Supplementary materials for

Sustainable production of polysaccharide-based glycoprotein by simultaneous

conversion of glucose and glycerol in engineered Escherichia coli

Yuhui Wang^{a,b}, Xiaohan Wang^{a,b}, Guozhen Ma^{a,b}, Lijie Xie^{a,b}, Dan Liu^{a,b}, Yanling Wang^{a,b}, Xinyu Zhao^{a,b}, Yingying Su^{a,b}, Andrei V. Perepelov^c, Peng Ding^{a,b}, Xiao Zhang^{a,b}, Bo Xu^{a,b}, Bin Liu^{a,b*}, Di Huang^{a,b*}

^a Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China

^b TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China.

^c N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation

Correspondence author:

*Address for Correspondence: TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin Economic-Technological Development Area (TEDA), Tianjin, 300457, P R China. Tel: 86-22-6622 9592. Fax: 86-22-6622 9596. E-mail: <u>liubin1981@nankai.edu.cn</u> or <u>huangdi@nankai.edu.cn</u>

Construction of O-antigen expression plasmid

Fig. S2 The procedure for constructing glyco-optimized platform TD13 to synthesize OPS4-specific glycoprotein. Gene clusters for the biosynthesis of O16 O-antigen, ECA, in *E. coli* MG1655 were deleted in the genome. Furthermore, some genes relevant to the competing pathways and *waaL* were deleted to construct the glyco-optimized platform TD13. Gene clusters for the biosynthesis of *E. coli* O4 O-antigen, genes responsible for O-linked glycosylation and the genes relevant to the precursor biosynthesis pathways were overexpressed to generate a series of glycoprotein production strains.

Fig. S3 The growth profiles of LPS-producing strains. Abbreviation: GD001 represents *E. coli* K-12 MG1655 harboring the OPS4 expression plasmid pCRG16-O4; TD12 represents *E. coli* K-12MG1655 Δ O16::FRT Δ ECA*::FRT Δ zwf Δ pfkA Δ pfkB Δ nagB Δ pykA Δ gldA Δ pykF Δ manA Δ nagA Δ gtrS harboring the OPS4 expression plasmid pCRG16-O4; UPEC O4 represents uropathogenic *E. coli* O4 serotype, as a positive control in this study.

Fig. S4 Western blot analysis of recombinant glycoproteins purified from the production strain TD14 and control strain GD003. Anti-O4 channel probing with O4 OPS; Anti-CTB channel probing with CTB to verify the carrier protein; Merged images channel indicates anti-O4 and anti-CTB signals merged; Each lane was loaded with ~0.5 µg of glycoprotein based on total protein. Abbreviation: GD003 represents *E. coli* K-12 MG1655 Δ waaL harboring the OPS4 expression plasmid pCRG16-O4 and O-linked glycosylation plasmid pet28M-*pglL*-*CTB*-*glpK*^{G304S}; TD14 represents *E. coli* K-12MG1655 Δ O16::FRT Δ ECA*::FRT Δ zwf Δ pfkA Δ pfkB Δ nagB Δ pykA Δ gldA Δ pykF Δ manA Δ nagA Δ gtrS Δ waaL harboring the OPS4 expression plasmid pCRG16-O4 and O-linked glycosylation plasmid pet28M-*pglL*-*CTB*-*glpK*^{G304S}; UPEC O4:K1 represents uropathogenic *E. coli* O4 serotype, as a control in this study.

Fig. S5 Nano-LC-MS/MS analysis of purified glycoprotein generated by TD14 carrying O-linked glycosylation plasmid pET28m- pglL-CTB- $glpK^{G304S}$ and the OPS4 expression plasmid.

Table S1 Strains used in this study.

