Supplementary information for

Repurposing the cellulase workhorse *Trichoderma reesei* as a ROBUST chassis for efficient terpene production

Meili Xiao^{1, 2}, Yinmei Wang^{1, 2}, Yan Wang¹, Xing Yan¹, Zhihua Zhu¹, Ernuo Tian^{1,2}, Chengshuai Yang¹, Erdong Ma^{1,2}, Gen Zou^{1, 3, *}, Zhihua Zhou^{1, 2, *}, Pingping Wang^{1,*}

¹ CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular

Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China

² University of the Chinese Academy of Sciences, Beijing, 100049, China

³ Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible

Fungi, Shanghai Academy of Agriculture Science, Shanghai, 201403, China

These authors contributed equally: Meili Xiao, Yinmei Wang Email address: ppwang@cemps.ac.cn, zhouzhihua@cemps.ac.cn, zougen@sibs.ac.cn

Supplementary methods

General

Oligonucleotide primers synthesis and sequencing were performed by Biosune (shanghai, China). All the fragments for cloning were amplified by the PrimeSTAR HS DNA polymerase kit (TaKaRa, Japan). Cas9 protein tagged with a nuclear localization signal was purchased from Novoprotein, Inc. (Shanghai, China). Templates for guide RNA transcription were generated by oligo-extension using I5 polymerase (Tsingke, Beijing, China). Target sequences were designed in silico using Cas-Designer and Cas-OFFinder (http://www.rgenome.net/cas-offinder/) to reduce off-target. Guide RNAs were in vitro transcribed through runoff reactions using the T7 RNA polymerase (New England BioLabs) according to the manufacturer's protocol.

The GC analyses were performed with GC-2010 Pro (Shimadzu, Kyoto, Japan) equipped with a TG-5MS capillary column (30 m×0.25 mm×0.25 µm film thickness; Thermo Scientific) and a flame ionization detector (FID). The GC-MS analyses were conducted with an Agilent 7890B GC system coupled to an Agilent 5977B MSD fitted with an HP-5MS capillary column (30 m×0.25 mm×0.25 µm film thickness; Agilent). The program parameters of metabolites were the same as GC in GC-MS analysis. The HPLC analyses were performed with a Shimadzu LC20A system and a photo-diode detector (PDA) using a Boltimate Core-Shell C₁₈ Column (2.1 mm×100mm, 2.7 µm; Welch Material, Maryland, America). A gradient of elution (A, water; B, acetonitrile) was used with the following program: 0-2 min (45% B), 2-15 min (45%-100% B), 15-27 min (100% B), 27-30 min (45% B) and the flow rate was maintained at 0.45 mL min⁻¹. The triterpenoid products were detected at 203 nm. The HPLC-MS analyses were carried out with an Agilent LC1290-MS/QTOF6545 system. The column and program were same to those in HPLC.

Extraction, analyses, and purification of terpenoids

To analyze the 1,8-cineole (2) from transformant harboring *hyp3*, 10% (v/v) *n*-dodecane was added into the fermentation broth. After 4-days of growth, the dodecane layer diluted at 1:100 in ethyl acetate for GC and GC-MS analysis. The GC program was as follows: each sample was injected into the column at 60 °C and hold for 3 min; the column temperature ramped to 280 °C at a rate of 15 °C min⁻¹ and hold for 5 min. The temperature of inlet and FID detector were kept at 300 °C. The injection volume was 1 μ L in split ratio of 10. The flow rate of nitrogen carrier gas was 1.0 mL min⁻¹.

The extraction and analysis of aristolochene (3) are the same as 1,8-cineole (2). For the purification of 3, 1 L of the culture was extracted with equal *n*-hexane overnight at room temperature. The extract was concentrated and then subjected to silica gel column chromatography, *n*-hexane as the elution solvent, to yield a colorless liquid.

