Supporting information

Designing Dual-Atom Cobalt Catalysts Anchored on Amino-Functionalized MOFs for Efficient CO₂ Photoreduction

Meng-ting Ming[†], Yu-chen Wang[†], Wei-xue Tao, Wen-jie Shi^{*}, Di-chang Zhong^{*}, Tong-bu Lu^{*}

MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials & Low Carbon Technologies, School of Material Science & Engineering, Tianjin University of Technology, Tianjin 300384, China

Corresponding Author

- * Wen-jie Shi (wjshi@email.tjut.edu.cn)
- * Di-chang Zhong (dczhong@email.tjut.edu.cn)
- * Tongbu Lu (lutongbu@ tjut.edu.cn)

1. Materials and Instruments

All chemicals were purchased from commercial ways and used without further purification. The water used was prepared by using a Milli-Q ultrapure water purification system. Powder X-ray diffraction (PXRD) tests were conducted on a SmartLab 9 KW X-ray diffractometer (Rigaku, Japan). Scanning electron microscopy (SEM) images were collected on a scanning electron microscope Quanta250FEG (FEI, America). High-resolution transmission electron microscopy (HRTEM) images and element mapping were collected on a Talos F200X (FEI, America). Fourier transform infrared (FT-IR) spectra were analyzed on a PerkinElmer Frontier Mid-IR FT-IR spectrometer using KBr pellets. UV-Vis DRS was acquired on a UV-3600 spectrophotometer (Shimadzu, Japan) with Ba₂SO₄ as the background. X-ray photoelectron spectroscopy (XPS) were performed on an ESCALAB250Xi X-ray spectrometer (Thermo Scientific, America) and the test data were calibrated versus C 1s binding energy (284.6 eV). The contents of Co and Zr were quantified by inductively coupled plasma-mass spectrometer (ICP-MS, iCAP RQ, Germany). CO₂ adsorption measurement was carried out using a multi-station specific surface micropore and vapor analyzer (BELSORP-Mas, MicrotracBEL, Japan) at 298 K. Insitu FTIR spectra were recorded on Nicolet Is50 FTIR (Thermo Scientific, America). An F-4600 fluorescence spectrometer (Hitachi, Japan) was employed to demonstrate the quenching mode of the excited photosensitive part of the catalyst. ¹H NMR spectra were obtained on a Bruck AVANCE III HD spectrometer at 400 MHz, and referenced to the proton resonance resulting from DMSO-d₆ (δ 2.50). Amounts of CO evolution were detected by Shimadzu GC-2014 gas chromatography equipped with a thermal conductivity detector (TCD) and a flame conductivity detector (FID). Isotope labeling experiment was performed in ¹³CO₂ atmosphere, and the products were analyzed by gas chromatography- mass spectrometer (GC-MS, Agilent 7980B). Mott-Schottky, Transient photocurrent response (TPR) and electrochemical impedance (EIS) measurements were operated on a CHI760E workstation (Chenhua Instrument, Shanghai, China) equipped with a standard three-electrode system, with catalystcoated Fluorine-doped tin oxide transparent conductive film glass (FTO) as working electrode, Pt plate as counter electrode, and Ag/AgCl as reference electrode. 2 mg catalyst was dispersed in a mixture of 960 µL ethanol and 40 µL Nafion, and then 100 μ L suspension was added dropwise onto the surface of a FTO plate with an area of 1×1 cm and dried naturally to obtain the working electrode. 0.5 M Na₂SO₄ solution

was used as electrolyte. Mott-Schottky plots were measured at frequencies of 500, 1000, and 1500 Hz, respectively. Photo responsive signals were recorded under chopped light with a bias potential of + 0.6 V. EIS tests were performed with a bias potential of + 0.6 V.

2. Synthesis and Characterization of Ligand and Complexes

2.1 Synthesis of methyl 3,5-diformyl-4-hydroxybenzoate (P-1) and 3,5-diformyl-4-hydroxybenzoic acid (P-2)

Scheme S1. Synthesis of P-1 and P-2.¹

Figure S1. ¹H NMR spectrum of P-1. [400 MHz, DMSO-d₆, δ 12.16 (s, 1H), 10.30 (s, 2H), 8.54 (s, 2H), 3.07 (s, 3H)].

Figure S2. ¹H NMR spectrum of P-2. [400 MHz, DMSO-d₆, δ 10.34-10.40 (d, 2H), 10.29 (s, 2H), 8.54 (s, 2H)].

2.2 Synthesis of L1 and L4

L1 was synthesized in accordance with previously reported literatures.^{2, 3} L4 was synthesized through a Schiff-based reaction. P-2 was dissolved in ethanol, to which 1 eq 2, 2-dimethyl-1, 3-malonediamine was added. The mixed solution was stirred at room temperature for 24 h. Finally, the orange powder was collected by centrifugation and dried.

Scheme S2. Synthesis of L1 and L4.

Figure S3. Mass of L1 in CH₃OH solution, m/z =681.08 [(L1)(EtO⁻)]⁺, *m*/z = 709.11 [(L1)(CH₃O⁻)(CH₃CN)]⁺.

Figure S4. Mass spectrum of L4 in CH₃CN solution, $m/z = 521.24 [L4+H^+]^+$.

3. Synthesis and Characterization of Co₂-MOF(-NH₂), Co-MOF(-NH₂), L-MOF(-NH₂) and Co₂-MOF

Scheme S3. Synthesis of Co₂-MOF(-NH₂), Co-MOF(-NH₂) and L-MOF(-NH₂).

The photocatalyst Co₂-MOF(-NH₂) required for this work was synthesized by a solvothermal reaction with slight modification to a previously reported procedure.^{4, 5}

5.2 mg ZrCl₄ (0.0222 mmol), 6.6 mg L1 (0.0074 mmol), 12.3 mg 2'-amino-[1,1':4',1"terphenyl]-4,4"-dicarboxylic acid (L2, 0.0370 mmol), 600 μ L acetic acid were dissolved in 6 mL DMF by ultrasound. Then the mixture was transferred into a 15 mL vial, which was sealed and heated at 120 °C for 24 h. After cooling to room temperature, the light yellow powder was collected by centrifugation, washed with DMF and acetonitrile for 3 times. In addition, by changing the ratio of L1 and L2, we have synthesized a series of Co₂-MOFs(-NH₂). The dosage of the chemicals was listed below:

Samples	L1:L2	m (ZrCl ₄) (mg)	m (L1) (mg)	m (L2) (mg)
Co ₂ -MOF(-NH ₂)-1	1:1		19.9	7.4
Co ₂ -MOF(-NH ₂)-2	1:2		13.3	9.9
Co ₂ -MOF(-NH ₂)	1:5	5.2	6.6	12.3
Co ₂ -MOF(-NH ₂)-10	1:10		3.6	13.4
Co ₂ -MOF(-NH ₂)-20	1:20		1.9	14.1

Table S1. The dosage of the chemicals during the synthesis of Co₂-MOFs(-NH₂) with different ratios of L1 and L2.

The preparation of L-MOF(-NH₂) follows the same method as Co_2 -MOF(-NH₂) except substitute 3.8 mg L4 (0.0074 mmol) for 6.6 mg L1.

The mononuclear Co-MOF(-NH₂) was prepared with the reaction of $Co(ClO_4)_2 \cdot 6H_2O$ and L-MOF(-NH₂): 20 mg L-MOF(-NH₂) was added to a mixed solution containing 2 mg $Co(ClO_4)_2 \cdot 6H_2O$ and 5 mL methanol and then stirred at room temperature for 24 h. Finally, the yellow powder was collected by centrifugation and dried.

Scheme S4. Synthesis of Co₂-MOF.

