Catalyst-free racemic and H₂O/CPA-catalyzed asymmetric

regio-reversed domino processes of triketone enones with

azlactones

Yun-Dong Fu,^a Xiang Gao,^a Shi-Kun Jia,^a Xiao Xiao,^b Min-Can Wang,^a Lihua Huang^{*,a}

and Guang-Jian Mei*,a

^a Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. E-mail: <u>hlh606@zzu.edu.cn</u>; <u>meigj@zzu.edu.cn</u>.

^b Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.

Supporting Information

TABLE OF CONTENTS

1. General Methods	2
2. Representative Procedures	3
3. Characterization of Products	7
4. Chemical kinetics studies	28
5. X-ray single crystal data for compounds (-)-31	
6. NMR Spectra	33
7. HPLC spectra	64
8. References	

1. General Methods

Unless otherwise specified, all reactions were conducted under an inert atmosphere and anhydrous conditions. All the solvents were purified according to the standard procedures. All chemicals which are commercially available were employed without further purification. Thin-layer chromatography (TLC) was performed on silica gel plates (60F-254) using UV-light (254 nm). Flash chromatography was conducted on silica gel (200-300 mesh). ¹H and ¹³C NMR spectra were recorded at ambient temperature in CDCl₃ on a 400 MHz NMR spectrometer. Chemical shifts were reported in parts per million (ppm). The data are reported as follows: for ¹H NMR, chemical shift in ppm from tetramethylsilane with the solvent as internal standard (CDCl₃ δ 7.26 ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or overlap of non-equivalent resonances), integration; for ¹³C NMR, chemical shift in ppm from tetramethylsilane with the solvent as internal indicator (CDCl₃ & 77.1 ppm), multiplicity with respect to protons. All high-resolution mass spectra were obtained on a Q-TOF Micro LC/MS System ESI spectrometer to be given in m/z. Enantiomeric excesses values were determined with HPLC (chiral column; Mobile phase hexane/i-PrOH). Trione alkenes 1 were synthesized according to modified literature-reported procedures¹; Azlactone 2 were either employed directly from commercial sources or prepared according to the literature²⁻³.

2. Representative Procedures

Ph 1a	+	EtO ₂ C N Ph 2a	Cat. (10 mol%) solvent, r.t.	PhOCHN CO2Et Ac (±)-3a
entry	Cat.	solvent	yield (%) ^b	dr ^c
1	АсОН	CH_2Cl_2	81	>20:1
2	PhCO ₂ H	CH_2Cl_2	73	>20:1
3	H ₃ PO ₄	CH_2Cl_2	84	>20:1
4	TFA	CH_2Cl_2	78	>20:1
5	TsOH	CH_2Cl_2	64	>20:1
6	-	CH_2Cl_2	89	>20:1
7	-	toluene	82	>20:1
8	-	CH ₃ CN	78	>20:1
9	-	THF	43	>20:1

Table S1. Optimization of the reaction conditions^a

a) Reaction conditions: **1a** (0.05 mmol), **2a** (0.05 mmol.), **Cat.** (10 mol%), solvent (1 mL), and at room temperature (r.t.) for 24 h. b) Isolated yields. c) Determined by ¹H NMR.

General Procedures for the synthesis of target products

Trione alkenes 1 (0.15 mmol) and azlactone 2 (0.15 mmol) was dissolved in DCM (3 ml), rac-PA (10 mol%) was added. The reaction mixture was stirred for 24 h at room temperature. The solvents were removed in vacuo and the crude product was separated by flash column chromatography on silica gel (petroleum ether/ethyl acetate 5:1-3:1) to afford colorless solid (±)-**3a**.

Table S2. Optimization of the catalytic asymmetric reaction conditions.^a

Entry	Solvent	Cat.	T(h)	t(°C)	Y(%) ^b	ee%°	drc
1	DCM	CPA-2	24	r.t	75	-24	>20:1
2	DCM	CPA-3	24	r.t	82	-30	>20:1
3	DCM	CPA-1	24	r.t	82	-40	>20:1
4	DCM	CPA-8	24	r.t	75	-54	>20:1
5	DCM	CPA-4	24	r.t	82	0	>20:1
6	THF	CPA-8	24	r.t	45	-24	>20:1
7	MeCN	CPA-8	24	r.t	82	-20	>20:1
8	Toluene	CPA-8	24	r.t	80	-22	>20:1
9	DCE	CPA-8	24	r.t	65	-44	>20:1
10	CHCl ₃	CPA-8	24	r.t	Trace	-	>20:1
11	CCl ₄	CPA-8	24	r.t	45	-14	>20:1
12	DCM	CPA-9	24	r.t	63	-64	>20:1
13	DCM	CPA-10	24	r.t	75	34	>20:1
14	DCM	CPA-5	24	r.t	80	-44	>20:1
15	DCM	CPA-11	24	r.t	75	16	>20:1
16	DCM	CPA-6	24	r.t	75	-64	>20:1

17	DCM	CPA-12	24	r.t	78	-72	>20:1
18	DCM	CPA-13	24	r.t	80	40	>20:1
19	DCM	CPA-14	24	r.t	76	72	>20:1
20	DCM	CPA-15	24	r.t	82	50	>20:1
21	DCM	CPA-7	24	r.t	81	74	>20:1

a) Reaction conditions: **1a** (0.05 mmol), **2a** (0.05 mmol.), **Cat.** (10 mol%), solvent and at room temperature (r.t.) for 24 h. b) Isolated yields. c) Determined by chiral HPLC analysis.

Table S3. Catalyst-loading screening.^a

Ph	0 0 1a	EtO ₂ + N P	$\begin{array}{c} C \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ h \\ 2a \end{array} \qquad \begin{array}{c} CPA- \\ (X \text{ mol}^{\prime}) \\ CH_2CI_2, \\ CH_2CI_2, \\ I \\ $	7 PhO(%) O(r.t.	CHN CO2 AC	Et `Ph
Entry	Solvent	X	Concentration	Y(%) ^b	ee% ^c	drc
1	DCM	15	0.0017M	71	90	>20:1
2	DCM	10	0.0017M	70	90	>20:1
3	DCM	8	0.0017M	68	81	>20:1
4	DCM	6	0.0017M	68	52	>20:1
5	DCM	4	0.0017M	66	43	>20:1

a) Reaction conditions: **1a** (0.15 mmol), **2a** (0.15 mmol), **CPA-7** (X mol%), solvent and at room temperature (r.t.) for 24 h. b) Isolated yields. c) Determined by chiral HPLC analysis.

