Green Chemistry

Supplementary Materials for

Systematic Metabolic Engineering of Bacillus licheniformis for Hyperproduction

of Antioxidant Hydroxytyrosol

Yangyang Zhan^{1#}, Fei Zhou^{1#}, Wenqi Ruan¹, Hao Yin¹, Zhi Li¹, Huan Wang¹, Tao Li²,

Dongbo Cai^{1,2}, Shihui Yang¹, Xin Ma^{1*}, Shouwen Chen^{1*}

¹ State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan 430062, People's Republic of China

² Zhuhai Winzyme Biotech Co., Ltd, Zhuhai, 519000, People's Republic of China

[#] These authors contributed equally to this work.

*Corresponding authors: X Ma and S Chen

E-mail address: maxin@hubu.edu.cn (X Ma); mel212@126.com (S Chen).

Tel./fax.: +86 027-88666081

Postal address: 368 Youyi Avenue, Wuhan 430062, Hubei, PR China

Strains	Characteristics	Sources
B. licheniformis		
DWc9n	DW2 with Cas9n integrated strain	1
DW3	DWc9n- <i>xkdE::yugJ</i>	Lab stock
DW4	$DWc9n\Delta pyk-xkdE::yugJ$	Lab stock
DH1	$DWc9n\Delta pyk-xkdE::yugJ-ldh::tyrA^{fbr}$	This study
DH2	DWc9n Δ pyk-xkdE::yugJ-ldh::tyr A^{fbr} - xkdG::aro G^{fbr}	This study
DH3	DWc9n∆pyk-xkdE::yugJ-ldh::tyrA ^{fbr} - xkdG::aroG ^{fbr} -PbacA-aroK	This study
DH4	DWc9n∆pyk-xkdE∷yugJ-ldh::tyrA ^{ſbr} - xkdG∷aroG ^{ſbr} -PbacA-aroK∆pheA	This study
DH5	DWc9n∆pyk-xkdE∷yugJ-ldh∷tyrA ^{ſbr} - xkdG∷aroG ^{ſbr} -PbacA-aroK∆pheA∆hisC	This study
DH6	DWc9n∆pyk-xkdE∷yugJ-ldh::tyrA ^{fbr} - xkdG::aroG ^{fbr} -PbacA-aroK∆pheA∆hisC∆dhaS	This study
DH7	DWc9n∆pyk-xkdE∷yugJ-ldh::tyrA ^{fbr} - xkdG::aroG ^{fbr} -PbacA-aroK∆pheA∆hisC∆dhaS ∆dhbC	This study
DH8	DWc9n Δpyk -xkdE::yugJ-ldh::tyr A^{fbr} - xkdG::aro G^{fbr} -PbacA-aroK $\Delta pheA\Delta hisC\Delta dhaS$ $\Delta dhbC\Delta adh 4$	This study
DH9	DWc9n Δpyk -xkdE::yugJ-ldh::tyr A^{fbr} - xkdG::aro G^{fbr} -PbacA- aroK $\Delta pheA\Delta hisC\Delta dhaS\Delta dhbC\Delta adhA-$	This study
DH10	PbacA-glcU-PbacA-glcK DWc9n∆pyk-xkdE∷yugJ-ldh::tyrA ^{ſbr} - xkdG::aroG ^{ſbr} -PbacA- aroK∆pheA∆hisC∆dhaS∆dhbC∆adhA-	This study
DH11	PbacA-glcU-PbacA-glcK-ParoK-ptsG DWc9nΔpyk-xkdE::yugJ-ldh::tyrA ^{fbr} - yvnA::tyrA ^{fbr} xkdG::aroG ^{fbr} -PbacA-aroKΔpheA ΔhisCΔdhaSΔdhbCΔadhA-PbacA-glcU-PbacA-	This study
DH12	glcK-ParoK-ptsG DWc9n Δpyk - $xkdE$:: $yugJ$ - ldh :: $tyrA^{fbr}$ - $yvnA$:: $tyrA^{fbr}$ - $xkdG$:: $aroG^{fbr}$ -PbacA- $aroK\Delta pheA\Delta hisC\Delta dhaS$ $\Delta dhbC\Delta adhA$ -PbacA- $glcU$ -PbacA- $glcK$ -ParoK- $ptsC$ -PhasA- tlt	This study
DH13	pisG-FbacA-iki DWc9n Δpyk -xkdE::yugJ-ldh::tyr A^{fbr} -yvnA::tyr A^{fbr} - xkdG::aro G^{fbr} -PbacA-aroK $\Delta pheA\Delta hisC\Delta dhaS$ $\Delta dhbC\Delta adhA-PbacA-glcU-PbacA-glcK-ParoK-ptsG-PbacA-tkt-PbacA-zwf$	This study

