyte	HER rate	Ref.
		dopants	Loading	CN			(µmol∙g ^{−1} ∙h ^{−1})	
			(Wt.%)				/overpotential	
							(mV)	
MnFeCu/gCN	Protonation by HNO_3 (0.1	Mn, Fe,	2.0 - 2.3	Porous fiber-like	Electrocatalytic HER	H ₂ SO ₄	3774.35/ 400	This
MnFeTi/gCN	M, 60 mL) in ethanol (200	Cu, Ti, Co					1902.54/ 548	work
MnFeCo/gCN	mL) under ultrasonic						1820.10/ 564	
MnFe/gCN	treatment and annealing						2110.64/ 475	
Mn/gCN	(550 °C/2h)						872.20/ 583	
PtPd/CNs	Protonation by $NaNO_3$ (0.1	Pt. Pd	1.5	Nanorods	Electrochemical and	-	-	3
	M) and HCl (0.1 M) in				photoelectrochemical			
	Ethylene glycol (15 mL) and				CO oxidation			
	annealing (550 °C/2h)							
Pd/CN NWs	Protonation by HNO_3 (0.2	Pd, Cu	1.2	Nanowires	Thermal CO oxidation	-	-	4
Pd-Cu/CN-	M, 60 mL) in ethanol (30		0.6-0.6	Nanowires				
NWs	mL) and annealing (400							
	°C/2h)							
Au/Pd/gC ₃ N ₄	Protonation by HNO_3 (0.1	Pd, Au	0.5-0.5	Nanotubes	Thermal CO oxidation	-	-	5
NTs	M, 70 mL) in ethylene glycol							
	(30 mL) and annealing (450							
	°C/2h)							
Pd/gC ₃ N₄NTs	Protonation by HNO ₃ (0.1 M	Pd, Cu	1.1	Nanotubes	Thermal CO oxidation	-	-	2
Cu/gC ₃ N ₄ NTs	60 mL)) in Ethylene glycol		1.1	Nanotubes				
Pd/Cu/gC ₃ N ₄ -	(30 mL) and annealing (550		0.55-	Nanotubes				
NTs	°C/2h)		0.55					
Pd/gC_3N_4NFs	Protonation by HNO_3 (0.3	Pd, Au	1	Nanofibers	Thermal CO oxidation	-	-	1
Au/gC ₃ N ₄ NFs	M, 60 mL) in isopropanol		1	Nanofibers				
Au/Pd/gC ₃ N ₄	(30 mL) and annealing (480		0.5-0.5	Nanofibers				
NFs	°C/2h)							
Cu/P-g-C ₃ N ₄	Protonation of Melamine	Cu	1.8	hierarchical	Thermal CO oxidation	-	-	6
	and pyridine by HNO_3 (0.2			porous crumpled				
	M, 20 mL) in 1,2-ethanediol			nanosheets				
	(50 mL) and annealing (550							
	°C/2h)							
Cu/g-C ₃ N ₄	Protonation by HNO_3 (0.1	Cu, Mn,	1.7 ±0.2	Fiber-like	Electrochemical HER	0.5 M	222.15/ 449	7
Mn/g-C ₃ N ₄	M, 20 mL) in ethanol (100	Fe				H ₂ SO ₄	91.15/ 610	
Fe/g-C ₃ N ₄	mL) and annealing at (550						110.80/ 560	