Table S4. Additive screening.	a
-------------------------------	---

Ph	e e e e e e e e e e e e e e e e e e e	$ \begin{array}{c} \text{tO}_2 C \\ \text{N} \\ \text{Ph} \\ \text{2a} \end{array} $	PA-7 mol%) ditives Cl ₂ , r.t.	OCHN CO2 AC	Et Ph
Entry	Additive	Concentration	Y(%) ^b	ee%°	dr ^c
1	-	0.005M	81	74	>20:1
2	H ₂ O (0.5 mol%)	0.005M	80	80	>20:1
3	H ₂ O (1 mol%)	0.005M	73	86	>20:1
4	H ₂ O (2 mol%)	0.005M	72	86	>20:1
5	H ₂ O (4 mol%)	0.005M	70	86	>20:1
6	H ₂ O (2 mol%)	0.0025M	75	86	>20:1

7	H ₂ O (2 mol%)	0.0017M	70	90	>20:1
8	H ₂ O (2 mol%)	0.0013M	65	90	>20:1
9	H ₂ O (2 mol%)	0.0008M	52	88	>20:1
10	H ₂ O (2 mol%)	0.0006M	45	84	>20:1

a) Reaction conditions: **1a** (0.05 mmol), **2a** (0.05 mmol.), **CPA-7** (10 mol%), CH₂Cl₂ (10 mL) at room temperature (r.t.) for 24 h. b) Isolated yields. c) Determined by chirl HPLC analysis.

General Procedure for the catalytic asymmetric synthesis of target products

Trione alkenes **1a** (0.15 mmol), H_2O (2 mol%) and **CPA-7** (10 mol%) was dissolved in DCM (88 ml), azlactone **2a** (0.15 mmol) was added in 5 minutes. The reaction mixture was stirred for 24 h at room temperature. The solvents were removed in vacuo and the crude product was separated by flash column chromatography on silica gel (petroleum ether/ethyl acetate 5:1–3:1) to afford colorless solid (-)-**3a**. Then recrystallization of the target products were conducted in EA/PE.

3. Characterization of Products

Ethyl 3a-acetyl-3-benzamido-6a-methyl-2-oxo-5-phenyl-2,3,3a,6a-tetrahydrofuro

[2,3-b] furan-3-carboxylate (±)-3a:

Colorless solid; 89% isolated yield = 60.02 mg; m.p. 120.9-121.8°C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.73 (m, 2H), 7.68 – 7.60 (m, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.43 – 7.32 (m, 4H), 5.55 (s, 1H), 4.31 – 4.11 (m, 2H), 2.38 (s, 3H), 2.07 (s, 3H), 1.11 (t, *J* = 7.1 Hz, 3H) ; ¹³C NMR (100 MHz, CDCl₃) δ 200.5, 166.9, 166.8, 166.5, 158.0, 132.4, 132.4, 130.4, 128.8, 128.7, 128.1, 127.2, 125.7, 116.7, 95.7, 72.8, 69.6, 63.6, 29.6, 22.1, 13.75; HRMS(ESI) m/z Calcd for C₂₅H₂₃NO₇ [M+Na]⁺ = 472.1367, found: 472.1373.

Methyl 3a-acetyl-3-benzamido-6a-methyl-2-oxo-5-phenyl-2,3,3a,6a-tetrahydrofuro [2,3-b]furan-3-carboxylate (±)-**3b**:

Colorless solid; 90% isolated yield = 58.8 mg; m.p. 122.2-123.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.76 (m, 2H), 7.66 – 7.59 (m, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.44 – 7.35 (m, 4H), 5.58 (s, 1H), 3.72 (s, 3H), 2.39 (s, 3H), 2.03 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃) δ 201.1, 167.2, 166.9, 166.6, 158.3, 132.5, 132.4, 130.5, 128.8, 128.7, 128.1, 127.2, 125.7, 116.4, 95.6, 72.5, 69.8, 53.7, 29.7, 22.1; HRMS(ESI) m/z Calcd for C₂₄H₂₁NO₇ [M+Na]⁺ = 458.1210, found: 458.1217.

Benzyl 3a-acetyl-3-benzamido-6a-methyl-2-oxo-5-phenyl-2,3,3a,6a-tetrahydrofuro [2,3-b]furan-3-carboxylate (±)-**3c**:

Colorless solid; 82% isolated yield = 62.9 mg; m.p. 128.1-129.2°C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.76 (m, 2H), 7.58 – 7.51 (m, 2H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.43 – 7.38 (m, 3H), 7.37 – 7.31 (m, 2H), 7.31 – 7.26 (m, 1H), 7.25 – 7.17 (m, 4H), 5.30 (s, 1H), 5.18 (s, 2H), 2.31 (s, 3H), 2.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.5, 166.7, 166.4, 166.3, 158.1, 133.8, 132.5, 132.4, 130.3, 128.8, 128.7, 128.6, 128.5, 127.9, 127.2, 125.8, 116.3, 95.5, 72.5, 69.3, 69.0, 29.8, 22.0; HRMS(ESI) m/z Calcd for C₃₀H₂₅NO₇ [M+Na]⁺ = 534.1523, found: 534.1525.

Isopropyl 3a-acetyl-3-benzamido-6a-methyl-2-oxo-5-phenyl-2,3,3a,6a-tetrahydrofuro [2,3-b]furan-3-carboxylate (±)-3d:

Colorless solid; 81% isolated yield = 56.3 mg; m.p. 111.1-112.1°C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.75 (m, 2H), 7.67 – 7.60 (m, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.43 – 7.34 (m, 4H), 5.49 (s, 1H), 5.14 – 4.98 (m, 1H), 2.37 (s, 3H), 2.11 (s, 3H), 1.22 (d, *J* = 6.2 Hz, 3H), 1.04 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 166.8, 166.5, 166.4, 157.7, 132.4, 132.4, 130.3, 128.8, 128.6, 128.1, 127.2, 125.7, 116.8, 95.7, 72.9, 72.4, 69.3, 29.5, 22.1, 21.3, 21.3; HRMS(ESI) m/z Calcd for C₂₆H₂₅NO₇ [M+Na]⁺ = 486.1523, found: 486.1528.

Ethyl 3a-acetyl-3-(2-fluorobenzamido)-6a-methyl-2-oxo-5-phenyl-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate (±)-**3e**::

Colorless solid; 88% isolated yield =60.70 mg; m.p. 101.5-102.3°C; ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.00 (m, 2H), 7.66 – 7.57 (m, 2H), 7.56 – 7.49 (m, 1H), 7.45 – 7.38 (m, 3H), 7.31 – 7.26 (m, 1H), 7.21 – 7.12 (m, 1H), 5.46 (s, 1H), 4.29 – 4.19 (m, 2H), 2.36 (s, 3H), 2.14 (s, 3H), 1.13 (t, *J* = 7.2 Hz, 3H) ; ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 166.8, 166.4,162.3 (d, *J* = 3.2 Hz), 160.9 (d, *J* = 248.6 Hz), 157.8, 134.4 (d, *J* = 9.6 Hz), 132.3, 130.4, 128.6, 128.1, 125.7, 125.0 (d, *J* = 3.2 Hz), 119.1 (d, *J* = 11.0 Hz) 117.0, 116.1 (d, *J* = 24.5 Hz), 112.0, 95.3, 73.1, 69.5, 63.7, 29.3, 22.0, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.16; HRMS(ESI) m/z Calcd for C₂₅H₂₂FNO₇ = [M+Na]⁺ 490.1272, found: 490.1282.