The preparation of Co_2 -MOF follows the same method as Co_2 -MOF(-NH₂) except substitute 11.8 mg [1,1':4',1"-terphenyl]-4,4"-dicarboxylic acid (L3, 0.0370 mmol) for 12.3 mg L2.

Figure S5. SEM images of Co_2 -MOF(-NH₂), Co-MOF(-NH₂), L-MOF(-NH₂) and Co_2 -MOF.

Figure S6. IR spectrum of Co₂-MOF(-NH₂) (red), Co-MOF(-NH₂) (blue), L-MOF(-NH₂) (green) and Co₂-MOF (purple).

Figure S7. TG curves of Co₂-MOF(-NH₂).

Figure S8. UV-Vis DRS of L1, L2 and Co₂-MOF(-NH₂).

Figure S9. The PL spectra of L1 and L2.

Figure S10. X-ray photoelectron spectroscopy (XPS) of Co 2p and Zr 3d for Co₂- $MOF(-NH_2)$ (a, b), Co-MOF(-NH₂) (c, d) and Co₂-MOF (e, f).

Figure S11. CO₂ adsorption/desorption isotherms of Co₂-MOF(-NH₂) (red), Co-MOF(-NH₂) (blue), L-MOF(-NH₂) (green) and Co₂-MOF (purple) at 298 K.

4. Photo-catalytic CO₂ reduction experiment

The photocatalytic CO₂ reduction reaction was conducted in a 17.5 mL special quartz tube with a rubber hose. 1 mg Co₂-MOF(-NH₂), Co-MOF(-NH₂), L-MOF(-NH₂) or Co₂-MOF as catalyst was dispersed in a 5 mL mixed solution of CH₃CN and H₂O (v/v =4/1) containing 0.025 M BIH as sacrificial reductant. The reaction system was degassed with Ar to remove O₂ and other gases, and pumped with CO₂ for 30 minutes until saturated. Then a 300 W Xe lamp with full spectrum was used as the light source. After irradiation for 10 h at room temperature, the gas products were detected by gas chromatograph (GC-2014, Shimadzu, Japanese). Each photocatalytic reaction is repeated at least 3 times to ensure data reliability.

Figure S12. (a) PXRD patterns and (b) CO production of Co₂-MOF(-NH₂) with ratio of L1 and L2 from 1:1 to 1:20.

Samples	ω _{Co} (%)	$\omega_{Zr}(\%)$	n _{Co} : n _{Zr}
Co ₂ -MOF(-NH ₂) (L1: L2 = 1:20)	0.79	30.56	1: 25.0
Co ₂ -MOF(-NH ₂) (L1: L2 = 1:10)	1.05	19.69	1: 12.3
Co ₂ -MOF(-NH ₂) (L1: L2 = 1: 5)	1.55	12.32	1: 9.1
Co ₂ -MOF(-NH ₂) (L1: L2 = 1: 2)	2.80	19.42	1: 4.5
Co ₂ -MOF(-NH ₂) (L1: L2 = 1: 1)	3.19	11.16	1: 2.3
Co-MOF(-NH ₂)	0.88	18.02	1:13.2
Co ₂ -MOF	1.24	20.52	1: 10.7
Co ₂ -MOF(-NH ₂) (after reaction)	1.30	22.84	1: 11.3

 Table S2. The ICP analysis of MOFs

Table S3. The ICP analysis of Co in Co-MOF(- NH_2).

Samples (inventory ratio)	ω _{Co} (%)
Co-MOF(-NH ₂) (L-MOF(-NH ₂): Co(ClO ₄) ₂ ·6H ₂ O = 10:1)	0.88
Co-MOF(-NH ₂) (L-MOF(-NH ₂): Co(ClO ₄) ₂ ·6H ₂ O = 5:1)	0.92
Co-MOF(-NH ₂) (L-MOF(-NH ₂): Co(ClO ₄) ₂ ·6H ₂ O = 2.5:1)	0.92

Figure S13. Gas chromatography (GC) of the Co₂-MOF (-NH₂) photocatalysis CO₂ reduction.

Figure S14. CO production vs. cat. (a) and Co content (b) of Co₂-MOF(-NH₂), Co-MOF(-NH₂), the mixed sample (L1, L2 and ZrCl₄) and L1 (in homogeneous phase).

Figure S15. (a) CO production of Co_2 -MOF(-NH₂) compared the corresponding blank experiments; (b) mass spectrum of produced ¹³CO via isotope ¹³CO₂ reduction under visible light.

Figure S16. PXRD patterns and SEM images of Co₂-MOF(-NH₂) after CO₂RR.

Table S4. A comparison of photocatalytic CO₂ reduction activities of recently reported MOF-based catalysts without additional photosensitizer.

Catalyst	Reaction agent	Light source	Major product	Yield (µmol·g ⁻	Ref.
Co ₂ -MOF(-NH ₂)	CH ₃ CN/H ₂ O, BIH	300 W Xe lamp, 780 nm > λ > 320 nm	СО	37.8	This work
PCN-222	CH₃CN, TEOA	300 W Xe lamp, 800 nm > λ > 420 nm	HCOO-	60	Jiang et al. ⁶
NNU-28	CH₃CN, TEOA	300 W Xe lamp, 800 nm > λ > 420 nm	HCOO-	52.8	Chen et al. ⁷
MOF-525-Zn	CH₃CN, TEOA	300 W Xe lamp, 800 nm > λ > 420 nm	СО	200.6	Ye et al. ⁸
Re-MOF-NH ₂	TEA	300 W Xe lamp, 700 nm > λ > 400 nm	СО	1.5	Ryu et al. ⁹
Ag⊂Re₃-MOF	CH₃CN, TEA	300 W Xe lamp, 700 nm > λ > 400 nm	СО	7 (TON)	Yaghi et al. ¹⁰
Zr-SDCA-NH ₂	CH ₃ CN, TEOA	300 W Xe lamp, 800 nm > λ > 420 nm	HCOO-	96.2 (μmol h ⁻¹ mmol _{MOF} ⁻¹)	Sun et al. ¹¹
Zn-MOF	CH ₃ CN, MeOH, TEOA	120 W Xe lamp, 800 nm > λ > 420 nm	СО	117.8 (TON)	Ye et al. ¹²

Zn ₂ GeO ₄ /Mg-MOF-74	CH ₃ CN, H ₂ O	300 W Xe lamp, 1100 nm > λ > 200 nm	СО	1.44	Zhao et al. ¹³
UiO-68(Zr)-F				2.1	
UiO-68(Zr)-NH ₂				2.2	
UiO-68(Zr)-CH ₃	Acetone, TEOA	300 W Xe lamp, $780 > \lambda > 400 \text{ nm}$	СО	10.9	Wei et al. ¹⁴
UiO-68(Zr)-OCH ₃				19.7	
AUBM-4	CH₃CN, TEOA	150 W Xe lamp, 800 nm > λ > 420 nm	HCOO-	366	Mahmoud et al. ¹⁵
mPT-Cu/Re	DMA, H ₂ O, BIH	13.9 W Solid state plasma light, 700 nm > λ > 350 nm	СО	1328 (TON)	Lin et al. ¹⁶

5. Photophysical and Electrochemical Data

Figure S17. Mott-Schottky plots in 0.5 M Na₂SO₄ aqueous solution and Tauc plots of $(\alpha hv)^{1/2}$ vs. photon energy of (a) Co₂-MOF(-NH₂), (b) Co-MOF(-NH₂), (c) L-MOF(-NH₂) and (d) Co₂-MOF.

