Supplementary Figures and Tables

Elucidating mechanism of Densifying Lignocellulosic biomass with

acidic Chemicals (DLC) for lignocellulosic biorefinery

Xinchuan Yuan, Guannan Shen, Sitong Chen, Wenyuan Shen, Xiangxue Chen, Shuangmei Liu, Mingjie Jin*

School of Environmental and Biological Engineering, Nanjing University of Science

and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.

* Corresponding author. Email: jinmingjie@njust.edu.cn

Fig. S1. Mass flow of glucan and xylan during DLCA(sa) pretreatment and SSCF for ethanol production. The mass balances were conducted based on 28%-35% solid loadings.

Fig. S2. Techno-economic analysis for the ethanol production from DLCA(sa) pretreatment and DA pretreatment. The TEA was performed based on NREL model with modifications ¹. The black font represents the costs of the component, unit is US\$/per gallon, the white/gray font represents the relative contribution of the components of the MESP. TEA data related to DA pretreatment was adopted from previous publication ².

Fig. S3. SEM images of untreated RS (a), mDRS (b), DLC*-RS 20 $^{\circ}$ C (c), DLC*-RS 70 $^{\circ}$ C (d), DLC-RS (e), DLCA*-RS (f) DLCA-RS (g) and DA-RS (h). DLC* 20 $^{\circ}$ C/70 $^{\circ}$ C: DLC treatment by laboratory pelleting device under the temperature of 20 $^{\circ}$ C/70 $^{\circ}$ C. Table S1 The information of all chemicals used in this study

Chemical reagent	Purity	Manufacturer			
Sulfuric acid	AR, 95%-98%	Sinopharm Chemical Reagent Co., Ltd			
Calcium hydroxide	AR, 95%	Sinopharm Chemical Reagent Co., Ltd			
D-glucose	GC, ≥99.5%	6 Aladdin Reagent (Shanghai) Co., Ltd.			
D-xylose	AR, 98%	Aladdin Reagent (Shanghai) Co., Ltd.			
Avicel®PH-101	AR	Sigma-Aldrich Co., Ltd.			
Citric acid	T,≥99.5%	Shanghai Macklin Biochemical Co., Ltd.			
Sodium citrate dihydrate	AR, 99%	Shanghai Yuanye Bio-Technology Co., Ltd.			
Ethanol	HPLC, ≥99.8%	Aladdin Reagent (Shanghai) Co., Ltd.			
Glycerol	AR, 99%	Shanghai Macklin Biochemical Co., Ltd.			
5- Hydroxymethylfurfural	AR, 99%	Aladdin Reagent (Shanghai) Co., Ltd.			
Localinio agid	A.D. 000/	Shanghai D&B biological science and technology			
Levunnic acid	AK, 99%	Co., Ltd.			

Furfural	GC, ≥99.5%	Aladdin Reagent (Shanghai) Co., Ltd.
Formic acid	HPLC, ≥98%	Aladdin Reagent (Shanghai) Co., Ltd.
Acetic anhydride	AR, 98.5%	Sinopharm Chemical Reagent Co., Ltd
Deuterated dimethyl sulfoxide	99.90%	Cambridge Isotope labratories, Inc.
Direct Red 28	BS	Shanghai Macklin Biochemical Co., Ltd.
Yeast Extract	AR, 99%	Thermo Fisher Oxoid Co., Ltd.
Tryptone	AR, 99%	Thermo Fisher Oxoid Co., Ltd.
Copper ethylenediamine hydroxide	AR, 98%	Acros Organics co., Ltd.
Chicago Sky Blue 6B (Birect Blue)	BS	Nanjing Duly Biotech Co., Ltd
Pyridine	AR, 99%	Shanghai Macklin Biochemical Co., Ltd.
Tetrahydrofuran	AR, 99%	Aladdin Reagent (Shanghai) Co., Ltd.
1,4-Dioxane	AR, 99%	Aladdin Reagent (Shanghai) Co., Ltd.
Vanillin	AR, 99%	Aladdin Reagent (Shanghai) Co., Ltd.
Sodium carbonate	GR, ≥99.9%	Shanghai Macklin Biochemical Co., Ltd.
Tetrahydrofuran	AR, 99%	Aladdin Reagent (Shanghai) Co., Ltd.
Methyl alcohol	HPLC, ≥99.9%	Aladdin Reagent (Shanghai) Co., Ltd.