Strains	Relevant characteristics	Source
DH5a	$F^{-}glnV44deoRnupGpurB20 \Phi 80dlacZ\Delta M15\Delta(lacZYA-argF)U169 recA1endA1hsdR17(rk^{-}, mk^{+}) thi-1 gyrA96 relA1 \lambda^{-}$	Lab stock
<i>E. coli</i> K-12	Wild type <i>E. coli</i> K-12; $F^- \lambda - ilvG$ - <i>rfb</i> -50 <i>rph</i> -1	Lab stock
MG1655		
NEB-10β	$araD139 \ \Delta(ara-leu)7697 fhuA \ lacX74 \ galK16 \ (f80d\Delta(lacZ)M15) \ galE15 recA1 \ endA1 \ relA1 nupG \ rpsL(Str^R) \ \Delta(mrr-hsdRMS) \ \Delta(mrr$	NEB
	mcrBC) rphspoT1	
<i>E. coli</i> O4:K1	Clinical isolate G1625	Lab stock
GD001	E. coli K-12 MG1655 harboring pCRG16-O4	Lab stock
GD002	E. coli K-12 MG1655 Δ waaL	Lab stock
GD003	GD002 harboring pCRG16-O4 and pet28M-NmpglL-ctxB-glpKG304S	Lab stock
TD11	E. coli K-12 MG1655 Δ O16::FRT Δ ECA*::FRT Δ zwf Δ pfkA Δ pfkB Δ nagB Δ pykA Δ gldA Δ pykF Δ manA Δ nagA Δ gtrS	Lab stock
TD12	TD11 harboring pCRG16-O4	This study
TD13	$TD11\Delta waaL$	This study
TD14	TD13 harboring pCRG16-O4 and pet28M-NmpglL-ctxB-glpKG304S	This study
TD15	TD14 harboring pCDFDuet-EcRmlABCD	This study

TD16	TD14 harboring pCDFDuet-RmlABCD	This study
TD17	TD14 harboring pCDFDuet-FnlABC	This study
TD18	TD14 harboring pCDFDuet-WbjBCD	This study
AGO01	TD14 carrying plasmid pCDFDuet-P23108-RmlABCD-P23108-FnlABC	This work
AGO02	TD14 carrying plasmid pCDFDuet-P23113-RmlABCD-P23108-FnlABC	This work
AGO03	TD14 carrying plasmid pCDFDuet-P23108-RmlABCD-P23113-FnlABC	This work
AGO04	TD14 carrying plasmid pCDFDuet-P23108-RmlABCD-P23119-FnlABC	This work
AGO05	TD14 carrying plasmid pCDFDuet-P23113-RmlABCD-P23113-FnlABC	This work
AGO06	TD14 carrying plasmid pCDFDuet-P23113-RmlABCD-P23119-FnlABC	This work
AGO07	TD14 carrying plasmid pCDFDuet-P23119-RmlABCD-P23119-FnlABC	This work
AGO08	TD14 carrying plasmid pCDFDuet-P23119-RmlABCD-P23108-FnlABC	This work
AGO09	TD14 carrying plasmid pCDFDuet-P23119-RmlABCD-P23113-FnlABC	This work
AGO10	TD14 carrying plasmid pCDFDuet-P23119-RmlABCD-P23108-WbjBCD	This work
AGO11	TD14 carrying plasmid pCDFDuet-P23119-RmlABCD-P23113-WbjBCD	This work
AGO12	TD14 carrying plasmid pCDFDuet-P23119-RmlABCD-P23119-WbjBCD	This work
AGO13	TD14 carrying plasmid pCDFDuet-P23113-RmlABCD-P23108-WbjBCD	This work

AGO14	TD14 carrying plasmid pCDFDuet-P23113-RmlABCD-P23113-WbjBCD	This work
AGO15	TD14 carrying plasmid pCDFDuet-P23113-RmlABCD-P23119-WbjBCD	This work
AGO16	TD14 carrying plasmid pCDFDuet-P23108-RmlABCD-P23113-WbjBCD	This work
AGO17	TD14 carrying plasmid pCDFDuet-P23108-RmlABCD-P23108-WbjBCD	This work
AGO18	TD14 carrying plasmid pCDFDuet-P23108-RmlABCD-P23119-WbjBCD	This work
S. cerevisiae	S. cerevisiae recombinational cloning strain; MATa, ura3 Δ , cyh2 ^R	Reference ¹

Table S2 Plasmids used in this study.