	°C/2h)							
Pt/CCTs	Sonication, freeze-drying, and calcined (550 °C/3h)	Pt	3	Nanotubes	Photocatalytic HER	0.2 M Na ₂ SO ₄ + TEOA	3538.30/-	8
Pt/HR-CN	Nanocasting template, calcined (550 °C/4h) and etching, Pt/HR-CN by in-situ photodeposition of Pt	Pt	3	Helical nanorods	Photocatalytic HER	0.01 M AgNO ₃ + TEOA + acetonitrile	74 μmol/h/ -	9
Pt/CN-MU	Thermal condensation of melamine and urea (1:10) (400 °C/4h) then anneaing at 550 °C for 4h	Pt	0.5	Holey nanotubes	Photocatalytic HER	0.5 M $\text{Na}_2\text{SO}_4 +$ 20 vol.% lactic acid	1073.60/ -	10
TiO ₂ /g-CN	TiO ₂ by hydrothermal at (150 °C/4h) and calcination (500 °C/1hr) then TiO ₂ /g-CN by solvothermal (180 °C/24h) and calcination (520 °C/1h)	Ti	-	Nanorod arrays	Photoelectrochemical HER	0.2 M Na ₂ SO ₄	- / 160	11
TiO ₂ /P- C ₃ N ₄ /Co ₃ O ₄	TiO ₂ by hydrothermal (180 °C/4h), impregnated in cyanuric acid and diammonium hydrogen phosphate solution, calcination(550 °C/2h), immersed in Co solution reduced by NaOH, calcination (350 °C/3h)	Co, Ti	-	Nano dot Core- nanorod shell	Photoelectrochemical HER	0.5 M Na ₂ SO ₄	26.16 μmol·cm ⁻¹ ·h ⁻¹ / 920	12
MoS ₂ /g-C ₃ N ₄	g-C_3N_4byHydrothermal/calcination $(180/4hr, 600 \ ^{\circ}C/4h), MoS_2$ byhydrothermal $(200 \ ^{\circ}C/24h), and MoS_2/g-C_3N_4$ by mixed impergnation	Мо	10-30	Nanoflake/nanot ube	Photocatalytic HER	0.5 M Na ₂ SO ₄	1124.00/ -	13
PtNi/g-C ₃ N ₄	g-C ₃ N ₄ by calcination (600 $^{\circ}$ C/3h) and PtNi/g-C ₃ N ₄ by co-reduction using NaBH ₄ (0.05 M)	Pt, Ni	0.99	Nanotubes	Photocatalytic HER	0.2 M Na ₂ SO ₄	104.8 μmol h ⁻¹ / -	14
Ni ₂ P- Cd _{0.9} Zn _{0.1} S/g- C ₃ N ₄	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ni, Cd, Zn	0.5-6.0	Nanorods	Photocatalytic HER	0.15 M Na ₂ S + 0.05 Na ₂ SO ₄	121.20 μmol mg ⁻¹ h ⁻¹ /-	15
1D-RuO ₂ -CN _x	CN_x by Microwave irradiation(180 °C/3h), and 1D-RuO ₂ - CN_x by hydrothermal reduction by (NaBH ₄ /120 °C/8h), then hydrothermal treatment (350 °C/12h)	Ru	24.41	Nanowires	Electrocatalytic HER	0.5 M H₂SO₄ 0.5 M KOH	- / 93 - / 95	16
g-C ₃ N ₄ nanoribbon-G	GO by Hummers method, g- C ₃ N ₄ by calcination (600 $^{\circ}$ C/2h), and chemically treated/ g-C ₃ N ₄ nanoribbon-G by Hydrothermal treatment (180 $^{\circ}$ C/6h)	-	_	Nanoribbon	Electrocatalytic HER	0.5 M H ₂ SO ₄	-/ 207	17