6. Mechanism Investigations

Figure S18. Fluorescence spectra of a CH₃CN/H₂O (v:v = 4:1) solution containing 0.4 mM L2 in the presence of 0-0.04 mM L1 (a) or BIH (c), respectively. Linear plots of fluorescent intensity ratio in the absence (I₀) and presence (I) of L1 (or BIH) versus the concentrations of L1 (b) or BIH (d).

Figure S19. In situ FTIR spectra of Co-MOF(-NH₂).

Figure S20. PDOS of d band center value of Co on Co₂-MOF(-NH₂) and Co-MOF(-NH₂).

7. Density Functional Theory (DFT) Calculations.

The density functional theory calculations were performed using the hybrid B3LYP-D3 functional (with the Grimme's D3 dispersion correction)¹⁷⁻¹⁹ as implemented in the Gaussian16 program.²⁰ The solvation effects of acetonitrile was taken into account by using the SMD-flavor²¹ of self-consistent reaction field (SCRF) theory. All geometries were optimized with no constraint of freedom by using the SDD pseudopotential²² for Co, 6-31G (d) basis set for the C, N, O and H elements. The harmonic frequencies were then computed analytically at the same level of theory as the geometry optimizations to characterize the nature of all stationary points as minima states and to gain the Gibbs free energy correction. In order to obtain more accurate relative energies, single point calculations using the def2tzvp basis set were performed based on the B3LYP-D3/mix basis set optimized molecular geometries. The solvation free energy was calculated based on the M06/def2tzvp basis set.²³ Gibbs free energy was calculated using zero-point energy and thermal corrections,

and the contributions from $\Delta G_{2980CH3CN}$ (H⁺) = -266.48 kcal/mol in acetonitrile, while $\Delta G_{2980CH3CN}$ (H⁺) is the sum of $\Delta G_{2980gas}$ (H⁺) = -6.28 kcal/mol and the solvation energy change of H⁺ in acetonitrile (-260.2 kcal/mol)²⁴⁻²⁶ and the 3D structures of molecules were generated using CYL View.²⁷

Cartesian coordination

Cat.-Co₂

С

3.1277000 -1.2622000 0.1846000

	Х	Y	Ζ	С	6.4846000	-0.1645000	1.5502000
Co	-0.0218000	-1.4940000	-0.6090000	С	2.6444000	2.4613000	-0.2107000
Co	0.0208000	1.4924000	-0.6185000	Н	3.3680000	3.2763000	-0.1563000
0	1.2114000	-0.0032000	-0.4702000	С	1.2975000	4.1309000	-1.1671000
0	-1.2150000	0.0294000	-0.4841000	Н	1.2244000	4.0653000	-2.2595000
0	7.0286000	-1.2203000	1.7782000	Н	2.2025000	4.7012000	-0.9337000
0	7.0289000	1.0459000	1.7630000	С	0.0730000	4.8615000	-0.6120000
Η	7.9261000	0.9088000	2.1257000	С	0.0841000	4.8956000	0.9226000
0	-7.0316000	1.2162000	1.7843000	Н	0.0666000	3.8922000	1.3615000
0	-7.0217000	-1.0500000	1.7661000	Н	-0.7851000	5.4435000	1.3011000
Η	-7.9186000	-0.9172000	2.1310000	Н	0.9796000	5.4080000	1.2894000
Ν	-1.4709000	-2.7637000	-0.6591000	С	0.0943000	6.2942000	-1.1761000
Ν	1.3905000	-2.8054000	-0.6489000	Н	0.9880000	6.8278000	-0.8378000
Ν	1.4619000	2.7531000	-0.6618000	Н	-0.7776000	6.8576000	-0.8292000
Ν	-1.3845000	2.7985000	-0.6523000	Н	0.0889000	6.3007000	-2.2719000
С	-1.3026000	-4.1402000	-1.1652000	С	-1.1840000	4.1750000	-1.1495000
Н	-2.2040000	-4.7152000	-0.9292000	Н	-2.0658000	4.7722000	-0.8955000
Н	-1.2325000	-4.0763000	-2.2583000	Н	-1.1324000	4.1159000	-2.2435000
С	-0.0713000	-4.8650000	-0.6131000	С	-2.5736000	2.5371000	-0.2013000
С	-0.0901000	-6.2991000	-1.1740000	Н	-3.2750000	3.3707000	-0.1384000
Н	-0.9827000	-6.8338000	-0.8345000	С	-3.1322000	1.2673000	0.1816000
Н	0.7831000	-6.8601000	-0.8267000	С	-4.4363000	1.2616000	0.7029000
Н	-0.0854000	-6.3074000	-2.2698000	Н	-4.9587000	2.1961000	0.8871000
С	-0.0792000	-4.8970000	0.9215000	С	-5.1014000	0.0733000	0.9881000
Н	-0.0656000	-3.8933000	1.3610000	С	-4.4719000	-1.1342000	0.6957000
Н	0.7935000	-5.4393000	1.2998000	Н	-5.0065000	-2.0633000	0.8655000
Н	-0.9719000	-5.4120000	1.2914000	С	-3.1661000	-1.1745000	0.1744000
С	1.1867000	-4.1781000	-1.1529000	С	-2.4687000	0.0381000	-0.0454000
Н	2.0681000	-4.7787000	-0.9057000	С	-6.4833000	0.1634000	1.5535000
Н	1.1304000	-4.1148000	-2.2468000	С	-2.6517000	-2.4639000	-0.2189000
С	2.5771000	-2.5387000	-0.2036000				
Н	3.2878000	-3.3654000	-0.1521000				

С	4.4313000	-1.2557000	0.7027000
Н	4.9544000	-2.1904000	0.8844000
С	5.1018000	-0.0678000	0.9881000
С	4.4770000	1.1403000	0.6986000
Н	5.0124000	2.0691000	0.8677000
С	3.1684000	1.1797000	0.1799000
С	2.4673000	-0.0290000	-0.0382000

	Х	Y	Ζ	С	4.5690000	1.2065000	0.5499000
Co	-0.0020000	-1.5747000	-0.6692000	Н	5.0951000	2.1396000	0.7217000
Co	0.0018000	1.5201000	-0.5110000	С	3.2250000	1.2321000	0.1358000
0	1.2372000	0.0698000	-0.4212000	С	2.5103000	0.0240000	-0.0984000
0	-1.2428000	0.0644000	-0.4379000	С	6.6420000	-0.0947000	1.1783000
0	7.2391000	-1.1389000	1.3321000	С	2.6492000	2.5125000	-0.1354000
0	7.1980000	1.1186000	1.3988000	Н	3.3533000	3.3432000	-0.0541000
Н	8.1165000	0.9542000	1.6848000	С	1.2505000	4.2126000	-0.9130000
0	-7.2564000	1.1256000	1.3837000	Н	1.2043000	4.2353000	-2.0093000
0	-7.1933000	-1.1322000	1.3399000	Н	2.1337000	4.7886000	-0.6142000
Н	-8.1140000	-0.9933000	1.6323000	С	-0.0028000	4.8782000	-0.3449000
Ν	-1.5137000	-2.8706000	-0.5727000	С	-0.0370000	4.8004000	1.1873000
Ν	1.4948000	-2.8490000	-0.6871000	Н	-0.0365000	3.7663000	1.5450000
Ν	1.4371000	2.8076000	-0.5104000	Н	-0.9342000	5.2929000	1.5779000
Ν	-1.4308000	2.8098000	-0.5550000	Н	0.8340000	5.3070000	1.6172000
С	-1.2881000	-4.2915000	-0.8589000	С	0.0049000	6.3481000	-0.8004000
Н	-2.1361000	-4.8852000	-0.4892000	Н	0.8812000	6.8711000	-0.4034000
Н	-1.2621000	-4.4061000	-1.9507000	Н	-0.8863000	6.8699000	-0.4367000
С	0.0173000	-4.8641000	-0.2719000	Н	0.0255000	6.4335000	-1.8931000
С	0.0184000	-6.3740000	-0.5760000	С	-1.2276000	4.2081000	-0.9686000
Н	-0.8445000	-6.8641000	-0.1131000	Н	-2.1246000	4.7870000	-0.7212000
Н	0.9223000	-6.8483000	-0.1799000	Η	-1.1267000	4.2162000	-2.0612000
Н	-0.0204000	-6.5684000	-1.6545000	С	-2.6469000	2.5243000	-0.1905000
С	0.0828000	-4.6407000	1.2450000	Н	-3.3528000	3.3553000	-0.1343000
Н	0.0695000	-3.5766000	1.4995000	С	-3.2234000	1.2481000	0.1045000
Н	0.9981000	-5.0772000	1.6602000	С	-4.5636000	1.2349000	0.5191000
Н	-0.7695000	-5.1181000	1.7414000	Н	-5.1000000	2.1660000	0.6751000
С	1.2560000	-4.2667000	-0.9749000	С	-5.2351000	0.0390000	0.7310000
Н	2.1383000	-4.8587000	-0.6939000	С	-4.5580000	-1.1586000	0.4851000
Н	1.1286000	-4.3646000	-2.0606000	Η	-5.0927000	-2.0929000	0.6209000
С	2.6780000	-2.5424000	-0.2569000	С	-3.2224000	-1.2045000	0.0631000
Н	3.4001000	-3.3505000	-0.1017000	С	-2.5121000	0.0308000	-0.1011000
С	3.2109000	-1.2209000	0.0304000	С	-6.6498000	0.0951000	1.1805000