Table S1 Strains and plasmids used in this study

DH14	DWc9n Δpyk -xkdE:: $yugJ$ -ldh:: $tyrA^{fbr}$ - $yvnA$:: $tyrA^{fbr}$ - xkdG:: $aroG^{fbr}$ -PhacA-	This study
	$aroK\Delta pheA\Delta hisC\Delta dhaS\Delta dhbC\Delta adhA-PhacA-$	
	glcU-PbacA-glcK-ParoK-ptsG- lanP-P43-	
	<i>Bbxfpk</i> ^{opt}	
Strains	Characteristics	Sources
DHT1	DW3/pHY-PbacA-kivD-P43-hpaBC	This study
DHT2	DW3/pHY-PbacA-kivD ^{VI} -P43-hpaBC	This study
DHT3	DW4/pHY-PbacA-kivD ^{VI} -P43-hpaBC	This study
DHT4	DH1/pHY-PbacA-kivD ^{VI} -P43-hpaBC	This study
DHT5	DH2/pHY-PbacA-kivD ^{VI} -P43-hpaBC	This study
DHT6	DH3/pHY-PbacA-kivD ^{VI} -P43-hpaBC	This study
DHT7	DH4/pHY-PbacA-kivD ^{VI} -P43-hpaBC	This study
DHT8	DH5/pHY-PbacA-kivD ^{VI} -P43-hpaBC	This study
DHT9	DH6/pHY-PbacA-kivD ^{VI} -P43-hpaBC	This study
DHT10	DH7/pHY-PbacA-kivD ^{VI} -P43-hpaBC	This study
DHT11	DH8/pHY-PbacA-kivD ^{VI} -P43-hpaBC	This study
DHT12	DH10/pHY-PbacA-kivD ^{VI} -P43-hpaBC	This study
DHT13	DH10/pHY-PbacA-kivD ^{VI} -PbacA-hpaBC	This study
DHT14	DH10/pHY-PbacA-kivD ^{VI} -Pbay-hpaBC	This study
DHT15	DH10/pHY-P43-kivD ^{VI} -P43-hpaBC	This study
DHT16	DH10/pHY-P43-kivD ^{VI} -PbacA-hpaBC	This study
DHT17	DH10/pHY-P43-kivD ^{VI} -Pbay-hpaBC	This study
DHT18	DH10/pHY-Pbay-kivD ^{VI} -P43-hpaBC	This study
DHT19	DH10/pHY-Pbay-kivD ^{VI} -PbacA-hpaBC	This study
DHT20	DH10/pHY-Pbay-kivD ^{VI} -Pbay-hpaBC	This study
DHT21	DH11/pHY-P43-kivD ^{VI} -Pbay-hpaBC	This study
DHT22	DH12/pHY-P43-kivD ^{VI} -Pbay-hpaBC	This study
DHT23	DH13/pHY-P43-kivD ^{VI} -Pbay-hpaBC	This study
DHT24	DH14/pHY-P43-kivD ^{VI} -Pbay-hpaBC	
DWc9n/pHY-kivD	DWc9n harboring pHY-kivD ^{V461} , Tetr	This study
DWc9n/pHY- kivD ^{VY}	DWc9n harboring pHY- <i>PbacA-kivD^{VY}</i> , Tet ^r	This study
DWc9n/pHY- <i>kivD^{VT}</i>	DWc9n harboring pHY- <i>PbacA-kivD^{VT}</i> , Tet ^r	This study
DWc9n/pHY- <i>kivD^{VF}</i>	DWc9n harboring pHY- <i>PbacA-kivD^{VF}</i> , Tet ^r	This study
DWc9n/pHY- <i>kivD^{VH}</i>	DWc9n harboring pHY- <i>PbacA-kivD^{VH}</i> , Tet ^r	This study
DWc9n/pHY- <i>kivD^{VR}</i>	DWc9n harboring pHY- <i>PbacA-kivD^{VR}</i> , Tet ^r	This study
DWc9n/pHY-	DWc9n harboring pHY- <i>PbacA-kivD^{VA}</i> , Tet ^r	This study