PtCo/Na _{0.1} SC NNT	Na _{0.1} SCNNT by precursor mixing, grinding, and thermal polymerization / PtCo/Na _{0.1} SCNNT by chemical reduction	Pt, Co, Na	1.38- 2.38	Nanotubes	Photocatalytic HER	0.2 M Na ₂ SO ₄ + 10 vol.% TEOA	254.70 μmol h ⁻¹	18
T-CN	Annealing (450 °C/4h) Mixture of Melamine with (KCl, LiCl) molten salt assisted	Pt	3	Hollow tubes	Photocatalytic HER	0.1 M Na ₂ SO ₄ + 10 vol.% TEOA	332.00/ -	19
TCN-0.1	Thermal polymerization (Urea, MF resin mixture) (600 °C/3h)	Pt	3	Multistage tubular	Photocatalytic HER	0.2 M Na ₂ SO ₄ + 10 vol.% TEOA	7505.00/ -	20
g-CNNTs(540)	Unidirectional freezing of urea, annealing at (540 °C/2h)	Pt	3	Hollow tubes	Photocatalytic HER	0.2 M Na ₂ SO ₄ + 10 vol.% TEOA	8789/-	21
CN-10	Solvothermal polymerization (180 °C/12h) and calcination (550 °C4h)	Pt	3	Spongelike fibers	Photocatalytic HER	0.5 M Na ₂ SO ₄ + 10 vol.% TEOA	2227.00/-	22
R-TCNT	Hydrothermal of spherical melamine (180 °C/8h) and annealing (500 °C/4h)	-	-	Bunchy microtubes	Photocatalytic HER	0.5 M Na ₂ SO ₄ + 10 vol.% TEOA	8.19 μmol h ⁻¹ / -	23
P-TCN/GQDs- 0.15	P-TCN by hydrothermal and calcination (180 °C/4h, 500 °C/10h), and P-TCN/GQDs by Lyophilization method	-	-	Hexagonal Tubular	Photocatalytic HER	0.1 M Na ₂ SO ₄	112.10 μmol h ⁻¹ / -	24
Pt/PCNC	Two-step (Hydrothermal self-assembly/ Self- template, 200 °C/12h) pyrolysis(550 °C/3h)	Pt	3	Coral-like architecture	Photocatalytic HER	0.1 M Na ₂ SO ₄ + 10 vol.% TEOA	5289.90/-	25
Pt/P-TCN	Hydrothermal (180 °C/10h) and heat treatment (500 °C/4h), and Pt/P-TCN in-situ photodeposition of pt precursor	Pt	1	Rod-like	Photocatalytic HER	0.1 M Na ₂ SO ₄	67.00 μmol h⁻ ¹/ -	26
Pt/g-C ₃ N ₄	Hydrothermal (200 °C/12h) and pyrolysis (550 °C/4h) and Pt/g-C ₃ N ₄ in-situ photodeposition of pt precursor	Pt	3	Nanotubes	Photocatalytic HER	10 vol.% TEOA	118.50 μmol h ⁻¹ / -	27
Pt/CN-OA- 0.03	CN-OA-0.03 by facial wet chemistry and annealing (550 °C/2h) and Pt/CN-OA- 0.03 by in-situ photodeposition of pt precursor	Pt	3	Nanotubes	Photocatalytic HER	10 vol.% TEOA	12.60 μmol h ⁻ ¹/ -	28
Ag-Cu(3)C ₃ N ₄ NTs 1:1	C_3N_4 by multistep (calcination (550 °C/2h), exfoliation, heating 350 °C, rapid cooling in ice) and Ag- Cu(3)C_3N_4 NTs by metals chemical reduction	Ag, Cu	3-5	Nanotubes	Photocatalytic HER	0.01 M Na ₂ SO ₄ + 10 vol.% TEA, TEOA and MeOH	738.00 μmol g ⁻¹ / -	29
Pt/CNS-550	Calcination (550 °C/2h), Recrystallization in acidic(H ₂ SO ₄ /methanol mixture)	Pt	3	Nanotubes	Photocatalytic HER	0.1 M Na ₂ SO ₄ + 10 vol.%	261.80 μmol h ⁻¹ / -	30