Ethyl 3a-acetyl-3-(3-fluorobenzamido)-6a-methyl-2-oxo-5-phenyl-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate (\pm) -**3f**:

Colorless solid; 87% isolated yield = 61.00 mg; m.p. 150.3-151.2.°C; ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.60 (m, 2H), 7.58 – 7.48 (m, 2H), 7.48 – 7.39 (m, 4H), 7.35 (s, 1H), 7.26 – 7.22 (m, 1H), 5.56 (s, 1H), 4.26 – 4.11 (m, 2H), 2.38 (s, 3H), 2.04 (s, 3H), 1.11 (t, *J* = 7.1 Hz, 3H) ; ¹³C NMR (100 MHz, CDCl₃) δ 200.9, 166.8, 166.5, 165.3 (d, *J* = 2.5 Hz), 162.7 (d, *J* = 248.5 Hz), 158.2, 134.7 (d, *J* = 7.0 Hz), 130.6, 130.5, 128.7, 128.0, 125.7, 122.6 (d, *J* = 3.1 Hz), 119.5 (d, *J* = 21.3 Hz), 116.5, 114.7 (d, *J* = 23.2 Hz), 95.6, 72.6, 69.7, 63.7, 29.6, 22.1, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -108.9; HRMS(ESI) m/z Calcd for C₂₅H₂₂FNO₇ [M+Na]⁺ = 490.1272, found: 490.1275.

Ethyl 3a-acetyl-6a-methyl-3-(3-methylbenzamido)-2-oxo-5-phenyl-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate (±)-**3g**:

Colorless solid; 87% isolated yield = 60.48 mg; m.p. 122.9-123.5°C; ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.59 (m, 3H), 7.56 (d, *J* = 6.4 Hz, 1H), 7.44 – 7.39 (m, 3H), 7.38 – 7.29 (m, 3H), 5.55 (s, 1H), 4.27 – 4.10 (m, 2H), 2.40 (s, 3H), 2.38 (s, 3H), 2.07 (s, 3H), 1.10 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.3, 167.0, 166.8, 166.7, 157.9, 138.7, 133.2, 132.4, 130.4, 128.7, 128.6, 128.1, 127.9, 125.7, 124.1, 116.7, 95.7, 72.8, 69.7, 63.6, 29.5, 22.1, 21.3, 13.7; HRMS(ESI) m/z Calcd for C₂₆H₂₅NO₇ [M+Na]⁺ = 486.1523, found: 486.1530.

Ethyl 3a-acetyl-3-(4-fluorobenzamido)-6a-methyl-2-oxo-5-phenyl-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate (±)-**3h**:

Colorless solid; 87% isolated yield = 61.00 mg; m.p. 111.1-112.1°C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.74 (m, 2H), 7.63 (d, *J* = 4.2 Hz, 2H), 7.42 (s, 3H), 7.32 (s, 1H), 7.14 (t, *J* = 8.4 Hz, 2H), 5.55 (s, 1H), 4.28 – 4.10 (m, 2H), 2.37 (s, 3H), 2.05 (s, 3H), 1.11 (t, *J* = 7.1 Hz, 3H) ; ¹³C NMR (100 MHz, CDCl₃) δ 200.8, 166.9, 166.7, 165.5, 165.3 (d, *J* = 253.6 Hz), 158.1, 130.5, 129.7 (d, *J* = 9.2 Hz), 128.7, 128.0, 125.7, 116.6, 115.9 (d, *J* = 22.1 Hz), 95.6, 72.6, 69.7, 63.7, 29.6, 22.1, 13.7; ¹⁹F NMR (376 MHz,

CDCl₃) δ -112.4; HRMS(ESI) m/z Calcd for C₂₅H₂₂FNO₇ [M+Na]⁺ = 490.1272, found: 490.1278.

Ethyl 3a-acetyl-3-(4-chlorobenzamido)-6a-methyl-2-oxo-5-phenyl-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate (±)-**3i**:

Colorless solid; 91% isolated yield = 66.04 mg; m.p. 134.5-135.1°C; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.5 Hz, 2H), 7.66 – 7.59 (m, 2H), 7.48 – 7.39 (m, 5H), 7.33 (s, 1H), 5.55 (s, 1H), 4.27 – 4.10 (m, 2H), 2.37 (s, 3H), 2.04 (s, 3H), 1.11 (t, *J* = 7.1 Hz, 3H) ; ¹³C NMR (100 MHz, CDCl₃) δ 200.8, 166.8, 166.6, 165.5, 158.1, 138.8, 130.8, 130.5, 129.1, 128.7, 128.6, 128.0, 125.7, 116.5, 95.6, 72.6, 69.7, 63.7, 29.6, 22.1, 13.7; HRMS(ESI) m/z Calcd for C₂₅H₂₂ClNO₇ [M+Na]⁺ = 506.0977, found: 506.0980.

Ethyl 3a-acetyl-3-(4-bromobenzamido)-6a-methyl-2-oxo-5-phenyl-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate (±)-**3**j:

Colorless solid; 92% isolated yield = 72.92. mg; m.p. 126.3-127.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.58 (m, 6H), 7.44 – 7.38 (m, 3H), 7.34 (s, 1H), 5.55 (s, 1H), 4.26 – 4.11 (m, 2H), 2.37 (s, 3H), 2.04 (s, 3H), 1.11 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.8, 166.8, 166.6, 165.7, 158.1, 132.0, 131.3, 130.5, 128.8, 128.7, 128.0, 127.3, 125.7, 116.5, 95.6, 72.6, 69.7, 63.7, 29.6, 22.1, 13.7; HRMS(ESI) m/z

Calcd for $C_{25}H_{22}BrNO_7 [M+Na]^+ = 550.0472$, found: 550.0479.