С	4.5431000	-1.1879000	0.4564000	С	-2.7031000	-2.5383000	-0.1972000
Η	5.0882000	-2.1192000	0.5785000	Η	-3.4460000	-3.3324000	-0.0620000
С	5.2288000	-0.0006000	0.7310000				

	Х	Y	Ζ	Н	5.0986000	-2.0014000	-1.0418000
Co	-0.0195000	1.4732000	0.3922000	С	3.2082000	-1.1308000	-0.4922000
Co	0.0182000	-1.4112000	0.2916000	С	2.4862000	0.0816000	-0.3340000
0	1.2070000	0.0549000	-0.0916000	С	6.6046000	0.2389000	-1.5729000
0	-1.2091000	0.0244000	-0.0894000	С	2.6611000	-2.4067000	-0.0857000
0	7.1943000	1.2865000	-1.7327000	Н	3.3819000	-3.2275000	-0.1042000
0	7.1646000	-0.9722000	-1.7869000	С	1.3021000	-3.9906000	0.9759000
Η	8.0830000	-0.8086000	-2.0740000	Н	1.2200000	-3.8327000	2.0564000
0	-7.1967000	-1.1048000	-1.7939000	Н	2.1966000	-4.5952000	0.7840000
0	-7.1669000	1.1536000	-1.7267000	С	0.0620000	-4.7424000	0.4779000
Η	-8.0851000	1.0050000	-2.0221000	С	0.0628000	-4.8715000	-1.0510000
Ν	-1.4892000	2.7354000	0.5226000	Н	0.0499000	-3.8939000	-1.5438000
Ν	1.4166000	2.7733000	0.5244000	Н	-0.8147000	-5.4321000	-1.3919000
Ν	1.4791000	-2.6597000	0.3795000	Н	0.9542000	-5.4093000	-1.3927000
Ν	-1.4093000	-2.6979000	0.3812000	С	0.0809000	-6.1373000	1.1274000
С	-1.3067000	4.0527000	1.1457000	Н	0.9724000	-6.6949000	0.8213000
Η	-2.1980000	4.6654000	0.9641000	Н	-0.7958000	-6.7183000	0.8225000
Н	-1.2353000	3.8873000	2.2280000	Н	0.0808000	-6.0707000	2.2213000
С	-0.0629000	4.8130000	0.6663000	С	-1.1971000	-4.0239000	0.9772000
С	-0.0813000	6.1953000	1.3428000	Н	-2.0756000	-4.6517000	0.7858000
Η	-0.9724000	6.7588000	1.0473000	Н	-1.1184000	-3.8641000	2.0576000
Η	0.7953000	6.7816000	1.0489000	С	-2.5973000	-2.4767000	-0.0843000
Η	-0.0811000	6.1096000	2.4356000	Н	-3.2972000	-3.3152000	-0.1032000
С	-0.0633000	4.9730000	-0.8600000	С	-3.1769000	-1.2148000	-0.4911000
Н	-0.0511000	4.0070000	-1.3751000	С	-4.5117000	-1.1949000	-0.9063000
Η	0.8147000	5.5398000	-1.1887000	Н	-5.0556000	-2.1242000	-1.0486000
Н	-0.9540000	5.5186000	-1.1903000	С	-5.1940000	0.0052000	-1.1234000
С	1.1991000	4.0849000	1.1483000	С	-4.5489000	1.2096000	-0.8436000
Н	2.0747000	4.7203000	0.9694000	Н	-5.1012000	2.1395000	-0.9308000
Η	1.1293000	3.9165000	2.2303000	С	-3.2099000	1.2383000	-0.4250000
С	2.6011000	2.5629000	0.0424000	С	-2.4882000	0.0174000	-0.3331000
Η	3.3017000	3.4014000	0.0510000	С	-6.6067000	-0.0677000	-1.5780000
С	3.1749000	1.3222000	-0.4244000	С	-2.6681000	2.4930000	0.0408000
С	4.5111000	1.3266000	-0.8422000	Н	-3.3895000	3.3139000	0.0490000
Η	5.0543000	2.2625000	-0.9361000	С	0.0126000	-0.8411000	2.2333000
С	5.1918000	0.1415000	-1.1227000	0	-0.0036000	0.4024000	2.2994000
С	4.5454000	-1.0777000	-0.9067000	0	0.0260000	-1.7943000	2.9776000