	and annealing (550 °C/2h) and Pt/CNS-550 by in-situ photodeposition of pt					TEOA		
	precursor							
Ba-P-CN	Hydrothermal (180 °C/10h) and calcination (500 °C/4h)	Pt	3	Microtube	Photocatalytic HER	0.25 M Na ₂ SO ₄ + 17 vol.% TEOA	12.30 μmol h [−] ¹/ -	31
Pt/GCN-THP	calcination (550 °C/4h, (Ar, CCl ₄)), then LP-CNP rinsed by water and calcenied (500 °C/2h)	Pt	3	Tetragonal hollow prism	Photocatalytic HER	0.5 M Na ₂ SO ₄ + 10 vol.% TEOA	1990.00/ -	32
Pt/CN-SP	Hydrothermal (180 °C/10h) and annealing (500 °C/4h)	Pt	1	Hexagonal tube stacked nanosheets	Photocatalytic HER	0.2 M Na ₂ SO ₄ + MeOH	57.00 μmol h ⁻ ¹/ -	33
Pt/3wt%NaCl- CN	hydrothermal (200 °C/12h) and Thermal condensation (550 °C/2h) and Pt by in-situ photo-deposition	Pt	1	Nanowires	Photocatalytic HER	0.25 M Na ₂ SO ₄ + 17 vol.% TEOA	4.95 μmol h ⁻¹ / -	34
Pt/I/N-CN	Hydrothermal (180 °C/10h) and annealing (500 °C/4h) and Pt loaded by photodeposition	Pt	3	nanotubes	Photocatalytic HER	0.5 M Na ₂ SO ₄ + 17 vol.% TEOA	9.75 μmol h ⁻¹ / -	35
Pt/MCN	halloysite as templet annealed (850 °C/2h) and activated by HCl (80 °C/6h), then melamine deposited on activated halloysite by vapor deposition (520 °C/4h), then templet etched by HF	Pt	3	Wormlike nanorods	Photocatalytic HER	10 vol.% TEOA	633.00/ -	36
HGCNF/SNG/ MoS ₂	Electrospinning and sintering method at (580 °C/ 4h) followed by autoclave for hydrothermal treatment at	Мо	10.26	Hollow nanofibers	Electrocatalytic HER	0.5 M H ₂ SO ₄	- / 282	37
Pt(3.0wt%)M o ₂ C/g-C ₃ N ₄	freeze-dried (-50 °C/48h) then annealed (800 °C/4 h)	Pt, Mo	4	Rod-like	Photocatalytic HER	0.5 M Na ₂ SO ₄ + 10 vol.% TEOA	507.00/-	38
Pt/O-g-C ₃ N ₄	Thermal condensation (500 °C/2h) and Pt loaded by photodeposition	Pt	3	Nanorods	Photocatalytic HER	0.5 M Na ₂ SO ₄ + 15 vol.% TEOA	732.00/ -	39
Rh/77CNNb	Molten salt and thermal condensation (520 °C/4hr)	Rh, Sr, Nb	0.91- 1.8	Nanorods	Photocatalytic HER		0.183 h ⁻¹ / -	40

Carbon quantum dots implanted g-C3N4 nanotubes (CCTs); g-C3N4 with a helical rod-like morphology (HR-CN); CN from melamine and urea in a 1:1 (CN-MU); carbon nitride nanotube (CNNT); triethanolamine (TEOA); Bundle thins carbon nitride tubes (R-TCNT); tubular carbon nitride (TCN), graphene quantum dot (GQD); porous bionic coral-like architecture (PCNC); phosphorus-doped hexagonal tubular carbon nitride (P-TCN); triethylamine (TEA); graphitic carbon nitride tetragonal hollow prism (GCN-THP); methanol (MeOH); C3N4- modified sodium pyrophosphate (CN-SP); mesoporous g-C3N4 nanotubes (MCN); hollow g-C3N4 nanofibers (HGCNF); sulfur/nitrogen-doped graphene (SNG); g-C3N4/Sr2KNb5O15 with 77 wt.% of g-C3N4 (77CNNb)

Figure S1. (a) XRD analysis and (b) FTIR spectra of thus obtained materials

Figure 2. (a) XPS survey. High-resolution spectra of (b) C 1s, (c) N 1s of MnFeCu/g-C₃N₄. High-resolution spectra of Mn 2p, Fe 2p, and Cu 2p of (d-f) MnFeCu/g-C₃N₄, Mn 2p, Fe 2p, and Ti 2p of (g-i) MnFeTi/g-C₃N₄, and Mn 2p, Fe 2p, and Cu 2p of (j-l) MnFeCo/g-C₃N₄.

Figure S3. High-resolution XPS of (a) C1s (b) N1s.