The extraction and purification of fusicoccadiene (4) are the same as aristolochene (3), except for the dodecane layer diluted at 1:100 in *n*-hexane for GC and GC-MS analysis. The GC program was as follows: each sample was injected into the column at 60 °C and hold for 2 min; the column temperature ramped to 150 °C at a rate of 30 °C min⁻¹, with increased at 10 °C min⁻¹ to 180°C, then increased to 280 °C at 30 °C min⁻¹ and hold for 5 min. The temperature of inlet and FID detector were kept at 300°C. The injection volume was 2 μ L in split ratio of 10. The flow rate of nitrogen carrier gas was 1.0 mL min⁻¹.

The extraction and analysis of stellata-2,6,19-triene (5) are the same as ophiobolin F (1). For the purification of 5, 1 L of the culture was extracted with equal ethyl acetate. The extract was reextracted by n-hexane and concentrated. The residues were subjected to silica-gel column chromatography, with elution using n-hexane, to yield a white powder.

For the analysis of protosta-17(20)Z,24-dien-3 β -ol (**6**) from transformant, 500 μ L fermented broth after mycelium disruption was extracted with 1mL ethyl acetate twice. The extract concentrated under reduced pressure was resuspended by 100 μ L ethyl acetate, and then subjected to HPLC and LC-MS analysis. For the purification of **6**, the extract from 2 L culture of transformant was subjected to silica gel column chromatography with stepwise elution of petroleum ether and ethyl acetate (50:1, 30:1, 20:1, 10:1, and 0:1, v/v) to yield 5 fractions. Fraction 3 was further purified by preparative thin layer chromatography (TLC) to obtain **6** as white powder.

The extraction of taxadiene (7) are the same as aristolochene (3), except for the dodecane layer was extract for direct injection into GC and GC-MS. The GC program was as follows: each sample was injected into the column at 150 °C and hold for 2min; the column temperature ramped to 180 °C at a rate of 10 °C min⁻¹ and hold for 10min, with increased at 3 °C min⁻¹ to 210 °C, then increased to 250 °C at 10°C min⁻¹ and hold

for 5min. The temperature of inlet and FID detector were kept at 270 °C. The injection volume was 2 μ L in split ratio of 10. The flow rate of nitrogen carrier gas was 1.0 mL min⁻¹.

Supplementary figures

Figure S1 MS spectrum of 1 from the transformant.

Figure S2 NMR spectrum of 1. (a) ¹H NMR spectrum in CDCl₃ at 400MHz; (b) ¹³C NMR spectrum in CDCl₃ at 125MHz.

Figure S3 The schematic diagram for a strain overexpressing the cellulase production regulator $xyrl^{A824V}$ (A, OExyr1/MC3- Δ 10-TrAcOS) and simultaneously deleting the secondary metabolism regulator *lae1* (B, Δ lae1:: xyr1/MC3- Δ 10-TrAcOS) construction in *T.reesei*.

Figure S4 Phenotype of *T. reesei* MC3- Δ 10-TrAcOS, OExyr1/MC3- Δ 10-TrAcOS and Δ lae1::xyr1/MC3- Δ 10-TrAcOS strains on PDA medium.

Figure S5 The time-course of ophiobolin F (1) production in the fermenter. The strain Δ lae1::xyr1/MC3- Δ 10-TrAcOS provided with 1% lactose and 3% glucose as initial carbon source. After 48 h, 0.56 g/h sugar (lactose : glucose = 1:3) was supplemented in fed-batch system. With the accumulated production, the yield of ophiobolin F (1) reached 3.02 g/L on 144 h.

Figure S6 GC-MS analysis of 2 and authentic sample. (a) MS spectrum of 2 from transformant;(b) MS spectrum of authentic 2.

Figure S7 MS spectra of 3.

Figure S8 NMR spectrum of 3. (a) $^1\mathrm{H}$ NMR spectrum in CDCl3 at 500MHz; (b) $^{13}\mathrm{C}$ NMR spectrum in CDCl₃ at 125MHz.

Figure S9 MS spectra of 4.

Figure S10 NMR spectrum of 4. (a) ¹H NMR spectrum in CDCl₃ at 500MHz; (b) ¹³C NMR spectrum in CDCl₃ at 125MHz.

a

Figure S11 MS spectra of 5.