Plasmids	Relevant characteristics	Source
pET28m	pet28a (+)-derived plasmid, the original T7 region between BglII and XhoI site was replaced by a 1236-	
	nucleotide fragment containing double <i>tac</i> promoter, <i>rrnB</i> _T1/T2 terminator. Kan ^R	
pCDFm	pCDFDuet (+)-derived plasmid, the original T7 region between BglII and XhoI site was replaced by a	This study
	1236-nucleotide fragment containing double tac promoter, rrnB_T1/T2 terminator. Str ^R	
pCRG16	Yeast-E. coli shuttle vector for recombinational cloning of large DNA fragments. E. coli mini-F and	Lab stock
	ColE1 replicons, yeast CEN-ARS replicon. Cm ^R , Amp ^R (E. coli); URA3, CYH2 (yeast)	
pCRG16-O4	pCRG16 harboring the O4 gene cluster containing wcaM to hisI	This study
pET28m- <i>pglL-CTB</i>	Derivative of pet28M containing the <i>pglL</i> and <i>CTB</i>	Lab stock
pET28m-pglL-CTB- glpK G304S	Derivative of pet28M containing the <i>pglL</i> and <i>CTB</i> and <i>glpK</i> G305S genes. Kan ^R	This study
pD	Derivative of pCDFm containing the pgm , $galUE$, $glmS$ and $glmU$ genes. Str ^R	This study
pCas	$repA101(Ts) pSC101 Pcas-cas9 P_{araBAD}$ - exo, beta and $gamalacI^{q}P_{trc}$ -sgRNA- $pMB1$. Kan ^R	This study
pRock	p15A PlacIQ-sgRNA-ApmR J23119-sgRNA-BsaI. Tet ^R	Reference
		2
pPaper	p15A PlacIQ-sgRNA-TetR J23119-sgRNA-BsaI. Cm ^R	Reference
		2

Plasmids	Relevant characteristics	Source
pTarget	pMB1aadA. Str ^R or Spec ^R	This study
pCDF-RmlABCD	Derivative of pCDFm which carries the genes RmlA, RmlB, RmlC and RmlD. Str ^R	This study
pCDF-EcRmlABCD	Derivative of pCDFm which carries the genes <i>EcRmlA</i> , <i>EcRmlB</i> , <i>EcRmlC</i> and <i>EcRmlD</i> . Str ^R	This study
pCDF-FnlABC	Derivative of pCDFm which carries the genes <i>FnlA</i> , <i>FnlB</i> and <i>FnlC</i> . Str ^R	This study
pCDF-WbjBCD	Derivative of pCDFm which carries the genes WbjB, WbjC and WbjD. Str ^R	This study
pCDF-P23108-RmlABCD-P23108-FnlABC	pCDFDuet-1 plasmid carrying the genes RmlA, RmlB, RmlC and RmlD with J23108 promoter in MCS-	This study
	1, and the genes <i>FnlA</i> , <i>FnlB</i> and <i>FnlC</i> with J23108 promoter in MCS-2. Str ^R	
pCDF-P23113-RmlABCD-P23108-FnlABC	pCDFDuet-1 plasmid carrying the genes RmlA, RmlB, RmlC and RmlD with J23113 promoter in MCS-	This study
	1, and the genes <i>FnlA</i> , <i>FnlB</i> and <i>FnlC</i> with J23108 promoter in MCS-2. Str ^R	
pCDF-P23108-RmlABCD-P23113-FnlABC	pCDFDuet-1 plasmid carrying the genes RmlA, RmlB, RmlC and RmlD with J23108 promoter in MCS-	This study
	1, and the genes <i>FnlA</i> , <i>FnlB</i> and <i>FnlC</i> with J23113 promoter in MCS-2. Str ^R	
pCDF-P23108-RmlABCD-P23119-FnlABC	pCDFDuet-1 plasmid carrying the genes RmlA, RmlB, RmlC and RmlD with J23108 promoter in MCS-	This study
	1, and the genes <i>FnlA</i> , <i>FnlB</i> and <i>FnlC</i> with J23119 promoter in MCS-2. Str ^R	
pCDF-P23113-RmlABCD-P23113-FnlABC	pCDFDuet-1 plasmid carrying the genes RmlA, RmlB, RmlC and RmlD with J23113 promoter in MCS-	This study
	1, and the genes <i>FnlA</i> , <i>FnlB</i> and <i>FnlC</i> with J23113 promoter in MCS-2. Str ^R	
pCDF-P23113-RmlABCD-P23119-FnlABC	pCDFDuet-1 plasmid carrying the genes RmlA, RmlB, RmlC and RmlD with J23113 promoter in MCS-	This study
	1, and the genes <i>FnlA</i> , <i>FnlB</i> and <i>FnlC</i> with J23119 promoter in MCS-2. Str ^R	