kivD ^{VA}		
DWc9n/pHY- <i>kivD^{VG}</i>	DWc9n harboring pHY- <i>PbacA-kivD^{VG}</i> , Tet ^r	This study
DWc9n/pHY- <i>kivD^{VI}</i>	DWc9n harboring pHY-PbacA-kivD ^{VI} , Tet ^r	This study
Strains	Characteristics	Sources
DWc9n/pHY- kivD ^{VM}	DWc9n harboring pHY- <i>PbacA-kivD^{VM}</i> , Tet ^r	This study
DWc9n/pHY- <i>kivD^{VS}</i>	DWc9n harboring pHY- <i>PbacA-kivD^{VS}</i> , Tet ^r	This study
DWc9n/pHY- kivD ^{VN}	DWc9n harboring pHY- <i>PbacA-kivD^{VN}</i> , Tet ^r	This study
DWc9n/pHY- <i>kivD^{VK}</i>	DWc9n harboring pHY- <i>PbacA-kivD^{VK}</i> , Tet ^r	This study
DWc9n/pHY- <i>kivD^{VD}</i>	DWc9n harboring pHY- <i>PbacA-kivD^{VD}</i> , Tet ^r	This study
DWc9n/pHY- <i>kivD^{VE}</i>	DWc9n harboring pHY- <i>PbacA-kivD^{VE}</i> , Tet ^r	This study
DWc9n/pHY- <i>kivD^{VW}</i>	DWc9n harboring pHY- <i>PbacA-kivD^{VW}</i> , Tet ^r	This study
DWc9n/pHY- <i>kivD^{VP}</i>	DWc9n harboring pHY- <i>PbacA-kivD^{VP}</i> , Tet ^r	This study
DWc9n/pHY- <i>kivD^{VQ}</i>	DWc9n harboring pHY- <i>PbacA-kivD^{VQ}</i> , Tet ^r	This study
DWc9n/pHY- <i>kivD^{VC}</i>	DWc9n harboring pHY- <i>PbacA-kivD^{VC}</i> , Tet ^r	This study
DWc9n/pHY- <i>kivD^{VL}</i>	DWc9n harboring pHY- <i>PbacA-kivD^{VL}</i> , Tet ^r	This study
DWc9n⊿adh8	DWc9n with adh8 deletion	Lab stock
DWc9n⊿ <i>yimD</i>	DWc9n with <i>yimD</i> deletion	Lab stock
DWc9n⊿adh4	DWc9n with adh4 deletion	Lab stock
DWc9n∆yogA	DWc9n with yogA deletion	Lab stock
DWc9n⊿gbsB	DWc9n with gbsB deletion	Lab stock
DWc9n∆ybdH	DWc9n with <i>ybdH</i> deletion	Lab stock
DWc9n∆adhE	DWc9n with adhE deletion	Lab stock
DWc9n∆yfmJ	DWc9n with <i>yfmJ</i> deletion	Lab stock
DWc9n/adhB	DWc9n with <i>adhB</i> deletion	Lab stock
DWc9n⊿adhZ	DWc9n with adhZdeletion	Lab stock
DWc9n∆yogA	DWc9n with <i>yogA</i> deletion	Lab stock
DWc9n∆yugK	DWc9n with <i>yugK</i> deletion	Lab stock
DWc9n∆yugJ	DWc9n with yugJdeletion	Lab stock
DWc9n∆adhA	DWc9n with <i>adhA</i> deletion	Lab stock
DWc9n/pHY-300	DWc9n harboring pHY-300, Tet ^r	Lab stock