Experimental parameter chart	Type of treated biomass	Treat temperature	Treat time	Biomass loading of pretreatment (w/w)	Sulfuric acid dosage (g/g RS)	sulfuric acid conc. (g/L)
	DLC(sa)-RS	RT	3 days	75%	0.075	209.3
	DLCA(sa)-RS	121 °C	30 min	25%	0.075	23.3
		121 °C	60 min	10%	0.05	5.6
Figure 1	DA-RS	142 °C	12 min	8.3%	0.145	13.2
		160 °C	10 min	9.1%	0.11	11
Figure 2a-b	CA-RS	RT	3 days	75%	0.075	209.3

	CA-mDRS	RT	3 days	75%	0.075	209.3
	(CA+DA)-RS	121 °C	30 min	25%	0.075	23.3
	(CA+DA)-mDRS	121 °C	30 min	25%	0.075	23.3
	CA(70 °C 10 min)- mDRS	RT	3 days	75%	0.075	209.3
	(CA(70 °C 10 min)+DA)-mDRS	121 °C	30 min	25%	0.075	23.3
Eigung 2g. d	DA-DRS	121 °C	30 min	25%	0.075	23.3
Figure 2c-d	D-DARS	121 °C	30 min	25%	0.075	23.3
	DLC*-RS	RT	3 days	75%	0.075	209.3
E:	DLC*-mDRS	RT	3 days	75%	0.075	209.3
Figure 3&4	DLCA*-RS	121 °C	30 min	25%	0.075	23.3
	DLCA*-mDRS	121 °C	30 min	25%	0.075	23.3

Table S3. Schemes of biomass addition and enzyme addition for SSCF process

Process operation	Solid loading	Process time						
Process operation	(w/w)	0h	12h	24h	36h	48h		
	28%	15%	5%	4%	4%	-		
Biomass addition (w/w)	30%	15%	5%	5%	5%	-		
	32%	15%	5%	4%	4%	4%		
	35%	15%	5%	5%	5%	5%		
	28%	4	4	4	4	4		
Enzyme addition (mg/g glucan)	30%	4	4	4	4	4		
	32%	4	4	4	4	4		

35%	10	4	2	2	2

Table S4. Typical degradation inhibitors and their contents in pretreated RS

.....

Type of Pretreatment		Content of inhibitors (mg/g pretreated biomass)								
		Formic acid	Levulinic acid	Furfural	HMF	Acetic acid	Phenols			
	121°C 60min	1.91±0.05	0.23±0.02	0.02±0.00	0.07±0.02	3.47±0.18	2.07±0.14			
Dillute acid (DA)	142°C 12min	2.14±0.04	1.08±0.05	0.09±0.01	0.19±0.01	5.22±0.20	6.15±0.29			
	160°C 10min	4.58±0.28	2.80±2.08	0.11±0.02	0.46±0.04	7.46±0.27	9.45±0.20			
DLC	A(sa)	1.47±0.06	0.18±0.04	0.00±0.00	0.17±0.02	8.81±0.62	2.94±0.32			

Bond position		%Relative change of UT/pretreatd biomass							
(cm ⁻¹)	Assignment	UT-RS	DLC*-mDRS 20 °C	DLC*-mDRS 70 °C	DLC(sa)-RS	DLCA*-mDRS	DLCA(sa)-RS		
3340	O–H stretching of cellulose hydrogen bonds	-	7.25	11.70	15.92	31.05	34.42		
2916	C–H stretching of methyl/methylene in cellulose	-	4.67	10.74	7.20	16.19	15.01		
1720	Carboxylic acids/ester groups	-	6.71	7.62	8.33	10.62	10.58		
1240	C–O adsorption of acetyl groups	-	14.26	17.47	19.56	28.46	34.28		
898	Related to amorphous cellulose	-	3.69	8.36	6.03	15.17	16.27		
1098/898	Ratio of amorphous cellulose to crystalline cellulose	0.83	0.86	0.89	0.89	0.9	0.91		

Table S5. Relative changes of functional groups/chemical bonds for pretreated biomass

%Relative change = 100*(intensity of UT-RS – intensity of pretreated RS)/intensity of UT-RS; where positive number indicates reduction.

		C1s			O1s	
Samples	C1(%) (~284.7 eV)	C2(%) (~286.6 eV)	C3(%) (~288.4 eV)	O1(%) (~531.3 eV)	O2(%) (~532.4 eV)	O3(%) (~533.3 eV)
LRS	67.49	23.96	8.55	13.89	67.24	18.87
DLC(sa)-RS	61.95	29.72	8.33	11.61	66.66	21.73
DLCA(sa)-RS	61.53	28.55	9.92	11.03	62.89	26.08
DA-RS	73.48	21.92	4.6	4.11	55.05	40.84

Table S6. Subpeaks of C1s and O1s from XPS analysis for untreated and treated RS

Subpeaks in C1s correspond to C1 (C-C), C2 (C-OH or C-O-C) and C3 (O-C-O or C=O), respectively. Subpeaks in O1s correspond to O1 (O-C=O and Ar-O-Ar), O2 (C-O-, C=O, C-O-C and O-C=O), O3 (Ph-O), respectively.

- 1. R. D. D. Humbird, L. Tao, C. Kinchin, D. Hsu, A. Aden, P. Schoen, J. Lukas, B. Olthof, M. Worley, D. Sexton, D. Dudgeon, *National Renewable Energy Laboratory, Golden, CO*, 2011.
- 2. J. Yu, Z. Xu, S. Chen, Y. Yu, C. Zhang, X. Chen and M. Jin, *Fuel*, 2021, DOI: 10.1016/j.fuel.2021.122603, 122603.