Plasmids	Relevant characteristics	Source
pCDF-P23119-RmlABCD-P23119-FnlABC	pCDFDuet-1 plasmid carrying the genes RmlA, RmlB, RmlC and RmlD with J23119 promoter in MCS-	This study
	1, and the genes <i>FnlA</i> , <i>FnlB</i> and <i>FnlC</i> with J23119 promoter in MCS-2. Str ^R	
pCDF-P23119-RmlABCD-P23108-FnlABC	pCDFDuet-1 plasmid carrying the genes RmlA, RmlB, RmlC and RmlD with J23119 promoter in MCS-	This study
	1, and the genes <i>FnlA</i> , <i>FnlB</i> and <i>FnlC</i> with J23108 promoter in MCS-2. Str ^R	
pCDF-P23119-RmlABCD-P23113-FnlABC	pCDFDuet-1 plasmid carrying the genes RmlA, RmlB, RmlC and RmlD with J23119 promoter in MCS-	This study
	1, and the genes <i>FnlA</i> , <i>FnlB</i> and <i>FnlC</i> with J23113 promoter in MCS-2. Str ^R	
pCDF-P23119-RmlABCD-P23108-WbjBCD	pCDFDuet-1 plasmid carrying the genes RmlA, RmlB, RmlC and RmlD with J23119 promoter in MCS-	This study
	1, and the genes WbjB, WbjC and WbjD with J23108 promoter in MCS-2. Str ^R	
pCDF-P23119-RmlABCD-P23113-WbjBCD	pCDFDuet-1 plasmid carrying the genes RmlA, RmlB, RmlC and RmlD with J23119 promoter in MCS-	This study
	1, and the genes WbjB, WbjC and WbjD with J23113 promoter in MCS-2. Str ^R	
pCDF-P23119-RmlABCD-P23119-WbjBCD	pCDFDuet-1 plasmid carrying the genes RmlA, RmlB, RmlC and RmlD with J23119 promoter in MCS-	This study
	1, and the genes <i>WbjB</i> , <i>WbjC</i> and <i>WbjD</i> with J23119 promoter in MCS-2. Str ^R	
pCDF-P23113-RmlABCD-P23108-WbjBCD	pCDFDuet-1 plasmid carrying the genes RmlA, RmlB, RmlC and RmlD with J23113 promoter in MCS-	This study
	1, and the genes WbjB, WbjC and WbjD with J23108 promoter in MCS-2. Str ^R	
pCDF-P23113-RmlABCD-P23113-WbjBCD	pCDFDuet-1 plasmid carrying the genes RmlA, RmlB, RmlC and RmlD with J23113 promoter in MCS-	This study
	1, and the genes WbjB, WbjC and WbjD with J23113 promoter in MCS-2. Str ^R	
pCDF-P23113-RmlABCD-P23119-WbjBCD	pCDFDuet-1 plasmid carrying the genes RmlA, RmlB, RmlC and RmlD with J23113 promoter in MCS-	This study
	1, and the genes WbjB, WbjC and WbjD with J23119 promoter in MCS-2. Str ^R	