Figure S4. High-resolution XPS fitting of C 1s, N 1s (a-b) MnFeTi-gC₃N₄, (c-d) MnFeCo-gC₃N₄. (e-h) High-resolution XPS fitting of C 1s, N 1s, Mn 2p, and Fe 2p for MnFe-gC₃N₄. (e-h) High-resolution XPS fitting of C 1s, N 1s, and Mn 2p for Mn-gC₃N₄.

catalyst	EDX (at.%)					ICP-OES (at.%)				XPS (at.%)					
	Mn	Fe	М	С	N	Mn	Fe	М	С	N	Mn	Fe	М	С	N
MnFeCu- gC ₃ N ₄	0.65	0.61	0.74	41	57	0.55	0.49	0.7	41.16	57.1	0.55	0.51	0.64	41.2	57.1
MnFeTi- gC ₃ N ₄	0.47	0.83	0.94	40.53	57.5	0.45	0.75	0.78	40.51	57.51	0.43	0.7	0.77	40.56	57.54
MnFeCo- gC ₃ N ₄	0.72	0.8	0.77	4041	57.3	0.64	0.72	0.69	40.61	57.34	0.62	0.71	0.67	40.61	57.39

Table S2 Composition analysis of the as-formed materials.

MnFe-	0.59	0.67	-	41.32	57.42	0.65	0.75	-	41.26	57.34	0.63	0.72	-	41.27	57.38
gC ₃ N ₄															
Mn-	1.7	-	-	41.4	56.9	1.58	-	-	41.58	56.84	1.52	-	-	41.58	56.9
gC ₃ N ₄															

Table S3 The valance state and binding energies of the as-formed materials

Elements	Mn⁰	2p (eV)	Fe ⁰ 2	P (eV)	Cu ⁰ 2	p (eV)	Ti ^o 2	o (eV)	Co ⁰ 2	P (eV)
Catalyst	2p 3/2	2p 1/2	2p 3/2	2p 1/2	2p 3/2	2p 1/2	2p 3/2	2p 1/2	2p 3/2	2p 1/2
MnFeCo/g-C ₃ N ₄	639.06	650.50	706.96	720.53	931.43	951.94	-	-	-	-
MnFeTi/g-C ₃ N ₄	641.1 (Mn ²⁺)	653.2 (Mn ²⁺)	710.76 (Fe ³⁺)	724.1 (Fe ³⁺)	-	-	458.43 (Ti ⁴⁺)	464.13 (Ti ⁴⁺)	-	-
MnFeTi/g-C₃N₄	639.09	650.43	708.8 (Fe ²⁺)	721.9 (Fe ²⁺)	-	-	-	-	778.32	792.83
MnFe/g-C₃N₄	638.97	650.29	706.59	720.46	-	-	-	-	-	-
Mn/g-C ₃ N ₄	638.71	650.04			-	-	-	-	-	-

Figure S5. CV curves measured on the as-obtained catalysts at different scan rates and their related plots of j vs. v^{1/2} in 0.5 M H₂SO₄

Figure S6. ECSA of the as-formed materials.

Figure S7. LSV measured at different scan rates tested on $MnFeCu/g-C_3N_4$, $MnFeTi/g-C_3N_4$, $MnFeCo/g-C_3N_4$, $MnFe/g-C_3N_4$, $Mn/g-C_3N_4$, andPt/Ccatalystin0.5MH_2SO_4electrolyte.

Figure S8. CV curve at scan rate 50 mV s⁻¹ in 0.5 M H₂SO₄ purged with N₂ for catalysts before and after cyclic test.

Figure 9. (a) (a) LSV before and after 1000 cycles measured at scan rate 2 mVs⁻¹ tested on MnFeCu/g-C₃N₄, MnFeTi/g-C₃N₄, MnFeCo/g-C₃N₄, MnFe/g-C₃N₄, Mn/g-C₃N₄, Mn/g-C₃N₄, and Pt/C catalyst in 0.5M H₂SO₄ electrolyte.