Escherichia coli	$F^- \Phi 80d/lacZ\Delta M15$, $\Delta(lacZYA-argF)$ U169, $recA1$,	Lab stock
DH5a	endA1, hsdR17 ($r_{\rm K}^-$, $m_{\rm K}^+$), phoA, supE44, λ^- , thi-1,	
	gyrA96, relA1	
BL21(DE3)	F ⁻ , $ompT$, $hsdS_B(r_B m_B)$, gal ($\lambda cI857$, ind1, Sam7,	Lab stock
	nin5, lacUV5-T7 gene1), dcm(DE3)	
Plasmids	Characteristics	Source
BL21(DE3)/pET-	BL21(DE3) harboring pET-28a(+), Kan ^r	Lab stock
28a(+)		
BL21(DE3)/pET-	BL21(DE3) harboring pET-28a(+)kivD, Kan ^r	This study
28a(+)kivD		
BL21(DE3)/pET-	BL21(DE3) harboring pET-28a(+)kivD ^{VI} , Kan ^r	This study
$28a(+)kivD^{VI}$		
		T 1 . 1
$T_2(2)$ -Ori	<i>E. coli</i> and <i>B. subtillis</i> shuttle vector, Kan ⁴	Lab stock
pHY300PLK	<i>E. coli-Bacillus</i> shuttle vector; Amp ^r in <i>E. coli</i> , Tc ^r	Lab stock
	in both E. coli and B. licheniformis	T1 · / 1
pHY - kivD	pH Y 300 containing <i>kivD</i> gene with PbacA	This study
$pHY - kivD^{VT}$	pH Y 300 containing $kivD^{VT}$ gene with PbacA	This study
$pHY-kivD^{vT}$	pHY 300 containing $kivD^{VF}$ gene with PbacA	This study
$pHY - kivD^{VF}$	pHY 300 containing $kivD^{VF}$ gene with PbacA	This study
$pHY-kivD^{VH}$	pHY 300 containing $kivD^{VH}$ gene with PbacA	This study
$pHY-kivD^{VR}$	pHY300 containing $kivD^{VR}$ gene with PbacA	This study
$pHY-kivD^{VA}$	pHY300 containing $kivD^{VA}$ gene with PbacA	This study
pHY-kivD ^{vG}	pHY300 containing <i>kivD^{vG}</i> gene with PbacA	This study
$pHY-kivD^{VI}$	pHY300 containing $kivD^{VI}$ gene with PbacA	This study
$pHY-kivD^{VM}$	pHY300 containing $kivD^{VM}$ gene with PbacA	This study
$pHY-kivD^{VS}$	pHY300 containing <i>kivD^{vs}</i> gene with PbacA	This study
$pHY-kivD^{VN}$	pHY300 containing <i>kivD^{VN}</i> gene with PbacA	This study
$pHY-kivD^{VK}$	pHY300 containing $kivD^{VK}$ gene with PbacA	This study
$pHY-kivD^{VD}$	pHY300 containing <i>kivD^{vD}</i> gene with PbacA	This study
$pHY-kivD^{VE}$	pHY300 containing <i>kivD^{VE}</i> gene with PbacA	This study
pHY- <i>kivD^{vw}</i>	pHY300 containing <i>kivD^{vw}</i> gene with PbacA	This study
pHY- <i>kivD^{vP}</i>	pHY300 containing <i>kivDVP</i> gene with PbacA	This study
pHY- <i>kivD^{vQ}</i>	pHY300 containing $kivD^{VQ}$ gene with PbacA	This study
pHY- <i>kivD^{VC}</i>	pHY300 containing $kivD^{VC}$ gene with PbacA	This study
pHY- <i>kivD^{VL}</i>	pHY300 containing $kivD^{VL}$ gene with PbacA	This study
pHY-P43-hpaBC	pHY300 containing <i>hpaBC</i> with P43 promoter	This study
pHY-PbacA-	pHY300 containing $kivD^{VI}$ with PbacA promoter and	This study
kivD ^{V1} -P43-hpaBC	<i>hpaBC</i> genes with P43 promoter, respectively	
pHY∆ <i>adhA</i>	pHY300 containingP43 (no RBS) +sgRNA	Lab stock
	(adhA)+adhA up arm+ down arm	
pHY∆ <i>pheA</i>	pHY300 containingP43 (no RBS) +sgRNA (<i>pheA</i>)	This study
	+ <i>pheA</i> up arm+ down arm	
pHY∆ <i>hisC</i>	pHY300 containingP43 (no RBS) +sgRNA (hisC)	Lab stock