Plasmids	Relevant characteristics	Source
pCDF-P23108-RmlABCD-P23113-WbjBCD	pCDFDuet-1 plasmid carrying the genes RmlA, RmlB, RmlC and RmlD with J23108 promoter in MCS-	This study
	1, and the genes WbjB, WbjC and WbjD with J23113 promoter in MCS-2. Str ^R	
pCDF-P23108-RmlABCD-P23108-WbjBCD	pCDFDuet-1 plasmid carrying the genes RmlA, RmlB, RmlC and RmlD with J23108 promoter in MCS-	This study
	1, and the genes WbjB, WbjC and WbjD with J23108 promoter in MCS-2. Str ^R	
pCDF-P23108-RmlABCD-P23119-WbjBCD	pCDFDuet-1 plasmid carrying the genes RmlA, RmlB, RmlC and RmlD with J23108 promoter in MCS-	This study
	1, and the genes WbjB, WbjC and WbjD with J23119 promoter in MCS-2. Str ^R	
pCDFm-pgm-galUE	Derivative of pCDFm which carries the genes pgm and $galUE$. Str ^R	This study
pCDFm-pgm-galUE-glmS-glmU	Derivative of pCDFm which carries the genes pgm, galUE, glmS and glmU. Str ^R	This study
pCP20	<i>rep</i> A101(Ts) <i>pSC101</i> λ repressor (ts) FLP. Amp ^R and Cm ^R	This study

Primer	Sequence
O4-1-F	ACTTCGTATAGCATACATTATACGAAGTTATATTCGATG
	CGCAACATCTTTTTATGCGAAATATC
O4-1-R	GATTTCTCTGATTACAGCTCGACTA
O4-2-F	TCATACAAAACTGCAAGCCAATTAT
O4-2-R	CATCTAACCTATCAGTATTATGAGA
O4-3-F	GTTGGCTATTGCACTCAAAGAATTA
O4-3-R	TCATCGGCAATTTGCTTGAAGTAAG
O4-4-F	AAAGCTGAGTTTATCGAGAAAGTTC
O4-4-R	TGCCCGTTTTCTTTAAAACCGAAAA
O4-gtrS-F	gctgctgggcggtatggtgggtgcggggattgtgctggggcgtaacgctctgcgtaattac
	aacgtgaagtaatcttttcggttttaaagaaaacgggcaGAGCTTGGATGATTA
	TTGACACAC
O4-gtrS-R	AATTATAATTATTTTTATAGCACGTGATGAAAAGGACC
	GCGTGTGTCAATAATCATCCAAGCTC
O4-verify-F1	TCTCTTGCAAATGTTCATGCGATGA
O4-verify-R1	TCTGGTTAAAACTCTCAAAAAAGAA
O4-verify-F2	ACACACATTGCTATGGAATGATCCA
O4-verify-R2	CGATAATAATCACCCATATCCTCCG
O4-verify-F3	GGCAATAATGGTGATATTTTTGTCC
O4-verify-R3	TCATTTTCTTCGATATCGAAAGT
O4-verify-F4	AGTACAACTGGGATCTGAACTACGG
O4-verify-R4	GCTCTTCCTGATTATCCAGCGTTTC
O4-verify-F5	ATGCCCGTTTTTTTGCCGGATGCGATGC
O4-verify-R5	ATGTTAACAGAACAACAACGTCGCG
Gene-deletion construction	
PTarget F	ACTAGTATTATACCTAGGACTGAGC
PTarget R	CCTGTTATCCCTACTCGAG
gRNAR	GTAATAGATCTAAGCTTCTGC
manA-up-F	gaagcttagatctattacATCGCGGTGCCGGTATCCTGACAGG

Table S3 Oligonucleotides used in this study.