Figure S12 NMR spectrum of 5. (A) ¹H NMR spectrum in CDCl₃ at 400MHz; (B) ¹³C NMR spectrum in CDCl₃ at 100MHz.

Figure S13 MS spectra of 6.

Figure S14 NMR spectrum of 6. (a) ¹H NMR spectrum in CDCl₃ at 500MHz; (b) ¹³C NMR spectrum in CDCl₃ at 125MHz.

Figure S15 GC-MS analysis of 7 produced by MC3- Δ 10-TAS and authentic sample. (a) MS spectrum of 7 from MC3- Δ 10-TAS; (b) MS spectrum of authentic 7.

Supplementary Tables

Table S1 Putative functions of genes in the terpenoid backbone biosynthesis pathways in *T.reesei*RutC30

Name	NCBI-Protein ID	Putative function
ACAT	ETS00561	acetyl-CoA acetyltransferase
HMGS	ETS04320	hydroxymethylglutaryl-CoA synthase
HMGR	ETS06777	hydroxymethylglutaryl-CoA reductase
МК	ETS02989	mevalonate kinase
РМК	ETS05511	phosphomevalonate kinase
MDC	ETR99754	Mevalonate pyrophosphate decarboxylase
IDI	ETS05484	isopentenyl-diphosphate delta-isomerase
GGPPS	ETR98769	geranylgeranyl pyrophosphate synthetase
FDFT	ETS00586	farnesyl-diphosphate farnesyltransferase
SQLE	ETS03457	squalene epoxidase

 Table S2 Primers used in the study

Name	Sequences (5'-3')	Usage	
Pcbh1-F	CTCGGTACCCGGGGATCCTCTAGAGACTGACCGGACGTGTTTTG	Amplification of <i>cbh1</i> promoter from RutC30	
Pcbh1-R	GATGCGCAGTCCGCGGTTG	genome DNA	
TrAcOS-F	CAACCGCGGACTGCGCATCATGGCCTGCAAGTACAGCAC		
TrAcOS-R	ATGATGATGATGATGGACCTTCAGCAGCTCGAG	- Amplification of <i>IrACOS</i> from synthetic gene	
Tcbh1-F	CATCATCATCATTAAAGCTCCGTGGCGAAAGCCTG	Amplification of <i>cbh1</i> terminator including His-	
Tcbh1-R	ACACATTCCACAGAGATCTACTAATTTCCACTGTTGC	tag sequence from RutC30 genome DNA	
ura5-F	AGATCTCTGTGGAATGTGTG	Amplification of <i>ura5</i> marker cassette from	
ura5-R	TGCCTGCAGGTCGACGATTCTAGACAGGGCTGGTGACGGAATTTTC	plasmid dDNA-lae1	
cbh1-down-F	CTCGGTACCCGGGGATCCTCTAGACCAGTGCGGCGGTATTGG	Amplification of 3' flanking region for HDR of	
cbh1-down-R	TGCCTGCAGGTCGACGATTCTCATTGCGCACTATAG	T.reesei cbh1	
IDENcbh1-F	ATGGTCATCAAACAAAGAAC		
IDENcbh1-R	GAAGATCAATGCTGTGCAAG	- Verification of transformants	
hyp3-F	CAACCGCGGACTGCGCATCATGCGCCCCATCACCTGCAG		
hyp3-R	AATGATGATGATGATGGATGCCGCGGAGGCCGGGCT	- Ampuncation of <i>nyps</i> from synthetic gene	
ari-F	CAACCGCGGACTGCGCATCATGAAGAAGCCCAACGGCAC	Amplification of <i>ari</i> from synthetic gene	