	<i>+hisC</i> up arm+ down arm			
pHY∆ <i>dhaS</i>	pHY300 containingP43 (no RBS) +sgRNA	Lab stock		
	(<i>dhaS</i>)+ <i>dhaS</i> up arm+ down arm			
$pHY\Delta dhbC$	pHY300 containingP43 (no RBS) +sgRNA	This study		
	(dhbC)+dhbC up arm+ down arm			
Plasmids	Characteristics	Source		
$T_2(2)$ -ldh-tyr A^{fbr}	$T_2(2)$ containing <i>ldh</i> up arm+PylB+ <i>tyrA</i> ^{fbr} + <i>ldh</i>	This study		
	down arm			
$T_2(2)$ -yvnA-tyrA ^{fbr}	$T_2(2)$ containing <i>yvnA</i> up arm+P43+ <i>tyrA</i> ^{fbr} + <i>yvnA</i>	This study		
	down arm			
$T_2(2)$ - <i>xkdE</i> -aroG ^{fbr}	$T_2(2)$ containing <i>xkdE</i> up arm+P43+	Lab stock		
	<i>aroG^{fbr}</i> +TamyL+ <i>xkdE</i> down arm			
$T_2(2)$ -PbacA-aroK	T ₂ (2) containing ParoK up arm+PbacA+ParoK	Lab stock		
	down arm			
$T_2(2)$ -PbacA-glcU	$T_2(2)$ containing $PglcU$ up arm+PbacA+PglcU	Lab stock		
	down arm			
$T_2(2)$ -PbacA-glcK	$T_2(2)$ containing $PglcK$ up arm+PbacA+PglcK	Lab stock		
	down arm			
$T_2(2)$ -ParoK- <i>ptsG</i>	$T_2(2)$ containing <i>PptsG</i> up arm+ParoK+PptsG	Lab stock		
	down arm			
$T_2(2)$ -PbacA- <i>tkt</i>	$T_2(2)$ containing <i>Ptkt</i> up arm+PbacA+Ptkt down	This study		
	arm			
$T_2(2)$ -PbacA-zwf	$T_2(2)$ containing <i>Pzwf</i> up arm+PbacA+Ptkt down	This study		
	arm			

	Ratio (DHT17/DHT12)			
Metabolites name	24 h	36 h	48 h	
Up-regulation				
D-Fructose 6-phosphate	4.60	4.94	/	
Xylose	22.70	4.47	1.91	
Gluconic acid	/	45.11	3.83	
D-Xylulose	9.63	/	6.00	
Xylitol	20.82	6.40	3.03	
Lyxose	17.30	6.05	3.06	
4-Hydroxyphenylpyruvic acid	down	/	2.37	
Maleamic acid	4.42	35.44	7.02	
N-Acetyl-D-hexosamine	2.22	3.12	4.25	
Tyrosol	2.92	2.33	1.91	
Down-regulation				
L-Methionine	0.35	/	/	
L-Leucine	0.26	0.50	0.24	
L-Valine	0.19	0.20	0.14	
L-Threonine	/	/	0.10	
Malonic acid	/	/	0.17	
D-Isocitric acid	0.29	/	/	
D-(+)-Glucosamine	0.40	/	/	
L-Isoleucine	0.44	/	0.23	
N-alpha-Acetyl-L-ornithine	0.08	0.13	0.08	
Oleic acid	0.36	/	/	
Pantothenic acid	0.34	/	/	
4-Hydroxyphenylpyruvic acid	0.36	/	up	
D-Trehalose	/	0.45		
L-Iditol	/	/	0.30	
Stearic acid	/	/	0.09	
Gly-Gly	/	0.43	/	

Table S2 The varied metabolites between the DHT12 and DHT17 strains

The varied metabolites between the DHT12 and DHT17 strains were listed based on ratios >2 and *p*-values < 0.05 for the Student's T-test. "/" means that the abundance of metabolite is not significant in this time point.