<u>:</u>

Ethyl 3a-acetyl-6a-methyl-3-(4-methylbenzamido)-2-oxo-5-phenyl-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate(±)-**3k**:

Colorless solid; 89% isolated yield = 61.87 mg; m.p. 165.5-166.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.2 Hz, 2H), 7.65 – 7.59 (m, 2H), 7.44 – 7.37 (m, 3H), 7.25 (d, *J* = 7.5 Hz, 2H), 5.53 (s, 1H), 4.25 – 4.12 (m, 2H), 2.41 (s, 3H), 2.36 (s, 3H), 2.08 (s, 3H), 1.11 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.3, 167.0, 166.9, 166.4, 157.9, 143.1, 130.4, 129.5, 129.4, 128.7, 128.1, 127.2, 125.7, 116.7, 95.7, 72.8, 69.5, 63.6, 29.5, 22.1, 21.5, 13.7; HRMS(ESI) m/z Calcd for C₂₆H₂₅NO₇ [M+Na]⁺ = 486.1523, found: 486.1526.

Ethyl 3a-acetyl-3-(3-methoxybenzamido)-6a-methyl-2-oxo-5-phenyl-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate (±)-**3**I:

Colorless solid; 87% isolated yield = 62.57 mg; m.p. 158.5-159.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.7 Hz, 2H), 7.69 – 7.58 (m, 2H), 7.49 – 7.36 (m, 3H), 7.28 (s, 1H), 6.94 (d, *J* = 8.7 Hz, 2H), 5.52 (s, 1H), 4.32 – 4.14 (m, 2H), 3.86 (s, 3H), 2.36 (s, 3H), 2.09 (s, 3H), 1.11 (t, *J* = 7.1 Hz, 3H) ; ¹³C NMR (100 MHz, CDCl₃) δ 200.3,

167.0, 165.9, 163.0, 157.9, 130.4, 129.2, 128.7, 128.1, 125.7, 124.6, 116.7, 113.9, 95.7, 72.8, 69.5, 63.6, 55.5, 29.5, 22.1, 13.7; HRMS(ESI) m/z Calcd for $C_{26}H_{25}NO_8 [M+Na]^+$ = 502.1472, found: 502.1479.

Ethyl 3a-acetyl-3-(furan-2-carboxamido)-6a-methyl-2-oxo-5-phenyl-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate (±)-**3m**:

Colorless solid; 76% isolated yield = 50.09 mg; m.p. 114.4-115.3°C; ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.58 (m, 2H), 7.49 (d, *J* = 11.2 Hz, 2H), 7.44 – 7.35 (m, 3H), 7.17 (d, *J* = 3.5 Hz, 1H), 6.56 – 6.50 (m, 1H), 5.54 (s, 1H), 4.26 – 4.11 (m, 2H), 2.37 (s, 3H), 2.05 (s, 3H), 1.10 (t, *J* = 7.1 Hz, 3H) ; ¹³C NMR (100 MHz, CDCl₃) δ 200.2, 166.6, 158.0, 157.2, 146.3, 144.9, 130.4, 128.7, 128.1, 125.6, 116.8, 116.2, 112.5, 95.5, 72.9, 69.2, 63.7, 29.5, 22.1, 13.7; HRMS(ESI) m/z Calcd for C₂₃H₂₁NO₈ [M+Na]⁺ = 462.1159, found: 462.1161.

Ethyl 3a-acetyl-6a-methyl-2-oxo-5-phenyl-3-(thiophene-2-carboxamido)-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate (±)-**3n**:

Colorless solid; 78% isolated yield = 53.28 mg; m.p. 107.4-108.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.60 (m, 2H), 7.59 (dd, *J* = 3.7, 0.8 Hz, 1H), 7.55 (dd, *J* = 5.0, 0.8 Hz, 1H), 7.44 – 7.37 (m, 3H), 7.19 (s, 1H), 7.14 – 7.08 (m, 1H), 5.55 (s, 1H), 4.27 – 4.09 (m, 2H), 2.38 (s, 3H), 2.04 (s, 3H), 1.10 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 200.6, 166.9, 166.6, 161.0, 158.0, 136.6, 131.5, 130.4, 129.6, 128.7, 128.1, 127.9, 125.7, 116.6, 95.7, 72.7, 69.6, 63.7, 29.5, 22.1, 13.7; HRMS(ESI) m/z Calcd for C₂₃H₂₁NO₇S = [M+Na]⁺ 478.0931, found: 478.0931.

Ethyl 3-(1-naphthamido)-3a-acetyl-6a-methyl-2-oxo-5-phenyl-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate (±)-**3o**:

Colorless solid; 91% isolated yield = 68.18 mg; m.p. 110.5-111.2°C; ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 8.4 Hz, 1H), 7.95 (d, *J* = 8.2 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.72 – 7.63 (m, 3H), 7.61 – 7.46 (m, 3H), 7.45 – 7.37 (m, 3H), 7.15 (s, 1H), 5.68 (s, 1H), 4.27 – 4.06 (m, 2H), 2.45 (s, 3H), 2.07 (s, 3H), 1.10 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.5, 169.0, 167.4, 166.5, 158.1, 133.6, 132.1, 131.4, 130.4, 130.1, 128.7, 128.2, 128.1, 127.6, 126.7, 125.7, 125.2, 124.6, 116.8, 95.8, 72.8, 70.2, 63.7, 29.7, 22.3, 13.7; HRMS(ESI) m/z Calcd for C₂₉H₂₅NO₇ [M+Na]⁺ = 522.1523, found: 522.1527.

Ethyl 3a-acetyl-3-benzamido-6a-methyl-5-(naphthalen-2-yl)-2-oxo-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate(±)-**3p**:

Colorless solid; 80% isolated yield = 59.94 mg; m.p. $117.3-118.1^{\circ}$ C; ¹H NMR (400

MHz, CDCl₃) δ 8.16 (s, 1H), 7.94 – 7.87 (m, 1H), 7.88 – 7.82 (m, 2H), 7.80 (d, *J* = 7.3 Hz, 2H), 7.63 (dd, *J* = 8.6, 1.4 Hz, 1H), 7.59 – 7.52 (m, 3H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.37 (s, 1H), 5.68 (s, 1H), 4.25 – 4.10 (m, 2H), 2.42 (s, 3H), 2.12 (s, 3H), 1.08 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.3, 167.0, 166.8, 166.6, 158.0, 134.0, 132.9, 132.5, 132.4, 128.8, 128.7, 128.5, 127.8, 127.4, 127.2, 126.9, 125.7, 125.2, 122.5, 116.8, 96.4, 72.9, 69.7, 63.7, 29.6, 22.2, 13.7; HRMS(ESI) m/z Calcd for C₂₉H₂₅NO₇ [M+Na]⁺ = 522.1523, found: 522.1526.