manA-up-R	GATCAATCCCTGTTTTAATGTGGAA	
manA-down-F	TTCCACATTAAAACAGGGATTGATCCATCTCTTGCTAAG	
	CTTATT	
manA-down-R	tcgagtagggataacaggACTGGAATCACCGCTGTAACCAATG	
manA-gRNA	cctaggtataatactagtCTATGCCTGGGGCAGCAAAAgttttagagctag	
	aaatagca	
wecB-up-F	gaag ctt a gat ctatt a cTCAATGACAGCGTGAAGCTTATTGC	
wecB-up-R	CGATTCTCTTCGAATAAGCGGCGAG	
wecB-down-F	CTCGCCGCTTATTCGAAGAGAATCGGCGACCATTTCTGT	
	TATCGG	
wecB-down-R	tcgagtagggataacaggTGCTGCGGGAAAGTGAGATCCGGAC	
wecB-gRNA	$cctaggtataatactagt {\color{black}{CAACATAATGCAGCCAGGAC}} gttttagagctag$	
	aaatagca	
waaL-up-F	gaagettagatetattacGTAGAACGCACCCGCGAACTGTTTG	
waaL-up-R	TCCAAAACTGCTTGACTGTTGAGGT	
waaL-down -F	ACCTCAACAGTCAAGCAGTTTTGGAAGTTTAAGAAGTG	
	AGTTAAAACTCA	
waaL-down -R	tcgagtagggataacaggGAATTTATTGGAGATACAAGAATAG	
waaL-gRNA	$cctaggtataatactagt {\small TAGGCTTGCTTGATTTAATT}gttttagagctaga$	
	aatagca	
glpK ^{G3054} -F	GTATACATGACTGAAAAAAAATATATCGTTG	
glpK ^{G3054} -R	GATGGCGTGGGAAGAACACGACGAA	
pCDF-EcRmlABCD-F1	CCTGCATTGTGAAAATACTTGTTACTGGTGGCG	
pCDF-EcRmlABCD-R1	GGATCCTTACTGGCGGCCCTCATAGTTCTCT	
pCDF-EcRmlABCD-F2	GGATCCAAGGAGATATACATGAATATCCTCCTTTTTGG	
	С	
pCDFm-EcRmlABCD-R2	GAGCTCTTAAATTGCCGTAGTCGTAAATA	
pCDFm-EcRmlABCD-F3	GAGCTCAAGGAGATATACATGAAAACGCGTAAAG	
pCDFm-EcRmlABCD-R3	CTGCAGTTAATAACCTTTAATCATTTTTAGC	
pCDFm-EcRmlABCD-F4	CTGCAGATGAACGTAATTAAAACTGAAATTC	
pCDFm-EcRmlABCD-R4	AAGCTT TTATATTGTAGTTGGATCATTCCAT	
pCDFm-EcRmlABCD-VF1	TTGACAGCTAGCTCAGTCCTAGGTA	

GGCGCTAAAGCGCGTTGCAGTTCGT -EcRmlABCD-VR1 TGAACGCGGGCGCGTATACCGCGGT pCDFm-EcRmlABCD-VF2 CTGCCAGGCATCAAATAAAACGAGC -EcRmlABCD-VR2 ATGAAACGCAAGGGCATCATCCTCG pCDFm-RmlABCD-F1 TCAGTACACGGTCTCGGTCAGCAGG pCDFm-RmlABCD-R1 ATTCGCGAAATTCTGATTATTAGCA pCDFm-RmlABCD-F2 CCGGTATCCAGCCACGCATAGCCGC pCDFm-RmlABCD-R2 ATGAAAGCGACCCGCCTGGCAATTCCCG pCDFm-RmlABCD-F3 TCAGGGGAAGCAGTCGGCGTCGGCG pCDFm-RmlABCD-R3 ATGAACCGGATCCTTCTCCTCGGCG pCDFm-RmlABCD-F4 TCATAGTGGTCCCTGCTCGCTCA pCDFm-RmlABCD-R4 CTAGCTCAGTCCTAGGTATAATAAAG pCDFm-RmlABCD-VF1 pCDFm-RmlABCD-VR1 CGGTCAGCAGGCGTTTCAGATACTG pCDFm-RmlABCD-VF2 AAAACCTATGCGGGGCAACCGCAACG pCDFm-RmlABCD-VR2 TTACGCATATTTGCCCACC ATGTTTAATGGTAAAATATTGTTAA pCDFm-FnlABC-F1 TTATGAATCCAACTCATAATCTTCA pCDFm-FnlABC-R1 ATGAGTTGGATTCATAATATGAAAA pCDFm-FnlABC-F2 TCACGATAAAACTCTCGCTATAGTA pCDFm-FnlABC-R2 ATGTCGGTTGTTGGGACTCGTCCAG pCDFm-FnlABC-F3 TTAGTATTGCTTCCAGACAACCCGTT pCDFm-FnlABC-R3 GAGATATACATGTTTAACGGCAAAA pCDFm-FnlABC-VF1 GGCGCTTTCTGCACAAAAATATCGC pCDFm-FnlABC-VR1 TACTGAAACTGCCGTTTATTCGCGC pCDFm-FnlABC-VF2 GTATACGCAAACTGTTCCGGGCTCA pCDFm-FnlABC-VR2 CATATGATGGATAAGAACTCTGTTCTGTTAAT pCDFm-WbjBCD-F1 GATATCTTTTCCTCTGGACTGGCACTCTCGA pCDFm-WbjBCD-R1 GATATCATGAAAGTTCTTGTAACTGGCGCGA pCDFm-WbjBCD-F2 GGTACC TTACGCACCTTCGCCTACTGAACAA pCDFm-WbjBCD-R2 GGTACCATGCAGAAGCTAAAAGTCGTTACGG pCDFm-WbjBCD-F3 CTCGAGTTAATATTTTTTCCAGACAGTTCGC pCDFm-WbjBCD-R3