Strains	Carbon	Characteristics	HT titer	НТ	Produc	Refer-
	source		(mg/L)	yield	-tivity	ences
				mg/g	(mg/L/h)	
E. coli	Glucose	TH, PCD, DHPR, DDC and	12.3	1.2	0.17	2
		TYO, ΔfeaB	shake flasks			
E. coli	Glucose	aroG ^{fbr} , tyrA ^{fbr} , TDC, TYO, and	268.3	Not	8.9	3
		hpaBC, $\Delta tyrR\Delta pheA\Delta feaB$	shake flasks	shown		
E. coli	Glucose	aroE, aroD,aroB ^{OPT} ,aroG ^{fbr} ,	270.8	27.1	6.0	4
		ppsA, tktA, tyrB, tyrA ^{fbr} ,aroC,	shake flasks			
		aroA,aroL, PcAAS, RsTYR,				
		yqhD				
E. coli	Glucose	$tyrA^{fbr}$, $ppsA$, $tktA$, $aroG^{fbr}$,	647.0	34.2	13.5	5
	glycerol	ARO10, ADH6,	shake flasks			
		$hpaBC\Delta feaB\Delta pheA\Delta tyrA$				
E. coli	Glucose	$\Delta feaB \Delta pheA \Delta tyrB \Delta tyrR \Delta trpE$	1810.0	90.5	37.7	6
		$\Delta pabB \Delta pabA \Delta pykF \Delta poxB,$	shake flasks			
		5*ARO10*, EchpaBC	2950.0	Not	122.9	
			5L bioreactor	shown		
<i>S</i> .	Sucrose	$ARO4^{K229L}$, $ARO7^{G141S}$,	308.7	Not	3.2	7
cerevisiae	glycerol	Bbxfpk ^{opt} , Pcaas ^{opt} ,	shake flasks	shown		
		$PahpaBC^{opt}$, $\Delta GAL80$				
S.	Glucose	$ARO3^{D154N}, \qquad ARO4^{K229L},$	375.0	2.2	1.5	8
cerevisiae		ARO7 ^{G141S} , ARO10, EchpaBC,	shake flasks			
S.	Glucose	$ARO2, ARO3^{D154N}, ARO4^{K229L},$	1120.0	56	13.3	9
cerevisiae		ARO7 ^{G141S} , ARO10, TKL1,	shake flasks			
		RKI1, PahpaB, EchpaC,	6970.0	36.5	79.2	
		$TRP2\downarrow$, $\Delta TRP1$	5L bioreactor			
В.	Glucose	$aroG^{fbr}, 2^{*}tyrA^{fbr}, aroK,$	6299.0	157.3	131.2	This
lichenifor		EchpaBC, yugJ, kivD ^{VI} , glcU,	shake flasks			study
mis		glcK, tkt, zwf	9475.0	135.4	395.0	
		$\Delta pyk\Delta hisC\Delta pheA\Delta dhaS\Delta dhb$	5L bioreactor			
		$C\Delta adhA, ptsG\downarrow$				

Table S3 Summary of hydroxytyrosol (HT) production from simple carbon

sources by engineered microorganisms

 \downarrow : means: Down-regulation of gene expression

Fig. S1 HPLC spectra of HT and tyrosol

a HT sample

b HT standard

Fig. S2 The results of GC-MS of HT sample and standard

The chemical shifts are in parts per million (Solvent:Acetonitrile-d3)

Fig. S4 GC-MS analysis results of the main extracellular metabolites of DHT23

strain at 24 h. 1: HT, 2: glucose, 3: 2, 5-dihydroxymandelic acid, 4: galactose, 5: 3,4-Dihydroxyphenylacetic acid, 6: N-Acetyl-D-galactosamine