	Х	Y	Ζ	С	3.2053000	-0.9446000	-0.4346000
Co	-0.1300000	1.4839000	0.3301000	С	2.3971000	0.2343000	-0.4650000
Co	0.0538000	-1.4505000	0.5637000	С	6.5815000	0.5137000	-1.4729000
0	1.1103000	0.1604000	-0.3371000	С	2.7454000	-2.2395000	0.0336000
0	-1.2942000	-0.0907000	0.2359000	Н	3.5134000	-3.0165000	-0.0062000
0	7.1279000	1.5707000	-1.7099000	С	1.4665000	-3.9477000	1.0252000
Ο	7.2178000	-0.6790000	-1.5284000	Н	1.1666000	-3.8967000	2.0776000
Н	8.1407000	-0.4884000	-1.7818000	Н	2.4406000	-4.4501000	0.9770000
0	-7.1597000	-1.4905000	-1.7587000	С	0.4376000	-4.7757000	0.2234000
0	-7.2834000	0.7525000	-1.5188000	С	0.6938000	-4.6652000	-1.2857000
Н	-8.1861000	0.5643000	-1.8385000	Н	0.5386000	-3.6460000	-1.6536000
Ν	-1.6713000	2.6194000	0.6389000	Н	0.0186000	-5.3284000	-1.8371000
Ν	1.1844000	2.9145000	0.1679000	Н	1.7210000	-4.9591000	-1.5298000
Ν	1.6045000	-2.5717000	0.5440000	С	0.5833000	-6.2395000	0.6765000
Ν	-1.3052000	-2.9390000	0.2331000	Н	1.5750000	-6.6266000	0.4202000
С	-1.5064000	3.9664000	1.1892000	Н	-0.1596000	-6.8752000	0.1833000
Н	-2.4755000	4.4799000	1.1944000	Н	0.4497000	-6.3405000	1.7599000
Н	-1.1814000	3.8582000	2.2309000	С	-0.9918000	-4.3344000	0.5680000
С	-0.4828000	4.8150000	0.4180000	Н	-1.7076000	-5.0065000	0.0752000
С	-0.5383000	6.2401000	0.9964000	Н	-1.1379000	-4.4375000	1.6514000
Н	-1.5254000	6.6850000	0.8335000	С	-2.4989000	-2.7160000	-0.2043000
Н	0.2015000	6.8850000	0.5108000	Н	-3.1480000	-3.5776000	-0.3964000
Н	-0.3375000	6.2461000	2.0741000	С	-3.1498000	-1.4369000	-0.4103000
С	-0.7997000	4.8442000	-1.0833000	С	-4.4769000	-1.4641000	-0.8525000
Н	-0.7281000	3.8508000	-1.5375000	Н	-4.9474000	-2.4114000	-1.0994000
Н	-0.1010000	5.5039000	-1.6091000	С	-5.2430000	-0.3041000	-0.9761000
Н	-1.8125000	5.2236000	-1.2593000	С	-4.6767000	0.9156000	-0.6091000
С	0.9253000	4.2716000	0.6779000	Н	-5.2806000	1.8161000	-0.6541000
Н	1.6622000	4.9632000	0.2519000	С	-3.3472000	0.9993000	-0.1739000
Н	1.0965000	4.2383000	1.7620000	С	-2.5481000	-0.1785000	-0.1092000
С	2.3698000	2.7364000	-0.3291000	С	-6.6421000	-0.4365000	-1.4554000
Н	3.0010000	3.6212000	-0.4452000	С	-2.8716000	2.2822000	0.2920000
С	3.0360000	1.4965000	-0.6391000	Н	-3.6521000	3.0416000	0.3858000
С	4.3922000	1.5443000	-0.9814000	С	0.4683000	-0.5327000	2.2262000
Н	4.8861000	2.4979000	-1.1444000	0	0.3727000	0.7086000	2.3173000
С	5.1531000	0.3814000	-1.0935000	0	0.8713000	-1.2142000	3.3140000
С	4.5591000	-0.8449000	-0.7817000	Н	1.0190000	-0.5664000	4.0384000
Н	5.1728000	-1.7400000	-0.7874000				

	Х	Y	Z	С	3.1406000	-1.1339000	-0.3875000
Co	-0.0232000	1.5150000	0.5822000	С	2.4444000	0.0744000	-0.1373000
Co	0.0348000	-1.4764000	0.6399000	С	6.3361000	0.2297000	-2.0101000
0	1.2335000	0.0568000	0.3914000	С	2.6565000	-2.4320000	0.0327000
0	-1.1842000	0.0041000	0.2509000	Н	3.3891000	-3.2355000	-0.0668000
0	6.8527000	1.2854000	-2.2952000	С	1.3437000	-4.1223000	1.0131000
0	6.8769000	-0.9799000	-2.2377000	Н	1.2321000	-4.0814000	2.1038000
Н	7.7455000	-0.8415000	-2.6639000	Н	2.2585000	-4.6852000	0.7989000
0	-6.8774000	-1.2374000	-2.2578000	С	0.1385000	-4.8492000	0.3996000
0	-6.8982000	1.0282000	-2.2231000	С	0.2069000	-4.8427000	-1.1338000
Н	-7.7767000	0.8857000	-2.6269000	Н	0.1864000	-3.8285000	-1.5471000
Ν	-1.4638000	2.7544000	0.4791000	Н	-0.6379000	-5.3950000	-1.5584000
Ν	1.3591000	2.8247000	0.5063000	Н	1.1244000	-5.3294000	-1.4811000
Ν	1.5071000	-2.7389000	0.5389000	С	0.1566000	-6.2955000	0.9275000
Ν	-1.3581000	-2.8126000	0.4324000	Н	1.0681000	-6.8109000	0.6090000
С	-1.3271000	4.0888000	1.0842000	Н	-0.6957000	-6.8597000	0.5362000
Н	-2.2409000	4.6584000	0.8866000	Н	0.1122000	-6.3292000	2.0220000
Н	-1.2549000	3.9295000	2.1655000	С	-1.1557000	-4.1953000	0.8998000
С	-0.1113000	4.8754000	0.5833000	Н	-2.0135000	-4.8038000	0.5944000
С	-0.1529000	6.2651000	1.2445000	Н	-1.1507000	-4.1667000	1.9969000
Н	-1.0506000	6.8102000	0.9367000	С	-2.5073000	-2.5496000	-0.0997000
Н	0.7145000	6.8619000	0.9455000	Н	-3.1939000	-3.3862000	-0.2434000
Н	-0.1571000	6.1938000	2.3379000	С	-3.0559000	-1.2670000	-0.4829000
С	-0.1222000	5.0127000	-0.9454000	С	-4.3315000	-1.2623000	-1.0648000
Н	-0.0827000	4.0418000	-1.4522000	Н	-4.8385000	-2.1982000	-1.2827000
Н	0.7344000	5.6036000	-1.2860000	С	-4.9986000	-0.0760000	-1.3703000
Н	-1.0291000	5.5273000	-1.2795000	С	-4.3981000	1.1353000	-1.0454000
С	1.1600000	4.1742000	1.0693000	Н	-4.9332000	2.0608000	-1.2321000
Н	2.0363000	4.7842000	0.8277000	С	-3.1150000	1.1789000	-0.4676000
Н	1.1222000	4.0620000	2.1587000	С	-2.4173000	-0.0285000	-0.2202000
С	2.5184000	2.5752000	-0.0232000	С	-6.3529000	-0.1795000	-1.9956000
Н	3.1997000	3.4211000	-0.1283000	С	-2.6173000	2.4576000	-0.0339000
С	3.0698000	1.3115000	-0.4366000	Н	-3.3420000	3.2705000	-0.1037000
С	4.3357000	1.3163000	-1.0455000	0	-0.0826000	1.4460000	2.3762000
Н	4.8310000	2.2540000	-1.2817000	Н	0.8352000	1.5392000	2.6909000
С	4.9968000	0.1315000	-1.3520000	С	-0.1151000	-1.3319000	2.7188000
С	4.4053000	-1.0807000	-0.9983000	0	-0.2386000	-1.3861000	3.8437000
Н	4.9410000	-2.0042000	-1.1942000				