ari-R	TAATGATGATGATGATGGTCGACGACGACGCTGTAG		
PaFS-F	CAACCGCGGACTGCGCATCATGGAGTTCAAGTACAGC	Amulification of Defe from with the cone	
PaFS-R	TTAATGATGATGATGATGGACGCGGAGCAGCTCGAG	Amplification of <i>Pajs</i> from synthetic gene	
EvSS-F	CAACCGCGGACTGCGCATCATGGAGTACAAGTTCAGC	A multification of European and sticks and	
EvSS-R	TAATGATGATGATGATGGCCGGTCTTAAGCAGCTC	Ampuncation of <i>Evss</i> from synthetic gene	
HelA-F	CAACCGCGGACTGCGCATCATGGCCACCGACAGCAGC	- Amplification of <i>helA</i> from synthetic gene	
HelA-R	TAATGATGATGATGATGGATGGCGAGGCACTCGTTG		
TAS-F	CAACCGCGGACTGCGCATCATGAGCAGCAGCACCGGCAC	- Amplification of <i>TAS</i> from synthetic gene	
TAS-R	TAATGATGATGATGATGGACCTGGATGGGGTCAATG		
TAS limbon D	CCCCCCGCCAGAGCCGCCGCCGCGGAGCCACCACCTCCGACCTGGAT	Amplification of TAS from synthetic gene	
IAS-IIIKer-K	GGGGTCAATG		
DT E	GCGGCTCTGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGG	Amplification of GGPPS domain from <i>PaFS</i>	
PT-F	AGTGGATG		
LHA- Lae1-F	CCGGGGGATCCTCTAGAGATATATGAATGCTGTGCTCAG	Amplification of 5' flanking of <i>lae1</i> from <i>T</i> .	
LHA- Lae1-R	AATGTAGGATTCCGCTCTGCGGGTCAATCCTTGGGAATG	reesei genome served as right homologous arm	
Ptcu1-F	AGAGCGGAATCCTACATTC	- Amplification of <i>tcu1</i> promoter	
Ptcu1-R	GGAGAGGATTGGACAACATTGTCGTATCAACCAGGTC		

xyr1-F	ATGTTGTCCAATCCTCTCC	Amplification of <i>xyr1</i> ^{A824V} gene	
xyr1-R	TCATCACCATCACCACTAAGCGATACCCATCATCAAC	Amplification of <i>xyr1</i> ^{A824V} gene	
Ttofl E	CCTCCATCATCACCATCACCACTAAGCGATACCCATCATCAACACCTGA		
IteII-F	TGTTCTGGGG	Amplification of <i>tef1</i> terminator	
Ttef1-R	AGTGAGGGTTAATTGCGCCAACGATTCCTCTCACGTT	-	
hyg-F	GCGCAATTAACCCTCACT	A	
hyg-R	CAGGGCTGGTGACGGAATT	- Amplification of hygromycin resistance cassette	
RHA- Lae1-F	ATTCCGTCACCAGCCCTGGAAAATCATGGATCTCGGCA	Amplification of 3' flanking of <i>lae1</i> from <i>T</i> .	
RHA- Lae1-R	ATGCCTGCAGGTCGACGATCTGCGGTGGTAGCGATGC	<i>reesei</i> genome served as left homologous arm	
PamyB-F	TCGGTACCTCTAGAATTGTGCAAATGCCGTAAGC		
PamyB-R	GATGATGATGGCTAGCAAATGCCTTCTGTGGGGGTTTATTG	- Amplification of <i>amyB</i> promoter	
TamyB-F	CATCATCATCATCATCATTAAAGGGTGGAGAGTATATGATG	Amplification of <i>amyB</i> terminator including His-	
TamyB-R	TAGCCGGAGATTTGACCGAATC	tag sequence	
Ade-F	TTCGGTCAAATCTCCGGCTACTCATGCCGTCATGTCCAG	Amplification of wild type AoadeA as the	
Ade-R	TCTGCGCAACAGCATACGAG	selectable marker	
RHA-F	TCGTATGCTGTTGCGCAGACGGCCAAGAACAGCACTAC	Amplification of the 3' flanking region for HDR	
RHA-R	CTGCAGGTCGACGATCTCTAGACACGAGCTACTACAGATCTTG	of <i>AoamyB</i>	