 $\label{eq:stable} \textbf{Table S4} Comparison of the HER activity of our developed MnFeCu/g-C_3N_4 and previous reported carbon-based catalysts in acidic electrolytes.$

Catalyst	Onset Potential (V vs. RHE) (mV)	η10 (V vs. RHE)(mV)	Tafel slope [mV dec⁻¹]	TOF	Electrolyte	Ref.
MnFeCu/g-C ₃ N ₄	-225	400	219	3.5	0.5 M H ₂ SO ₄	This Work
N,P graphene-1	289	422	91	-	0.5 M H ₂ SO ₄	41
NENU-501	150	397	137	-	0.5 M H ₂ SO ₄	42
CTGU-6	349	425	176	-	0.5 M H ₂ SO ₄	43
Cu-Pd/NPCC/HT/GCE	82	340	-	-	0.5 M H ₂ SO ₄	44
N-doped graphene	-345	474	172	-	0.5 M H ₂ SO ₄	45
5% F/BCN	-144	437	153	0.92	0.5 M H ₂ SO ₄	46

Figure S10. (a) ECSA before and after stability test , (b) TEM, and (c) EDX of MnFeCu/g-C₃N₄ after stability test.

Figure S11. (a) Nyquist plots including (Voigt electrical equivalent circuit), and (b) Bode plots of MnFeCu/g-C₃N₄, MnFeTi/g-C₃N₄, MnFeCo/g-C₃N₄, MnFeC

Table S5 EIS fitting data of the as-made catalysts relative to Pt/C

Catalyst	<i>R</i> _s (Ω)	R _{ct} (Ω)	CPE (μF.s ^(1-a))	a

MnFeCu/g-C ₃ N ₄ NFs	41.4 ± 0.8	58 ± 0.15	1.94 ± 0.19	0.863 ± 0.013
MnFeTi/g-C₂N₄NFs	41.9 ± 1.3	265 ± 7.8	1.6 ± 0.695	0.851 ± 0.04
MnFeCo/g-C ₂ N ₄ NFs	438+007	107 + 0 2	1 13 + 0 09	0 838+ 0 015
11111 22078 23141113	15.6 2 6.67	107 2 0.2	1.15 = 0.05	0.000101010
MnFe/g-C-N/NFs	44 + 0 023	159 + 2 1	2 + 0 003	894 + 0.003
	44 ± 0.025	155 1 2.1	2 ± 0.005	054 2 0.005
Mn/g_C_N_NEs	538+160	122 + 1 2	0 796 + 27	0 801 + 0 01
10117 g-C3104101 5	55.8 ± 1.05	152 ± 1.2	0.750 ± 27	0.801 ± 0.01
Pt/C(10 wt %)	11.89 ± 0.06	171 1 +	1 01 +0 001	0.763 ± 0.02
1 () C (10 W(./0)	11.05 ± 0.00	1 1 1 1 ±	1.01 ±0.001	0.705 ± 0.02

Figure S12. (a) N_2 -physisorption isotherms and (b) pore size/volume of MnFeCu/g-C₃N₄. The N_2 -physisorption isotherms were conducted on a Quantachrome Autosorb 3.01 instrument, and samples were degassed for 24 h at 50 °C under vacuum before the measurements.