Cat.-Co

C -6.3515220 0.3598080

	Х	Y	Z				
Co	-0.0232420	-1.3126130	-0.7352420	Н	-1.2535550	-3.9482570	-2.2925030
0	-1.2504040	0.1263320	-0.6664560	Н	-2.2185860	-4.5619820	-0.9472990
0	1.2545090	0.0817030	-0.6663740	С	-0.0849650	-4.7041560	-0.6475060
0	-6.9261740	1.4059830	1.8923120	С	-0.0857530	-4.7121750	0.8865120
0	-6.9035940	-0.8457010	1.9704470	Н	-0.0677360	-3.6981920	1.2956910
Н	-7.7627670	-0.6327440	2.3784900	Н	0.7903520	-5.2472210	1.2705130
0	6.9435430	-1.0025290	1.9953510	Н	-0.9808350	-5.2155760	1.2696730
0	6.8990540	1.2460700	1.8634240	С	-0.1109500	-6.1453540	-1.1828370
Н	7.7611740	1.0834940	2.2882590	Н	-1.0058710	-6.6730110	-0.8350450
Ν	1.6195440	2.8702570	-1.0614990	Н	0.7636680	-6.7052740	-0.8339450
Ν	-1.5142020	2.9275130	-1.0630610	Н	-0.1106300	-6.1667300	-2.2793300
Ν	-1.4811820	-2.6075680	-0.7127670	С	1.1771720	-4.0262420	-1.1953040
Ν	1.3866510	-2.6598670	-0.7113640	Н	2.0527340	-4.6397760	-0.9451860
С	1.3682170	4.2595140	-1.3773330	Н	1.1120170	-3.9912350	-2.2913010
Н	2.2188840	4.9009960	-1.0752310	С	2.5658420	-2.4149520	-0.2135550
Н	1.2672520	4.3444390	-2.4680470	Н	3.2456350	-3.2647730	-0.1030560
С	0.0879660	4.8450790	-0.7274140	С	3.1157010	-1.1526400	0.1577600
С	0.1158620	6.3635910	-0.9833780	С	4.3875080	-1.1357950	0.7505650
Н	1.0098140	6.8182200	-0.5417870	Н	4.8859450	-2.0671930	1.0045560
Н	-0.7610800	6.8505380	-0.5422520	С	5.0354100	0.0599830	1.0191700
Н	0.1201960	6.5871410	-2.0577490	С	4.4094970	1.2638580	0.6304590
С	0.0823420	4.5707730	0.7809470	Н	4.9318740	2.1989230	0.8080920
Н	0.0629920	3.4966530	0.9798410	С	3.1663640	1.3064290	0.0174380
Н	-0.7965640	5.0256390	1.2541640	С	2.4400310	0.0728240	-0.1873450
Н	0.9765800	4.9939750	1.2549730	С	6.3591010	0.0132510	1.6625580
С	-1.2123950	4.3069190	-1.3783930	С	2.6750330	2.6273780	-0.3925240
Н	-2.0391880	4.9788530	-1.0767760	Н	3.3493630	3.4499750	-0.0859020
Н	-1.1075500	4.3883090	-2.4690180				
С	-2.5783830	2.7235730	-0.3947110				
Н	-3.2229790	3.5691510	-0.0880700				
С	-3.1169800	1.4206870	0.0143550				
С	-4.3593420	1.4203460	0.6259700				
Н	-4.8613960	2.3658300	0.8113810				
С	-5.0307740	0.2412010	1.0150490				
С	-4.4293650	-0.9788030	0.7480370				
Н	-4.9474020	-1.9006150	0.9943040				
С	-3.1563270	-1.0391580	0.1551130				
С	-2.4359900	0.1606910	-0.1892350				

1.6536730

С	-2.6514690	-2.3195590	-0.2161950
Н	-3.3609290	-3.1451490	-0.1067390
С	-1.3210010	-3.9805830	-1.1965400

	Х	Y	Z	С	-4.7122020	-0.9864470	0.2910390
Co	-0.0199230	-1.3123470	-0.5687130	Н	-5.2578470	-1.9172140	0.4201070
0	-1.3461620	0.1836850	-0.4562550	С	-3.3528830	-1.0414790	-0.0435760
0	1.3497370	0.1443160	-0.4535320	С	-2.5914800	0.1893690	-0.2160410
0	-7.4519190	1.3204890	0.9856770	С	-6.7971240	0.3001130	0.8218420
0	-7.3954220	-0.9268080	0.9769110	С	-2.7787170	-2.3418580	-0.2165830
Н	-8.3153050	-0.7084390	1.2103100	Н	-3.4945850	-3.1652480	-0.0877000
0	7.4595000	-1.0225990	0.9922850	С	-1.3239870	-4.0889450	-0.7336320
0	7.3944510	1.2242610	0.9697650	Н	-1.2440710	-4.2756630	-1.8157210
Η	8.3155160	1.0124480	1.2047680	Н	-2.1980150	-4.6608960	-0.3787020
Ν	1.6615650	2.9693850	-0.7793990	С	-0.0652920	-4.6673580	-0.0628460
Ν	-1.5743510	3.0167950	-0.7827670	С	-0.0543380	-4.3691250	1.4410900
Ν	-1.5406180	-2.6626180	-0.5181240	Η	-0.0397540	-3.2920760	1.6235620
Ν	1.4639560	-2.7065390	-0.5265830	Н	0.8304810	-4.8106290	1.9164440
С	1.3560550	4.3763690	-0.8832060	Η	-0.9457120	-4.7880420	1.9246760
Н	2.1944120	4.9999700	-0.5077730	С	-0.0878990	-6.1896630	-0.2889000
Η	1.2247240	4.6240000	-1.9473750	Η	-0.9789980	-6.6389600	0.1653580
С	0.0692750	4.8131360	-0.1317140	Η	0.7932110	-6.6642160	0.1590040
С	0.0917900	6.3517170	-0.0692120	Η	-0.0952150	-6.4349790	-1.3588290
Η	0.9830370	6.7097130	0.4597700	С	1.2035260	-4.1249790	-0.7448420
Н	-0.7900700	6.7355620	0.4572460	Н	2.0637160	-4.7237050	-0.4007980
Η	0.0995790	6.7917030	-1.0757060	Η	1.1069960	-4.3047400	-1.8266460
С	0.0584620	4.2272430	1.2844170	С	2.7105360	-2.4235060	-0.2251090
Η	0.0422220	3.1359510	1.2394000	Η	3.4031820	-3.2667950	-0.0999880
Η	-0.8258660	4.5677160	1.8384430	С	3.3209670	-1.1399530	-0.0473940
Н	0.9508970	4.5413830	1.8411180	С	4.6796350	-1.1222500	0.2865380
С	-1.2273650	4.4141420	-0.8874540	Н	5.2135610	-2.0605470	0.4158970
Η	-2.0480640	5.0627340	-0.5158290	С	5.3881700	0.0667710	0.4640340
Η	-1.0849180	4.6563720	-1.9514300	С	4.7039590	1.2867240	0.2768600
С	-2.7177980	2.7565110	-0.2814020	Н	5.2500810	2.2174800	0.4000000
Η	-3.3861230	3.5856710	0.0304510	С	3.3621450	1.3388120	-0.0728500
С	-3.3229320	1.4376800	-0.0778340	С	2.5948260	0.1128440	-0.2146240
С	-4.6643650	1.4223130	0.2714130	С	6.8013290	-0.0047380	0.8226340
Η	-5.1982910	2.3606860	0.3956920	С	2.7949530	2.6745190	-0.2746150
С	-5.3845640	0.2243810	0.4632410	Η	3.4857160	3.4841380	0.0411580