Ethyl 3a-acetyl-3-benzamido-6a-methyl-2-oxo-5-(o-tolyl)-2,3,3a,6a-tetrahydrofuro

[2,3-b]furan-3-carboxylate (±)-3q:

Colorless solid; 83% isolated yield = 57.69 mg; m.p. 134.3-135.1°C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.78 (m, 2H), 7.59 – 7.51 (m, 2H), 7.46 (t, *J* = 7.5 Hz, 3H), 7.35 – 7.29 (m, 1H), 7.26 – 7.21 (m, 2H), 5.28 (s, 1H), 4.37 – 4.16 (m, 2H), 2.47 (s, 3H), 2.39 (s, 3H), 2.09 (s, 3H), 1.17 (t, *J* = 7.2 Hz, 3H) ; ¹³C NMR (100 MHz, CDCl₃) δ 200.8, 167.0, 166.5, 166.3, 158.6, 136.7, 132.5, 132.4, 131.2, 130.1, 128.8, 128.3, 127.8, 127.2, 126.0, 116.1, 99.8, 72.8, 69.2, 63.7, 29.6, 21.9, 21.4, 13.7; HRMS(ESI) m/z Calcd for C₂₆H₂₅NO₇ [M+Na]⁺ = 486.1523, found: 486.1528.

Ethyl 3a-acetyl-3-benzamido-6a-methyl-2-oxo-5-(m-tolyl)-2,3,3a,6a-tetrahydrofuro [2,3-b]furan-3-carboxylate (±)-**3r**:

Colorless solid; 86% isolated yield = 59.78 mg; m.p. 123.5-124.1°C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.76 (m, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.50 – 7.40 (m, 4H), 7.37 15

(s, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.23 (d, J = 7.5 Hz, 1H), 5.53 (s, 1H), 4.27 – 4.14 (m, 2H), 2.38 (s, 3H), 2.38 (s, 3H), 2.06 (s, 3H), 1.12 (t, J = 7.2 Hz, 3H) ; ¹³C NMR (100 MHz, CDCl₃) δ 200.6, 166.9, 166.8, 166.5, 158.2, 138.5, 132.4, 131.2, 128.8, 128.5, 128.0, 127.2, 126.3, 122.8, 116.6, 95.5, 72.7, 69.6, 63.6, 29.6, 22.1, 21.3, 13.7; HRMS(ESI) m/z Calcd for C₂₆H₂₅NO₇ [M+Na]⁺ = 486.1523, found: 486.1533.

Ethyl 3a-acetyl-3-benzamido-5-(4-fluorophenyl)-6a-methyl-2-oxo-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate (±)-**3s**:

Colorless solid; 90% isolated yield = 61.13 mg; m.p. 134.5-135.3°C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.72 (m, 2H), 7.65 – 7.58 (m, 2H), 7.59 – 7.53 (m, 1H), 7.46 (t, J = 7.5 Hz, 2H), 7.35 (s, 1H), 7.15 – 7.02 (m, 2H), 5.49 (s, 1H), 4.26 – 4.14 (m, 2H), 2.37 (s, 3H), 2.06 (s, 3H), 1.11 (t, J = 7.2 Hz, 3H) ; ¹³C NMR (100 MHz, CDCl₃) δ 200.3, 166.8, 166.7, 166.5, 163.8 (d, J = 251.6 Hz), 157.0, 132.5, 132.4, 128.8, 127.8, 127.8 (d, J = 8.5 Hz), 124.4 (d, J = 3.4 Hz), 116.7, 115.9 (d, J = 22.1 Hz), 95.4 (d, J = 1.8 Hz), 72.8, 69.6, 63.6, 29.5, 22.1, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -108.9; HRMS(ESI) m/z [M+ Na] Calcd for C₂₅H₂₂FNO₇ [M+Na]⁺ = 490.1272, found: 490.1276

Ethyl 3a-acetyl-3-benzamido-5-(4-chlorophenyl)-6a-methyl-2-oxo-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate (±)-**3t**:

Colorless solid; 87% isolated yield = 63.15 mg; m.p. 143.5-143.9°C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.76 (m, 2H), 7.59 – 7.51 (m, 3H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.42 16

-7.37 (m, 2H), 7.34 (s, 1H), 5.55 (s, 1H), 4.26 -4.10 (m, 2H), 2.37 (s, 3H), 2.06 (s, 3H), 1.11 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 166.8, 166.7, 166.5, 156.9, 136.4, 132.5, 132.3, 129.0, 128.8, 127.2, 127.0, 126.6, 116.7, 96.2, 72.8, 69.6, 63.7, 29.5, 22.1, 13.8; HRMS(ESI) m/z Calcd for C₂₅H₂₂ClNO₇ [M+Na]⁺ = 506.0977, found: 506.0986.

Ethyl 3a-acetyl-3-benzamido-5-(4-bromophenyl)-6a-methyl-2-oxo-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate (±)-**3u**:

Colorless solid; 91% isolated yield = 74.14 mg; m.p. 145.4-146.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.76 (m, 2H), 7.58 – 7.52 (m, 3H), 7.51 – 7.44 (m, 4H), 7.34 (s, 1H), 5.57 (s, 1H), 4.26 – 4.08 (m, 2H), 2.37 (s, 3H), 2.06 (s, 3H), 1.12 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 166.8, 166.7, 166.5, 157.0, 132.5, 132.3, 132.0, 128.8, 127.2, 127.1, 127.0, 124.7, 116.7, 96.3, 72.8, 69.5, 63.7, 29.5, 22.1, 13.8; HRMS(ESI) m/z Calcd for C₂₅H₂₂BrNO₇ [M+Na]⁺ = 550.0472, found: 550.0480.

Ethyl 3a-acetyl-3-benzamido-6a-methyl-5-(4-nitrophenyl)-2-oxo-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate (\pm) -**3**v:

Colorless solid; 75% isolated yield = 55.62 mg; m.p. 145.2-146.1°C; ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 8.8 Hz, 2H), 7.86 – 7.76 (m, 4H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.32 (s, 1H), 5.81 (s, 1H), 4.29 – 4.14 (m, 2H), 2.40 (s, 3H), 2.09 (s, 3H), 1.11 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.2, 166.6, 166.6, 166.5, 155.7, 148.6, 133.9, 132.6, 132.2, 128.8, 127.2, 126.5, 124.0, 117.0, 99.9, 17

73.0, 69.5, 63.8, 29.6, 22.1, 13.8; HRMS(ESI) m/z Calcd for $C_{25}H_{22}N_2O_9$ [M+Na]⁺ = 517.1217, found: 517.1220.