AoAcOS-F	AAACCCCACAGAAGGCATTTATGGCCTGCAAGTACAGCACC	Amplification of AoAcOS gene from synthetic	
AoAcOS-R	TTAATGATGATGATGATGGACCTTCAGCAGCTCGAGCAT	gene	
∆amyB-FF	GGCAACAAGCATGGAGTC	verification of NSAR1-AoAcOS transformants	
∆amyB-FR	CTGCCATGTTCCACCACAG	for HDR	
∆amyB-RF	CTCATGCCGTCATGTCCAG	verification of NSAR1-AoAcOS transformants	
∆amyB-RR	GCCATTTCGTCAAGGTATAG	for HDR	
OF-DN-F	CTGTCGATTCGATACTAACGCCGCCATCCAGTGTCGAGCCAGGCGCCTT		
	TATATCATAT	Construction of yeast strain BB-ScAcOS	
OF-DN-R	GACTATAATATTATGCATATAGGA		
OF-GAL1-F	TGAATCTTGTCTGTTTGGTAGCGGCTGCTTTATTTATATTGAATTTTCAA		
	AAATTCTTA	Construction of construction DD Co. A CO.	
OF-GAL1-R	GGAGTCGATCAAGGTGGAGTACTTACAGGCCATTATAGTTTTTCTCCTT	- Construction of yeast strain BB-SCACOS	
	GACGTTAAA		
OF HVC F	AATGAATCTTTCTGTCGTGCTTGAAAGATTTTCGGCTAGCTTGCCTCGTC		
ОГ-НҮС-Г	CCCGCCGGG	Construction of woost studie DD SoloOS	
OF-HYG-R	TTTTGTGTCTTAATTATATGATATAAAGGCGCCTGGCTCGACACTGGAT	Construction of yeast strain BB-SCACOS	
	GGCGGCGTTA		

OF-RBL-F	GGAGTTGTTGAAGGTCCACCACCATCACCACCACTGAGCGGATTGAGA		
	GCAAATCGTTA	- Construction of yeast strain BB-ScAcOS	
OF-RBL-R	TCGCTGGCCGGGTGACCCGGCGGGGGGGGGGGGGGGGGG		
	TTTCAAGCACG		
OF-UP-F	TTTGCCAACAATCGAAACCAAACA		
OF-UP-R	TCCAAAAAAAAGTAAGAATTTTTGAAAAATTCAATATAAATAA	Construction of yeast strain BB-ScAcOS	
	CCGCTACCAAA		
OF-yeAcOS-F	TACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGGCCTGTAAG		
	TACTCCACCT	- Construction of waast strain DD SalaOS	
OF-yeAcOS-R	TACTTGACCTGAACTTAACGATTTGCTCTCAATCCGCTCAGTGGTGGTG	Construction of yeast strain DD-SCACOS	
	ATGGTGGTGG		

Table S3 I	Plasmids us	sed in the	study	

Plasmids	Characteristics	Source		
pMD18T-TrAcOS	Plasmids containing Pcbh1-TrAcOS-Tcbh1 cassette and ura5 marker	This work		
	gene cassette served as donor DNA to replace the <i>cbh1</i> gene, (Amp^R)			
pMD18T-AoAcOS	Plasmids containing PamyB-AoAcOS-TamyB cassette and <i>adeA</i> marker	This work		
	cassette served as donor DNA to replace the <i>AoamyB</i> gene, (Amp^R)	I his work		
"MD19T	Plasmids containing Ptcu1-xry1A824V-Ttef1 cassette and hph marker			
plviD181-xyri	gene cassette served as overexpressing $xry1^{A824V}$ gene, (Amp^R)	This work		
dDNA loo1vm1	Plasmids containing Ptcu1-xry1A824V-Ttef1 cassette and hph marker			
dDNA-lae1xyr1	gene cassette served as donor DNA to replace the <i>lae1</i> gene, (Amp^R)	This work		
"MD19T hum?	Plasmids containing Pcbh1-hyp3-Tcbh1 cassette and ura5 marker gene	This work		
рмD181-пурз	cassette served as donor DNA to replace the <i>cbh1</i> gene, (Amp^R)			
-MD19T:	Plasmids containing Pcbh1-ari-Tcbh1 cassette and ura5 marker gene	This work		
pMD181-ari	cassette served as donor DNA to replace the <i>cbh1</i> gene, (Amp^R)			
nMD18T Dafa	Plasmids containing Pcbh1-Pafs-Tcbh1 cassette and ura5 marker gene	This work		
	cassette served as donor DNA to replace the <i>cbh1</i> gene, (Amp^R)			
pMD18T. Ever	Plasmids containing Pcbh1-Evss-Tcbh1 cassette and ura5 marker gene	This work		
plviD101-Evss	cassette served as donor DNA to replace the <i>cbh1</i> gene, (Amp^R)	I nis work		
pMD18T hold	Plasmids containing Pcbh1-helA-Tcbh1 cassette and ura5 marker gene	This work		
pMD181-helA	cassette served as donor DNA to replace the <i>cbh1</i> gene, (Amp^R)	1 nis work		
•MD18T T 4 S	Plasmids containing Pcbh1-TAS-Tcbh1 cassette and ura5 marker gene	This work		
pMD181-TAS	cassette served as donor DNA to replace the <i>cbh1</i> gene, (Amp^R)	1 IIIS WOFK		
-MD19T CDT49	Plasmids containing Pcbh1-GPTAS-Tcbh1 cassette and ura5 marker	This work		
ρινιμ181-GP1AS	gene cassette served as donor DNA to replace the <i>cbh1</i> gene, (Amp^R)	I his work		