	Х	Y	Ζ	С	3.1182840	-1.0301370	-0.3617940
Co	-0.0195410	-1.2602710	1.0130380	С	2.5478220	0.1594060	0.2618850
0	1.5059210	0.1183500	0.9672200	С	6.2502240	0.3390700	-2.0031010
0	-1.2400680	0.2657470	0.4177390	С	2.5322360	-2.3348590	-0.2142320
0	6.9003240	1.3568160	-2.1953120	Н	3.1639190	-3.1528870	-0.5910370
0	6.6841980	-0.8599050	-2.5117350	С	1.1193440	-4.0820850	0.4440930
Н	7.5117430	-0.6339210	-2.9727210	Н	1.0726720	-4.3017710	1.5158080
0	-7.0076390	-0.4077580	-2.2228130	Н	1.9478070	-4.6636880	0.0069440
0	-6.8047230	1.8279480	-2.0827660	С	-0.1990690	-4.5489670	-0.2062490
Н	-7.6718850	1.6953260	-2.5058130	С	-0.2551900	-4.1367180	-1.6819130
Ν	-1.4240550	3.0836530	0.8358420	Н	-0.2158420	-3.0497180	-1.7900720
Ν	1.7072340	2.9594650	1.1237230	Н	-1.1817830	-4.4909850	-2.1508060
Ν	1.3934920	-2.6559260	0.3095540	Н	0.5895820	-4.5648520	-2.2361010
Ν	-1.6076110	-2.5643400	0.4163080	С	-0.2405690	-6.0822240	-0.0864280
С	-1.1171690	4.4463790	1.1989370	Н	0.6098400	-6.5387190	-0.6068380
Н	-1.8989230	5.1483390	0.8396830	Н	-1.1598410	-6.4837780	-0.5289990
Н	-1.1079070	4.5098850	2.2970040	Н	-0.2039810	-6.3976880	0.9634100
С	0.2502410	4.9620130	0.6816680	С	-1.4205150	-4.0017190	0.5652020
С	0.2870930	6.4779440	0.9494250	Н	-2.3190770	-4.5375350	0.2170740
Н	-0.5366750	6.9872190	0.4352740	Н	-1.2829960	-4.2186090	1.6287890
Н	1.2277180	6.9157770	0.5950100	С	-2.7210430	-2.1870810	-0.1201550
Н	0.1986670	6.6946330	2.0222210	Н	-3.4321760	-2.9703400	-0.4213310
С	0.3793660	4.6932270	-0.8218130	С	-3.1909620	-0.8495790	-0.3758550
Н	0.3370080	3.6202170	-1.0213440	С	-4.4468840	-0.7302210	-0.9703830
Н	1.3310820	5.0808410	-1.2072460	Н	-5.0056150	-1.6240750	-1.2370910
Н	-0.4348740	5.1808090	-1.3732950	С	-5.0247380	0.5117830	-1.2397110
С	1.4525700	4.3425160	1.4454540	С	-4.3146150	1.6688590	-0.8545400
Н	2.3390440	4.9778030	1.2386080	Η	-4.7730370	2.6393940	-1.0233450
Н	1.2437850	4.4150150	2.5223230	С	-3.0679980	1.6196670	-0.2534030
С	2.8038050	2.7104520	0.5246210	С	-2.4141880	0.3334430	-0.0350370
Н	3.5130880	3.5326780	0.2961640	С	-6.3365010	0.5553440	-1.8776770
С	3.2716550	1.4093980	0.0404230	С	-2.4956460	2.8999690	0.1710170
С	4.4464830	1.4074010	-0.6880330	Η	-3.1290950	3.7664450	-0.1121220
Н	4.9781600	2.3426520	-0.8449330	С	-0.1329080	-2.0560470	2.8859840
С	5.0003300	0.2396630	-1.2570340	0	-0.4623750	-0.9193880	3.2155060
С	4.3161940	-0.9624870	-1.0780980	0	0.0772020	-3.1798170	3.3048910
Н	4.7251560	-1.8735190	-1.5065870				

	Х	Y	Z	С	2.7772370	-1.2482210	-0.6524580
Co	-0.1766940	-1.2490170	0.9571050	С	2.3920710	-0.1201430	0.1892400
0	1.3957750	-0.1178300	0.9676340	С	6.0228280	-0.0370340	-2.2016520
0	-1.0085490	0.3218030	-0.0139150	С	2.0655880	-2.5051500	-0.6511010
0	6.8024940	0.9042770	-2.2600100	Н	2.6283190	-3.3460450	-1.0878970
0	6.2771060	-1.1818580	-2.9173010	С	0.5459890	-4.1381470	0.0112110
Η	7.1158270	-0.9899380	-3.3733760	Н	0.8566650	-4.4281060	1.0245640
0	-7.0951480	0.3108310	-1.8599100	Н	1.1136290	-4.7687480	-0.6952850
0	-6.5368470	2.4803010	-2.0652130	С	-0.9519850	-4.4418400	-0.1390800
Н	-7.4501090	2.4385820	-2.4009770	С	-1.4263650	-4.0603960	-1.5472140
Ν	-1.0668090	3.2024070	0.7631410	Н	-1.2299230	-3.0056040	-1.7561740
Ν	1.8931480	2.6480120	1.3795670	Н	-2.5022110	-4.2394670	-1.6667680
Ν	0.9055940	-2.7374310	-0.1512730	Н	-0.8999390	-4.6595500	-2.3005270
Ν	-1.8365250	-2.2666250	0.7371300	С	-1.1456640	-5.9504830	0.0889430
С	-0.6550240	4.5324800	1.1489330	Н	-0.5491390	-6.5342690	-0.6224460
Н	-1.2652070	5.3095660	0.6431860	Н	-2.1967520	-6.2334390	-0.0425030
Н	-0.8389460	4.6338000	2.2291090	Н	-0.8419740	-6.2400100	1.1025450
С	0.8331620	4.8647330	0.8910200	С	-1.7791960	-3.7101660	0.9502720
С	1.0362240	6.3425250	1.2720270	Н	-2.7982840	-4.1259580	0.9387340
Н	0.3688300	6.9934990	0.6943850	Н	-1.3493340	-3.8939320	1.9358010
Н	2.0675390	6.6578650	1.0751510	С	-2.9285760	-1.8309780	0.1950650
Н	0.8307770	6.5105780	2.3373860	Н	-3.7391930	-2.5532080	0.0451040
С	1.1608900	4.6602760	-0.5927490	С	-3.2314090	-0.4988430	-0.2477000
Н	0.9784860	3.6247590	-0.8883590	С	-4.5121050	-0.2586120	-0.7447380
Н	2.2123470	4.8963220	-0.7990550	Н	-5.2278140	-1.0739220	-0.8148240
Н	0.5376700	5.3143180	-1.2163290	С	-4.9118940	1.0118190	-1.1637680
С	1.7927220	4.0286370	1.7845630	С	-4.0083680	2.0806840	-0.9771000
Н	2.7807810	4.5333480	1.7636410	Н	-4.3435780	3.0894740	-1.2017760
Η	1.4228460	4.0722350	2.8183350	С	-2.7328820	1.9033490	-0.4664370
С	2.9674470	2.3207730	0.7767470	С	-2.2355780	0.5561970	-0.2195640
Η	3.7809870	3.0647000	0.6513210	С	-6.2543100	1.1865720	-1.7078990
С	3.2659540	1.0471320	0.1221810	С	-2.0165120	3.1234860	-0.0822910
С	4.4131090	1.0200630	-0.6518020	Н	-2.4623480	4.0443410	-0.5106140
Η	5.0525770	1.8985040	-0.6858210	С	0.3047500	-2.1176870	2.6039300
С	4.7918390	-0.0947940	-1.4239050	0	-0.4370160	-2.3966170	3.5427720
С	3.9518580	-1.2110450	-1.4030200	0	1.6445900	-2.4485340	2.7571760
Η	4.2257990	-2.0873850	-1.9840730	Н	1.6945050	-2.8134960	3.6659630