Ethyl 3a-acetyl-3-benzamido-6a-methyl-2-oxo-5-(p-tolyl)-2,3,3a,6a-tetrahydrofuro [2,3-b]furan-3-carboxylate (±)-**3w**:

Colorless solid; 85% isolated yield = 59.11 mg; m.p. 125.5-126.1°C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.73 (m, 2H), 7.59 – 7.42 (m, 5H), 7.37 (s, 1H), 7.21 (d, *J* = 8.1 Hz, 2H), 5.47 (s, 1H), 4.27 – 4.12 (m, 2H), 2.39 (s, 3H), 2.37 (s, 3H), 2.06 (s, 3H), 1.12 (t, *J* = 7.2 Hz, 3H) ; ¹³C NMR (100 MHz, CDCl₃) δ 200.7, 166.9, 166.8, 166.5, 158.1, 140.7, 132.5, 132.4, 129.4, 128.7, 127.2, 125.6, 125.3, 116.6, 94.7, 72.7, 69.6, 63.6, 29.6, 22.1, 21.5, 13.7; HRMS(ESI) m/z Calcd for C₂₆H₂₅NO₇ [M+Na]⁺ = 486.1523, found: 486.1528.

Ethyl 3a-acetyl-3-benzamido-5-(4-methoxyphenyl)-6a-methyl-2-oxo-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate (\pm) -**3x**:

Colorless solid; 87 % isolated yield = 62.57 mg; m.p. 101.9-102.6°C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.75 (m, 2H), 7.55 (t, *J* = 7.8 Hz, 3H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.37 (s, 1H), 6.91 (d, *J* = 8.9 Hz, 2H), 5.38 (s, 1H), 4.26 – 4.14 (m, 2H), 3.85 (s, 3H), 2.37 (s, 3H), 2.06 (s, 3H), 1.12 (t, *J* = 7.2 Hz, 3H) ; ¹³C NMR (100 MHz, CDCl₃) δ 200.8, 167.0, 166.8, 166.5, 161.2, 157.8, 132.5, 132.4, 128.7, 127.3, 127.2, 120.7, 116.6, 114.0, 93.6, 72.8, 69.7, 63.6, 55.4, 29.5, 22.1, 13.7; HRMS(ESI) m/z Calcd for C₂₆H₂₅NO₈ [M+Na]⁺ = 502.1472, found: 502.1479.

Ethyl 3-(2-naphthamido)-3a-acetyl-6a-methyl-2-oxo-5-phenyl-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate (±)-**3y**:

Colorless solid; 92% isolated yield = 68.93 mg; m.p. 111.4-112.3°C; ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 7.98 – 7.86 (m, 3H), 7.85 – 7.80 (m, 1H), 7.68 – 7.61 (m, 2H), 7.60 – 7.53 (m, 2H), 7.50 (s, 1H), 7.45 – 7.35 (m, 3H), 5.59 (s, 1H), 4.31 – 4.08 (m, 2H), 2.41 (s, 3H), 2.10 (s, 3H), 1.12 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.4, 167.1, 166.8, 166.6, 158.0, 135.1, 132.5, 130.4, 129.6, 129.1, 128.7, 128.7, 128.2, 128.2, 128.1, 127.8, 127.0, 125.7, 123.3, 116.7, 95.7, 72.8, 69.8, 63.7, 29.6, 22.2, 13.7; HRMS(ESI) m/z Calcd for C₂₉H₂₅NO₇ [M+Na]⁺ = 522.1523, found: 522.1530.

Ethyl 5-oxo-4-(3-oxo-1-phenylbutyl)-2-phenyl-4,5-dihydrooxazole-4-carboxylate (±)-<u>7:</u>

Colorless solid; 65% isolated yield = 22.74 mg; m.p. 132.6-133.1°C; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 7.5 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.24 – 7.17 (m, 2H), 7.17 – 7.08 (m, 3H), 4.43 – 4.36 (m, 1H), 4.36 – 4.20 (m, 2H), 3.34 – 3.15 (m, 2H), 2.08 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 205.2, 172.3, 165.1, 163.4, 136.1, 133.3, 129.2, 128.8, 128.3, 128.2, 128.0, 125.0, 80.0, 63.3, 45.4, 44.8, 30.2, 13.9; HRMS(ESI) m/z Calcd for C₂₂H₂₁NO₅ [M+Na]⁺ = 402.1312, found: 402.1317.

Ethyl 3-benzamido-4-benzoyl-2-oxo-5,6a-diphenyl-2,3,3a,6a-tetrahydrofuro[2,3-b] furan-3-carboxylate (+)-10:

Colorless solid; 40% isolated yield = 14.00 mg; m.p. 124.7-125.1°C; ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 7.82 (m, 2H), 7.77 – 7.52 (m, 4H), 7.51 – 7.29 (m, 7H), 7.22 – 7.05 (m, 5H), 7.00 (t, *J* = 7.8 Hz, 1H), 6.83 (t, *J* = 7.8 Hz, 1H), 4.64 (d, *J* = 83.4 Hz, 1H), 4.39 – 3.98 (m, 2H), 1.22 – 1.02 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.0, 168.7, 168.5, 166.9, 166.4, 137.9, 137.4, 132.3, 132.3, 132.1, 131.9, 131.7, 131.4, 130.8, 129.9, 129.7, 129.5, 129.0, 128.8, 128.7, 128.6, 128.5, 128.1, 128.0, 127.7, 127.4, 127.4, 125.4, 125.0, 113.0, 110.9, 66.5, 64.1, 61.5, 13.7; HRMS(ESI) m/z Calcd for C₃₅H₂₇NO₇ [M+Na]⁺ = 596.1680, found: 596.1690.

Catalytic asymmetric version:

Ethyl (3*R*,3a*S*,6a*R*)-3a-acetyl-3-benzamido-6a-methyl-2-oxo-5-phenyl-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate (-)-**3**a:

Before recrystallization: Colorless solid; 70% isolated yield = 47.19 mg; HPLC (IC column, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 17.05 min (major), t₂ = 20.59 min (minor), ee = 90%;

After recrystallization: Colorless solid; 60% isolated yield = 40.45 mg; HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 12.78 min (major), t₂ = 14.57 min (minor), ee > 99%; [α]^{20.0}_D = -58.0 (*c* 0.2, CH₂Cl₂).

Before recrystallization: Colorless solid; 72% isolated yield = 47.03 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 8.59 min (major), t₂ = 10.59 min (minor), ee = 88%;

After recrystallization: Colorless solid; 65% isolated yield = 42.45 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 8.53 min (major), t₂ = 10.52 min (minor), ee = 96%; [α]^{20.0}_D = -54.2 (*c* 0.2, CH₂Cl₂).

Ethyl (3*R*,3a*S*,6a*R*)-3a-acetyl-3-(2-fluorobenzamido)-6a-methyl-2-oxo-5-phenyl-2,3,3a,6a-tetrahydrofuro[2,3-b]furan-3-carboxylate (-)-3e:

Before recrystallization: Colorless solid; 68% isolated yield = 47.68 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 7.80 min (major), t₂ = 10.66 min (minor), ee = 70%;

After recrystallization: Colorless solid; 35% isolated yield = 31.55 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 9.04 min (major), t₂ = 13.84 min (minor), ee = 92%; [α]^{20.0}_D = -43.8 (*c* 0.2, CH₂Cl₂).