Table S4 Strains used in the study

name	genotype	Source	
MC3-TrAcOS	T. reesei MC3, Δcbh1::TrAcOS	This work	
NSAR1-AoAcOS	A.oryzae NSAR1, ΔamyB::AoAcOS	This work	
BB-ScAcOS	S. cerevisiae BB, ScAcOS	This work	
MC2 A10	T. reesei MC3, $\Delta cbh2\Delta xyn2\Delta egl1\Delta egl2\Delta egl3\Delta bxl1\Delta egl4$	This see the	
MC3-Δ10	$\Delta cip1\Delta cel74a\Delta bgl1, ura5^{-}$	This work	
MC3-Δ10-TrAcOS	<i>T. reesei</i> MC3- Δ 10, Δ <i>cbh</i> 1:: <i>TrAcOS</i>	This work	
OExyr1/MC3-Δ10	<i>T. reesei</i> MC3- Δ 10, <i>xry</i> I^{A824V}	This work	
Δlae1::xyr1/MC3-Δ10		This work	
(ROBUST chassis)	1. reeset MC3- $\Delta 10$, $\Delta lae1$:: xry1 ^{A0247}		
OExyr1/MC3-Δ10-TrAcOS	T. reesei OExyr1/MC3-Δ10, Δcbh1:: TrAcOS	This work	
Δlae1::xyr1/MC3-Δ10-TrAcOS	T. reesei Δlae1::xyr1/MC3-Δ10, Δcbh1:: TrAcOS	This work	
ROBUST-HYP3	<i>T. reesei</i> Δlae1::xyr1/MC3-Δ10, Δ <i>cbh1</i> :: <i>hyp3</i>	This work	
ROBUST-ARI	<i>T. reesei</i> Δ lae1::xyr1/MC3- Δ 10, Δ <i>cbh1</i> :: <i>ari</i>	This work	
ROBUST-PaFS	T. reesei Δlae1::xyr1/MC3-Δ10, Δcbh1:: Pafs	This work	
ROBUST-EvSS	T. reesei Δlae1::xyr1/MC3-Δ10, Δcbh1:: Evss	This work	
ROBUST-HelA	T. reesei Δ lae1::xyr1/MC3- Δ 10, Δ cbh1:: helA	This work	
MC3-Δ10-TAS	<i>T. reesei</i> MC3- Δ 10, Δ <i>cbh</i> 1:: <i>TAS</i>	This work	
MC3-Δ10-GPTAS	<i>T. reesei</i> MC3- Δ 10, Δ <i>cbh</i> 1:: <i>GPTAS</i>	This work	
ROBUST-GPTAS	T. reesei Δlae1::xyr1/MC3-Δ10, Δcbh1:: GPTAS	This work	