References

- 1. K. Eid, M. H. Sliem, A. S. Eldesoky, H. Al-Kandari and A. M. Abdullah, *International Journal of Hydrogen Energy*, 2019, **44**, 17943-17953.
- 2. K. Eid, M. H. Sliem, K. Jlassi, A. S. Eldesoky, G. G. Abdo, S. Y. Al-Qaradawi, M. A. Sharaf, A. M. Abdullah and A. A. Elzatahry, *Inorganic Chemistry Communications*, 2019, **107**, 107460.
- 3. K. Eid, M. H. Sliem and A. M. Abdullah, *Nanoscale*, 2019, **11**, 11755-11764.
- 4. K. Eid, Y. H. Ahmad, A. T. Mohamed, A. G. Elsafy and S. Y. Al-Qaradawi, *Catalysts*, 2018, **8**, 411.
- 5. K. Eid, M. H. Sliem, H. Al-Kandari, M. A. Sharaf and A. M. Abdullah, *Langmuir*, 2019, **35**, 3421-3431.
- 6. K. Eid, M. H. Sliem, M. Al-Ejji, A. M. Abdullah, M. Harfouche and R. S. Varma, *ACS Applied Materials & Interfaces*, 2022, **14**, 40749-40760.
- 7. A. Abdelgawad, B. Salah, Q. Lu, A. M. Abdullah, M. Chitt, A. Ghanem, R. S. Al-Hajri and K. Eid, *Journal of Electroanalytical Chemistry*, 2023, **938**, 117426.
- 8. Y. Wang, X. Liu, J. Liu, B. Han, X. Hu, F. Yang, Z. Xu, Y. Li, S. Jia and Z. Li, *Angewandte Chemie*, 2018, **130**, 5867-5873.
- 9. Y. Zheng, L. Lin, X. Ye, F. Guo and X. Wang, *Angewandte Chemie*, 2014, **126**, 12120-12124.
- 10. X. Wang, C. Zhou, R. Shi, Q. Liu, G. I. Waterhouse, L. Wu, C.-H. Tung and T. Zhang, *Nano Research*, 2019, **12**, 2385-2389.
- 11. X. Fan, T. Wang, B. Gao, H. Gong, H. Xue, H. Guo, L. Song, W. Xia, X. Huang and J. He, *Langmuir*, 2016, **32**, 13322-13332.

- 12. Z. Yu, Y. Li, J. Qu, R. Zheng, J. M. Cairney, J. Zhang, M. Zhu, A. Khan and W. Li, *Chemical Engineering Journal*, 2021, **404**, 126458.
- 13. J. Sun, S. Yang, Z. Liang, X. Liu, P. Qiu, H. Cui and J. Tian, *Journal of colloid and interface science*, 2020, **567**, 300-307.
- 14. W. Peng, S.-S. Zhang, Y.-B. Shao and J.-H. Huang, *International Journal of Hydrogen Energy*, 2018, **43**, 22215-22225.
- 15. Z. Qin, F. Xue, Y. Chen, S. Shen and L. Guo, *Applied Catalysis B: Environmental*, 2017, **217**, 551-559.
- 16. T. Bhowmik, M. K. Kundu and S. Barman, *ACS applied materials & interfaces*, 2016, **8**, 28678-28688.
- 17. Y. Zhao, F. Zhao, X. Wang, C. Xu, Z. Zhang, G. Shi and L. Qu, *Angewandte Chemie International Edition*, 2014, **53**, 13934-13939.
- 18. K.-L. Chen, S.-S. Zhang, J.-Q. Yan, W. Peng, D.-P. Lei and J.-H. Huang, *International Journal of Hydrogen Energy*, 2019, **44**, 31916-31929.
- 19. J. Yang, Y. Liang, K. Li, G. Yang, K. Wang, R. Xu and X. Xie, *Catalysis Science & Technology*, 2019, 9, 3342-3346.
- 20. X. Zhao, Y. Zhang, X. Zhao, X. Wang, Y. Zhao, H. Tan, H. Zhu, W. Ho, H. Sun and Y. Li, *ACS applied materials & interfaces*, 2019, **11**, 27934-27943.
- 21. J. Bai, Q. Han, Z. Cheng and L. Qu, *Chemistry–An Asian Journal*, 2018, **13**, 3160-3164.
- 22. Y. Wang, S. Zhao, Y. Zhang, J. Fang, W. Chen, S. Yuan and Y. Zhou, ACS Sustainable Chemistry & Engineering, 2018, **6**, 10200-10210.
- 23. G. Ge, X. Guo, C. Song and Z. Zhao, ACS applied materials & interfaces, 2018, 10, 18746-18753.
- 24. Y. Gao, F. Hou, S. Hu, B. Wu, Y. Wang, H. Zhang, B. Jiang and H. Fu, *ChemCatChem*, 2018, **10**, 1330-1335.
- 25. Z. Sun, W. Wang, Q. Chen, Y. Pu, H. He, W. Zhuang, J. He and L. Huang, *Journal of Materials Chemistry A*, 2020, **8**, 3160-3167.
- 26. S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan and H. Fu, *Angewandte Chemie International Edition*, 2016, **55**, 1830-1834.
- 27. Z. Mo, H. Xu, Z. Chen, X. She, Y. Song, J. Wu, P. Yan, L. Xu, Y. Lei and S. Yuan, *Applied Catalysis B: Environmental*, 2018, **225**, 154-161.
- 28. G. Zhang, A. Savateev, Y. Zhao, L. Li and M. Antonietti, *Journal of Materials Chemistry A*, 2017, **5**, 12723-12728.
- 29. Y. Zhu, A. Marianov, H. Xu, C. Lang and Y. Jiang, *ACS applied materials & interfaces*, 2018, **10**, 9468-9477.
- 30. Z. Huang, F. Li, B. Chen and G. Yuan, *RSC advances*, 2015, **5**, 102700-102706.
- 31. D. Long, W. Chen, S. Zheng, X. Rao and Y. Zhang, *Industrial & Engineering Chemistry Research*, 2020, **59**, 4549-4556.
- 32. H. Li, X. Bao, Z. Wang, Z. Zheng, P. Wang, Y. Liu, X. Zhang, X. Qin, Y. Dai and Y. Li, *International Journal of Hydrogen Energy*, 2019, **44**, 28780-28788.
- 33. S. Guo, Y. Tang, Y. Xie, C. Tian, Q. Feng, W. Zhou and B. Jiang, *Applied Catalysis B: Environmental*, 2017, **218**, 664-671.
- 34. X. Liu, X. Wu, D. Long, X. Rao and Y. Zhang, *Journal of Photochemistry and Photobiology A: Chemistry*, 2020, **391**, 112337.
- 35. G. Ge and Z. Zhao, *Catalysis Science & Technology*, 2019, **9**, 266-270.
- 36. W. Wang, Z. Shu, J. Zhou, T. Li, P. Duan, Z. Zhao, Y. Tan, C. Xie and S. Cui, *Applied Clay Science*, 2018, **158**, 143-149.
- 37. S. Kang, J. Jang, S.-h. Ahn and C. S. Lee, *Dalton Transactions*, 2019, **48**, 2170-2178.