Ethyl(3*R*,3a*S*,6a*R*)-3a-acetyl-3-(3-fluorobenzamido)-6a-methyl-2-oxo-5-phenyl-2,3,3a,6a-tetrahydrofuro[2,3-b]furan-3-carboxylate (-)-**3**f:

Before recrystallization: Colorless solid; 70% isolated yield = 49.08 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 6.60 min (major), t₂ = 7.73 min (minor), ee = 82%;

After recrystallization: Colorless solid; 50% isolated yield = 35.06 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 17.05 min (major), t₂ = 20.59 min (minor), ee = 98%; [α]^{20.0}_D = -36.0 (*c* 0.1, CH₂Cl₂).

Ethyl (3*R*,3a*S*,6a*R*)-3a-acetyl-3-(4-fluorobenzamido)-6a-methyl-2-oxo-5-phenyl-2,3,3a,6a-tetrahydrofuro[2,3-b]furan-3-carboxylate (-)-**3h**:

Before recrystallization: Colorless solid; 73% isolated yield = 51.19 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 7.16 min (major), t₂ = 9.54 min (minor), ee = 84%;

After recrystallization: Colorless solid; 48% isolated yield = 33.66 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 6.97 min (major), t₂ = 8.98 min (minor), ee = 98%; [α]^{20.0}_D = -47.1 (*c* 0.17, CH₂Cl₂).

Ethyl (3*R*,3a*S*,6a*R*)-3a-acetyl-3-(4-chlorobenzamido)-6a-methyl-2-oxo-5-phenyl-2,3,3a,6a-tetrahydrofuro[2,3-b]furan-3-carboxylate (-)-**3i**:

Before recrystallization: Colorless solid; 73% isolated yield = 52.99 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 7.63 min (major), t₂ = 9.68 min (minor), ee = 80%;

After recrystallization: Colorless solid; 54% isolated yield = 39.20 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 8.33 min (major), t₂ = 10.83 min (minor), ee > 99%; [α]^{20.0}_D = -44.8 (*c* 0.25, CH₂Cl₂).

Ethyl (3R,3aS,6aR)-3a-acetyl-3-(4-bromobenzamido)-6a-methyl-2-oxo-5-phenyl-

2,3,3a,6a-tetrahydrofuro[2,3-b]furan-3-carboxylate (-)-3j:

Before recrystallization: Colorless solid; 73% isolated yield = 57.85 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 8.69 min (major), t₂ = 11.41 min (minor), ee = 88%;

After recrystallization: Colorless solid; 48% isolated yield = 38.04 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 9.04 min (major), t₂ = 11.74 min (minor), ee > 99%; [α]^{20.0}_D = -48.5 (*c* 0.17, CH₂Cl₂).

Ethyl (3*R*,3a*S*,6a*R*)-3a-acetyl-3-(4-methoxybenzamido)-6a-methyl-2-oxo-5-phenyl-2,3,3a,6a-tetrahydrofuro[2,3-b]furan-3-carboxylate (-)-**3**I:

Before recrystallization: Colorless solid; 66% isolated yield = 47.47 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 14.29 min (major), t₂ = 28.69 min (minor), ee = 84%;

After recrystallization: Colorless solid; 46% isolated yield = 33.08 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 14.82 min (major), t₂ = 30.28 min (minor), ee = 98%; [α]^{20.0}_D = -52.7 (*c* 0.15, CH₂Cl₂).

Ethyl (3R,3aS,6aR)-3a-acetyl-6a-methyl-2-oxo-5-phenyl-3-(thiophene-2carboxamido)-2,3,3a,6a-tetrahydrofuro[2,3-b]furan-3-carboxylate (-)-**3n**:

Before recrystallization: Colorless solid; 69% isolated yield = 47.14 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 8.62 min (major), t₂ = 12.36 min (minor), ee = 86%;

After recrystallization: Colorless solid; 68% isolated yield = 46.46 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 8.56 min (major), t₂ = 11.91 min (minor), ee = 94%; [α]^{20.0}_D = -54.0 (*c* 0.1, CH₂Cl₂).

Ethyl (3*R*,3a*S*,6a*R*)-3a-acetyl-3-benzamido-5-(4-fluorophenyl)-6a-methyl-2-oxo-2,3,3a,6a-tetrahydrofuro[2,3-b]furan-3-carboxylate (-)-3s:

Before recrystallization: Colorless solid; 90% isolated yield = 63.11 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 8.18 min (major), t₂ = 11.31 min (minor), ee = 78%; After recrystallization: Colorless solid; 48% isolated yield = 33.66 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 8.19 min (major), t₂ = 11.38 min (minor), ee = 90%; $[\alpha]^{20.0}{}_{\rm D}$ = -37.2 (*c* 0.17, CH₂Cl₂).

Ethyl (3*R*,3a*S*,6a*R*)-3a-acetyl-3-benzamido-5-(4-chlorophenyl)-6a-methyl-2-oxo-2,3,3a,6a-tetrahydrofuro[2,3-b]furan-3-carboxylate (-)-3t:

Before recrystallization: Colorless solid; 87% isolated yield = 63.15 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 8.39 min (major), t₂ = 11.32 min (minor), ee = 78%;

After recrystallization: Colorless solid; 45% isolated yield = 32.66 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 8.41 min (major), t₂ = 11.36 min (minor), ee = 92%; [α]^{20.0}_D = -19.2 (*c* 0.18, CH₂Cl₂).

Ethyl (3*R*,3a*S*,6a*R*)-3a-acetyl-3-benzamido-5-(4-bromophenyl)-6a-methyl-2-oxo-2,3,3a,6a-tetrahydrofuro[2,3-b]furan-3-carboxylate (-)-**3u**:

Before recrystallization: Colorless solid; 91% isolated yield = 72.12 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 8.31 min (major), t₂ = 11.18 min (minor), ee = 80%; After recrystallization: Colorless solid; 48% isolated yield = 38.04 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ =

8.96 min (major), $t_2 = 12.09$ min (minor), ee = 94%; $[\alpha]^{20.0}{}_{D} = -49.2$ (*c* 0.23, CH₂Cl₂).