	Х	Y	Z	С	-3.1869000	-0.9842000	0.2081000
Co	-0.0295000	-1.2542000	-0.8629000	С	-2.5146000	0.2065000	-0.2942000
0	-1.4315000	0.1785000	-0.9485000	С	-6.2899000	0.4827000	1.8263000
0	1.4920000	0.2504000	-1.0393000	С	-2.6992000	-2.3296000	-0.0043000
0	-6.8880000	1.5240000	2.0600000	Н	-3.3733000	-3.1140000	0.3760000
0	-6.8155000	-0.7169000	2.2395000	С	-1.3694000	-4.1143000	-0.7297000
Н	-7.6443000	-0.4675000	2.6859000	Η	-1.3595000	-4.3553000	-1.8039000
0	6.8585000	-0.8837000	2.2240000	Н	-2.1901000	-4.6960000	-0.2747000
0	6.8327000	1.3626000	2.1141000	С	-0.0333000	-4.5935000	-0.1193000
Н	7.6518000	1.1541000	2.5979000	С	0.0532000	-4.2142000	1.3646000
Ν	1.6772000	3.0705000	-0.9920000	Н	0.0190000	-3.1283000	1.4995000
Ν	-1.5081000	3.0030000	-1.0210000	Н	0.9882000	-4.5915000	1.7994000
Ν	-1.6145000	-2.6940000	-0.5873000	Н	-0.7792000	-4.6677000	1.9190000
Ν	1.4573000	-2.6191000	-0.6771000	С	0.0077000	-6.1238000	-0.2843000
С	1.3846000	4.4706000	-1.1737000	Н	-0.8425000	-6.5925000	0.2249000
Н	2.1907000	5.1140000	-0.7617000	Н	0.9260000	-6.5366000	0.1490000
Н	1.3294000	4.6751000	-2.2536000	Н	-0.0289000	-6.4180000	-1.3418000
С	0.0476000	4.9333000	-0.5364000	С	1.1777000	-4.0287000	-0.9011000
С	0.0059000	6.4680000	-0.6594000	Н	2.0650000	-4.6265000	-0.6378000
Н	0.8681000	6.9255000	-0.1597000	Н	0.9965000	-4.1776000	-1.9758000
Н	-0.9038000	6.8731000	-0.2008000	С	2.5998000	-2.3182000	-0.1576000
Н	0.0210000	6.7834000	-1.7112000	Н	3.2639000	-3.1517000	0.1117000
С	-0.0021000	4.5266000	0.9404000	С	3.1546000	-1.0166000	0.1157000
Н	0.0371000	3.4396000	1.0376000	С	4.3641000	-0.9952000	0.8049000
Н	-0.9272000	4.8818000	1.4119000	Н	4.8231000	-1.9298000	1.1187000
Н	0.8463000	4.9556000	1.4891000	С	5.0230000	0.1967000	1.1245000
С	-1.1997000	4.3889000	-1.2876000	С	4.4277000	1.4094000	0.7189000
Н	-2.0551000	5.0472000	-1.0292000	Н	4.9234000	2.3424000	0.9737000
Н	-1.0201000	4.5013000	-2.3667000	С	3.2398000	1.4602000	0.0089000
С	-2.6198000	2.7760000	-0.4382000	С	2.5422000	0.2266000	-0.3501000
Н	-3.2877000	3.6219000	-0.1742000	С	6.2835000	0.1314000	1.8520000
С	-3.1720000	1.4807000	-0.0322000	С	2.7327000	2.7895000	-0.3320000
С	-4.3778000	1.5129000	0.6486000	Н	3.3765000	3.6070000	0.0550000
Н	-4.8588000	2.4693000	0.8378000	С	-0.0613000	-1.4008000	-2.6784000
С	-5.0193000	0.3532000	1.1226000	Ο	-0.0775000	-1.4662000	-3.8248000
С	-4.4003000	-0.8783000	0.8859000	Ο	-0.0770000	2.3495000	-2.1156000
Н	-4.8834000	-1.7856000	1.2378000	Н	-0.1095000	2.6252000	-3.1098000

References

- T. Routasalo, J. Helaja, J. Kavakka and A. M. P. Koskinen, *Eur. J. Org. Chem.*, 2008, **2008**, 3190-3199.
- 2 M. Zhou, Z. F. Ju and D. Q. Yuan, Chem. Commun., 2018, 54, 2998-3001.
- S. Pappuru, K. B. Idrees, Z. Chen, D. Shpasser and O. M. Gazit, *Dalton Trans.*, 2021, 50, 6631-6636.
- W. Morris, B. Volosskiy, S. Demir, F. Gándara, P. L. McGrier, H. Furukawa, D.
 Cascio, J. F. Stoddart and O. M. Yaghi, *Inorg. Chem.*, 2012, 51, 6443-6445.
- 5 Y. A. Li, S. Yang, Q. Y. Li, J. P. Ma, S. J. Zhang and Y. B. Dong, *Inorg. Chem.*, 2017, 56, 13241-13248.
- 6 H.-Q. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang, Y. Luo, S.-H. Yu and H.-L. Jiang, Journal of the American Chemical Society, 2015, **137**, 13440-13443.
- D. S. Chen, H. Z. Xing, C. G. Wang and Z. M. Su, J. Mater. Chem. A, 2016, 4, 2657-2662.
- 8 H. B. Zhang, J. Wei, J. C. Dong, G. G. Liu, L. Shi, P. F. An, G. X. Zhao, J. T. Kong, X. J. Wang, X. G. Meng, J. Zhang and J. H. Ye, *Angew. Chem. Int. Ed.*, 2016, 55, 14310-14314.
- 9 U. J. Ryu, S. J. Kim, H.-K. Lim, H. Kim, K. M. Choi and J. K. Kang, Sci. Rep., 2017, 7, 612.
- K. M. Choi, D. Kim, B. Rungtaweevoranit, C. A. Trickett, J. T. D. Barmanbek,
 A. S. Alshammari, P. Yang and O. M. Yaghi, *J. Am. Che. Soc.*, 2017, 139, 356-362.
- M. Y. Sun, S. Y. Yan, Y. J. Sun, X. H. Yang, Z. F. Guo, J. F. Du, D. S. Chen, P. Chen and H. Z. Xing, *Dalton Trans.*, 2018, 47, 909-915.
- 12 L. Ye, Y. Gao, S. Y. Cao, H. Chen, Y. Yao, J. G. Hou and L. C. Sun, Appl.

Catal., B, 2018, 227, 54-60.

- 13 H. Zhao, X. S. Wang, J. F. Feng, Y. N. Chen, X. Yang, S. Y. Gao and R. Cao, *Catal. Sci. Technol.*, 2018, 8, 1288-1295.
- Y. P. Wei, Y. Liu, F. Guo, X. Y. Dao and W. Y. Sun, *Dalton Trans.*, 2019, 48, 8221-8226.
- M. Elcheikh Mahmoud, H. Audi, A. Assoud, T. H. Ghaddar and M. Hmadeh, J. Am. Chem. Soc., 2019, 141, 7115-7121.
- 16 X. Y. Feng, Y. H. Pi, Y. Song, C. Brzezinski, Z. W. Xu, Z. Li and W. B. Lin, J. Am. Chem. Soc., 2020, 142, 690-695.
- 17 S. Grimme, J. Comput. Chem., 2006, 27, 1787-1799.
- S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 19 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456-1465.
- 20 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Barone. V. Scalmani, G. A. Petersson, H. Nakatsuji, *Gaussian, Inc. Wallingford*, CT, 2016.
- A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B., 2009, 113, 6378-6396.
- D. Andrae, U. HauBermann, M. Dolg, H. Stoll and H. PreuB, *Theor. Chim. Acta.*, 1990, 77, 123-141.
- 23 Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2007, 120, 215-241.
- 24 C. P. Kelly, C. J. Cramer and D. G. Truhlar, *J. Phys. Chem. B.*, 2007, 111, 408-422.
- 25 G. J. Tawa, I.A. Topol, S. K. Burt, R. A. Caldwell and A. A. Rashin, J. Phys. Chem. C., 1998, 109, 4852-4863.
- 26 T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.
- 27 C. Y. Legault, CYLview, 1.0b 2009Université de Sherbrooke, http://www.cylview.org, (accessed 20 October 2020).