- 38. J. Zhang, M. Wu, B. He, R. Wang, H. Wang and Y. Gong, *Applied Surface Science*, 2019, **470**, 565-572.
- 39. Y. Zeng, X. Liu, C. Liu, L. Wang, Y. Xia, S. Zhang, S. Luo and Y. Pei, *Applied Catalysis B: Environmental*, 2018, **224**, 1-9.
- 40. P. Wang, I. Sinev, F. Sun, H. Li, D. Wang, Q. Li, X. Wang, R. Marschall and M. Wark, *RSC Advances*, 2017, **7**, 42774-42782.
- 41. Y. Zheng, Y. Jiao, L. H. Li, T. Xing, Y. Chen, M. Jaroniec and S. Z. J. A. n. Qiao, 2014, **8**, 5290-5296.
- 42. J.-S. Qin, D.-Y. Du, W. Guan, X.-J. Bo, Y.-F. Li, L.-P. Guo, Z.-M. Su, Y.-Y. Wang, Y.-Q. Lan and H.-C. J. J. o. t. A. C. S. Zhou, 2015, **137**, 7169-7177.
- 43. Y. P. Wu, W. Zhou, J. Zhao, W. W. Dong, Y. Q. Lan, D. S. Li, C. Sun and X. J. A. C. Bu, 2017, **129**, 13181-13185.
- 44. S. Mandegarzad, J. B. Raoof, S. R. Hosseini and R. J. A. S. S. Ojani, 2018, **436**, 451-459.
- 45. Y. Ito, W. Cong, T. Fujita, Z. Tang and M. J. A. C. I. E. Chen, 2015, **54**, 2131-2136.
- 46. M. A. Ahsan, T. He, K. Eid, A. M. Abdullah, M. L. Curry, A. Du, A. R. Puente Santiago, L. Echegoyen and J. C. J. J. o. t. A. C. S. Noveron, 2021, **143**, 1203-1215.