Ethyl (3*R*,3a*S*,6a*R*)-3a-acetyl-3-benzamido-6a-methyl-2-oxo-5-(p-tolyl)-2,3,3a,6atetrahydrofuro[2,3-b]furan-3-carboxylate (-)-**3**w:

Before recrystallization: Colorless solid; 85% isolated yield = 59.09 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 9.29 min (major), t₂ = 12.78 min (minor), ee = 82%;

After recrystallization: Colorless solid; 55% isolated yield = 38,24 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 9.39 min (major), t₂ = 12.55 min (minor), ee = 90%; [α]^{20.0}_D = -47.1 (*c* 0.23, CH₂Cl₂).

Ethyl (3R,3aS,6aR)-3a-acetyl-3-benzamido-6a-methyl-5-(naphthalen-2-yl)-2-oxo-2,3,3a,6a-tetrahydrofuro[2,3-b]furan-3-carboxylate (-)-**3**y:

Before recrystallization: Colorless solid; 92% isolated yield = 69.93 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 9.91 min (major), t₂ = 13.22 min (minor), ee = 84%;

After recrystallization: Colorless solid; 60% isolated yield = 44.96 mg; HPLC (IF column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), product: t₁ = 10.62 min (major), t₂ = 14.10 min (minor), ee = 92%; [α]^{20.0}_D = -44.5 (*c* 0.25, CH₂Cl₂).

4. Chemical kinetics studies

Kinetic profiles analyzed by ¹H NMR at two different concentrations. (0.05 M or 0.005M)

Investigation of the reaction at 0.05 M without catalyst^a

Time	$1_{0}(0/2)$	30 (0/)
(min)	Ia (70)	Ja (70)
0	100	0
4	63.97695	23.79863
6	53.60231	27.00229
8	49.85591	38.44394
10	44.3804	44.39359
14	38.9049	52.40275
18	34.87032	54.23341
22	33.14121	54.46224
26	27.95389	55.60641
30	27.37752	58.3524

a) Reaction conditions: 1a (0.05 mmol), 2a (0.05 mmol.), solvent (1 mL), and at room temperature (r.t.).

Time (min)	1a (%)	3a (%)
0	100	0
4	71.19705	23.054755
6	64.95973	26.224784
8	55.93524	31.700288
10	51.04975	35.158501
14	49.75675	40.92219
18	44.85126	42.651297
22	43.47826	48.126801
26	41.48876	50.144092
30	40.06577	51.585014

Investigation of the reaction at 0.05 M with CPA-7 (10 mol%)^a

a) Reaction conditions: 1a (0.05 mmol), 2a (0.05 mmol.), CPA-7 (10 mol%), solvent (1 mL), and at room

temperature (r.t.).

Figure S1. Kinetic profiles analyzed by ¹H NMR at the concentration of 0.05 M^a.

a) Reaction conditions: 1a (0.05 mmol), 2a (0.05 mmol.), solvent (1 mL), catalyst-free or CPA-7 (10

mol%), and at room temperature (r.t.).

Investigation of the reaction at 0.005 M without catalyst^a

Time	1a (%)	3a (%)	
(min)			
0	100	0	
8	83.39483	23.98524	
16	77.12177	27.67528	
24	69.37269	31.73432	
32	67.52768	35.42435	
40	61.25461	40.2214	
48	58.67159	41.32841	
56	56.08856	42.06642	

a) Reaction conditions: 1a (0.005 mmol), 2a (0.005 mmol.), solvent (1 mL), and at room temperature r.t.).

Investigation of the reaction at 0.005 M with CPA-7 (10 mol%)^a

Time (min)	1a (%)	3a (%)
0	100	0
8	71.16705	23.79863
16	64.75973	27.00229
24	55.83524	38.44394
32	51.02975	44.39359

40	49.65675	52.40275
48	41.41876	55.60641
56	40.04577	58.3524

a) Reaction conditions: **1a** (0.005 mmol), **2a** (0.005 mmol.), **CPA-7** (10 mol%), solvent (1 mL), and at

room temperature (r.t.).

a) Reaction conditions: **1a** (0.005 mmol), **2a** (0.005 mmol.), solvent (1 mL), catalyst-free or CPA-7 (10mol%), and at room temperature (r.t.).

5. X-ray single crystal data for compounds (-)-31

Compound : (-)-31

Identification code	230318LU_LGPZ144707_0m
Empirical formula	$C_{26}H_{25}NO_8$
Formula weight	479.47
Temperature/K	193.00
Crystal system	orthorhombic
Space group	P212121
a/Å	7.6044(5)
b/Å	9.6671(6)
c/Å	31.908(2)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	90
$\gamma/^{\circ}$	90
Volume/Å ³	2345.6(3)
Z	4
$\rho_{calc}g/cm^3$	1.358
μ/mm^{-1}	0.538
F(000)	1008.0
Crystal size/mm ³	$0.13 \times 0.12 \times 0.1$
Radiation	$GaK\alpha (\lambda = 1.34139)$

2Θ range for data collection/ ^c	98.314 to 120.906
Index ranges	$-9 \le h \le 9, -11 \le k \le 12, -40 \le l \le 41$
Reflections collected	39600
Independent reflections	5280 [$R_{int} = 0.0634$, $R_{sigma} = 0.0324$]
Data/restraints/parameters	5280/71/391
Goodness-of-fit on F ²	1.091
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0521, wR_2 = 0.1154$
Final R indexes [all data]	$R_1 = 0.0623, wR_2 = 0.1214$
Largest diff. peak/hole / e Å ⁻³	0.17/-0.22
Flack parameter	0.18(14)

6. NMR Spectra

(±)-3a

(±)-3f

(±)-3j

(+)-3	k
(-	J-J	n

(±)-3l

(±)-3m
<u> </u>	,

(±)-3n

(±)-30

(±)-3r

(±)-3s

(±)-3t

(±)-3u

(±)-3w

(±)-3y

(±)-7:

7. HPLC spectra

3a

Before recrystallization:

After recrystallization.

Before recrystallization

After recrystallization.

Before recrystallization

After recrystallization.

Before recrystallization

3f

After recrystallization.

-	1.350	101101	0.1001	2007.02303	1/9.02129	90.7001
2	8.710	MM	0.3706	24.67053	7.79884e-1	1.2139

Before recrystallization

After recrystallization.

Before recrystallization

Before recrystallization:

0.02 0.00

1 8.39 2 11.32 Total

Total

3w

min

0	1
5	Τ.

8. References

M. Gao, Y. Yang, Y.-D. Wu, C. Deng, L.-P. Cao, X.-G. Meng, A.-X. Wu, Org. Lett.,
2010, 12, 1856-1859.

2. X. P. Chen, J. X. Liu, H. Y. Li, Y. C. Xiao, F. E. Chen, *Adv. Synth. Catal.*, **2022**, 364 (12), 2067-2071.

3 R. A. Mosey, J. S. Fisk, T. L. Friebe, J. J. Tepe, J. Org. Lett., 2008, 10 (5), 825-828.