pCDFm-WbjBCD-VF1	ATGAGCTGTTGACAATTAATCATC
pCDFm-WbjBCD-VR1	ATCTCCTTAGTAGGCTATTCTTCCG
pCDFm-WbjBCD-VF2	TACCTATGCGTGCAGCGTGGGTGAA
pCDFm-WbjBCD-VR2	GTGCGCATCACATAATCGCGATAGC

Lowercase letters represent homologous sequences to the genome, RBS sequences, restriction site sequences. Red letters represent N20 sequences of each gene.

Table S4 *E*-factors and process complexity determined for the production process of glycoprotein.

Manufacturing processes	<i>E</i> -factor ^a [kg kg ⁻¹]	No. of steps
Bioconjugation methodology	1600~2000 ^b	3-4
Pharmaceuticals (antibiotics, drugs, vaccines)	25->100°	2+

^a The *E*-factor (Environmental impact factor) was proposed for assessing the environmental impact of manufacturing processes⁴.

 $\sum m$ (Input materials)-*m*(Product)

m(Product)

^b Materials (glucose, glycerol and other raw materials) usage in green manufacture were described. Furthermore, losses from the purification process are also taken into account.

^c The *E* factor in the pharmaceutical industry was typically calculated as 25->100 kg per kg⁵.

The detailed calculation process of *E* factor is displayed as followed.

The American Chemical Society (ACS) Green Chemistry Institute Pharmaceutical Roundtable (GCIPR) group has an initial attempt to establish a systematic environmental assessment of therapeutic biologics⁶.

The *E* factor in the pharmaceutical industry was typically calculated as 25 to over 100 kg per kg. However, traditional chemical methods for the production of glycoproteins are usually complex. Multiple steps are required whereby the O-antigen must be purified from the pathogen of interest, detoxified and subject to chemical activation. In parallel, the protein must also be purified and chemically activated before protein and glycan can be conjugated. Following conjugation, further rounds of purification are necessary before glycoprotein can be administered. Therefore, it takes at least 4 steps rather than 2 steps as reported to synthesize such glycoproteins using chemical and/or chemoenzymatic synthetic techniques.

Analysis of the bioconjugation route, the E factor was estimated as 1600-2000 kg per kg. A primary cause of the high E factors within the bioconjugation methodology is the rather low glycoprotein titer and the correspondingly large amount of input materials. In fact, the strategies for the biosynthesis of the glycoproteins offer a

promising alternative to prepare the therapeutic glycoprotein as a vaccine against UPEC in the microbial cell factory. However, this therapeutic glycoprotein is still in its initial stage, while proof-of-concept reactions have been demonstrated, further stepwise improvements are required to enhance the glycosylation efficiency (or site occupancy) for industrial production. For *E* factor calculation, it takes the chemical yield into account and includes reagents, solvent losses, all process aids and, in principle, even fuel (although this is often difficult to quantify). However, the glucose and glycerol and many other chemicals in this medium are not completely metabolized during the fermentation process. After 48 h fermentation, the content of the residual glucose and glycerol in the culture was at least 10 g/L and 10 g/L. Hence, the *E* factor in the bioconjugation route ranged from 1600 to 2000.

Despite the high E factor, such recombinant E. *coli* can direct the biosynthesis of glycoprotein in a "living glyco-factory" without the use of purified enzymes and protective groups usually applied by traditional chemical technologies.

Furthermore, the production of glycoprotein in glycoengineering *E. coli* can reduce the risk of viral contamination, which is superior to current chemical coupling methods. Moreover, the simple, cost-efficient and rapid growth culturing of the *E. coli* glycoengineering strain expands this method to a wider application of laboratories than existing chemical/chemoenzymatic production technologies.

The 12 Principles of Green Chemistry were developed by Paul Anastas and John Warner as a way to "help reduce or eliminate the use or generation of hazardous substances in the design, manufacture and application of chemical products"⁷. A traffic light assessment of the oligonucleotide process against these principles is presented in Table S5, highlighting several areas for improvement.

Principle	Assessment for bioconjugation method	Assessment for chemical methods
	(initial stage)	
Prevention of Waste	A rather low titer which inevitably generates	The generated waste are slightly low.
	many wastes (mainly wastewater and carbon	
	mix)	
Atom Economy	Atom economy for the starting materials is	Atom economy for the starting materials is high
	slightly poor	
Less Hazardous	No or less hazardous reagents and solvents are	Some hazardous reagents and solvents are
Chemical Syntheses	involved	involved
Designing Safer	Glycoprotein generally as therapeutic drugs	Glycoprotein generally as therapeutic drugs
Chemicals		
Safer Solvents and	Only the safety fermentation medium is used	Some solvents are used in the detoxified step
Auxiliaries		
Design for Energy	Medium Energy Efficiency	Medium Energy Efficiency
Efficiency		
Use of Renewable	Most reagents and materials are renewable and	Some reagents and materials are nonrenewable
Feedstocks	green feedstocks	feedstocks
Reduce Derivatives	No Derivatives generation	Protecting groups are used
Catalysis	Biocatalysis process in vivo using the OTase	Chemical conjugation process used
Design for Degradation	Can be degraded in vivo	Can be degraded
Real-time Analysis for	Analysis methods need to be further developed	Analysis methods need to be further developed
Pollution Prevention	to allow for real-time, in-process monitoring	to allow for real-time, in-process monitoring
	and control prior to the formation of hazardous	and control prior to the formation of hazardous
	substances	substances
Inherently Safer	Inherently safer chemistry for accident	Purification and detoxification of
Chemistry for Accident	prevention	polysaccharide from the pathogenic bacteria
Prevention		

Table S5 Assessment of glycoprotein manufacturing process against 12principles of green chemistry.

References

- 1. C. K. Raymond, E. H. Sims and M. V. Olson, *Genome Res.*, 2002, **12**, 190-197.
- 2. J. Wang, X. Sui, Y. Ding, Y. Fu, X. Feng, M. Liu, Y. Zhang, M. Xian and G. Zhao, *Nucleic Acids Res.*, 2021, **49**, e12.
- 3. K. A. Datsenko and B. L. Wanner, Proc. Natl. Acad. Sci. U.S. A., 2000, 97, 6640-6645.
- 4. R. A. Sheldon, *Green Chem.*, 2017, **19**, 18-43.
- 5. F. Roschangar, R. A. Sheldon and C. H. Senanayake, *Green Chem.*, 2015, 17, 752-768.
- S. V. Ho, in *Green Chemistry in the Pharmaceutical Industry*, ed. P.J. Dunn, A.S. Wells and M.T. Williams, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 1st edition, 2010, Chapter 15: Environmental Considerations in Biologics Manufacture, pp. 311-331.
- 7. P. T. Anastas and J. C. Warner, *Green Chemistry: Theory and Practice*, Oxford University Press, Oxford, 1998.