Fig. S5 Effects of *xfpK* introduction on HT production

***, p<0.001 indicate the significance levels between DHT21 and DHT24 introducing *xfpK* strains.

DNA sequence of TyrAfbr

ATGGTTGCTGAATTGACCGCATTACGCGATCAAATTGATGAAGTCGATAA AGCGCTGCTGAATTTATTAGCGAAGCGTCTGGAACTGGTTGCTGAAGTGG GCGAGGTGAAAAGCCGCTTTGGACTGCCTATTTATGTTCCGGAGCGCGAG GCATCTATCTTGGCCTCGCGTCGTGCAGAGGCGGAAGCTCTGGGTGTACC GCCAGATCTGATTGAGGATGTTTTGCGTCGGGGTGATGCGTGAATCTTACTC CAGTGAAAACGACAAAGGATTTAAAACACTTTGTCCGTCACTGCGTCCGG TGGTTATCGTCGGCGGTGGCGGTCAGATGGGACGCCTGTTCGAGAAGATG CTGACCCTCTCGGGTTATCAGGTGCGGATTCTGGAGCAACATGACTGGGA TCGAGCGGCTGATATTGTTGCCGATGCCGGAATGGTGATTGTTAGTGTGCC AATCCACGTTACTGAGCAAGTTATTGGCAAATTACCGCCTTTACCGAAAG ATTGTATTCTGGTCGATCTGGCATCAGTGAAAAATGGGCCATTACAGGCC ATGCTGGTGGCGCATGATGGTCCGGTGCTGGGGGCTACACCCGATGTTCGG TCCGGACAGCGGTAGCCTGGCAAAGCAAGTTGTGGTCTGGTGTGATGGAC GTAAACCGGAAGCATACCAATGGTTTCTGGAGCAAATTCAGGTCTGGGGC GCTCGGCTGCATCGTATTAGCGCCGTCGAGCACGATCAGAATATGGCGTT TATTCAGGCACTGCGCCACTTTGCTACTTTGCTTACGGGCTGCACCTGGC AGAAGAAAATGTTCAGCTTGAGCAACTTCTGGCGCTCTCTCGCCGATTTA CCGCCTTGAGCTGGCGATGGTCGGGCGACTGTTTGCTCAGGATCCGCAGC TTTATGCCGACATCATTATGTCGTCAGAGCGTAATCTGGCGTTAATCAAAC GTTACTATAAGCGTTTCGGCGAGGCGATTGAGTTGCTGGAGCAGGGCGAT AAGCAGGCGTTTATTGACAGTTTCCGCAAGGTGGAGCACTGGTTCGGCGA TTACGTACAGCGTTTTCAGAGTGAAAGCCGCGTGTTATTGCGTCAGGCGA ATGACAATCGCCAGTAA

DNA sequence of AroG^{fbr}

ATGAATTATCAGAACGACGATTTACGCATCAAAGAAATCAAAGAGTTACT TCCTCCTGTCGCATTGCTGGAAAAATTCCCCGCTACTGAAAATGCCGCGA ATACGGTTGCCCATGCCCGAAAAGCGATCCATAAGATCCTGAAAGGTAAT GATGATCGCCTGTTGGTTGTGATTGGCCCATGCTCAATTCATGATCCTGTC GCGGCAAAAGAGTATGCCACTCGCTTGCTGGCGCGCGCGGGAAGAGCTGAA AGATGAGCTGGAAATCGTAATGCGCGTCTATTTTGAAAAGCCGCGTACCA CGGTGGGCTGGAAAGGGCTGATTAACGATCCGCATATGGATAATAGCTTC CAGATCAACGACGGTCTGCGTATAGCCCGTAAATTGCTGCTTGATATTAA CGACAGCGGTCTGCCAGCGGCAGGTGAGTTTCTCAATATGATCACCCCAC AATATCTCGCTGACCTGATGAGCTGGGGGGGGCGCAATTGGCGCACGTACCACC GAATCGCAGGTGCACCGCGAACTGGCATCAGGGCTTTCTTGTCCGGTCGG CTTCAAAAATGGCACCGACGGTACGATTAAAGTGGCTATCGATGCCATTA ATGCCGCCGGTGCGCCGCACTGCTTCCTGTCCGTAACGAAATGGGGGGCAT TCGGCGATTGTGAATACCAGCGGTAACGGCGATTGCCATATCATTCTGCG CGGCGGTAAAGAGCCTAACTACAGCGCGAAGCACGTTGCTGAAGTGAAA GAAGGGCTGAACAAAGCAGGCCTGCCAGCACAGGTGATGATCGATTTCA GACGTTTGCCAGCAGATTGCCGGTGGCGAAAAGGCCATTATTGGCGTGAT

GGTGGAAAGCCATCTGGTGGAAGGCAATCAGAGCCTCGAGAGCGGGGAG CCGCTGGCCTACGGTAAGAGCATCACCGATGCCTGCATCGGCTGGGAAGA TACCGATGCTCTGTTACGTCAACTGGCGAATGCAGTAAAAGCGCGTCGCG GGTAA

DNA sequence of KivD^{VI}

ATGTATACAGTAGGAGATTACCTATTAGACCGATTACACGAGTTAGGAAT TGAAGAAATTTTTGGAGTCCCTGGAGACTATAACTTACAATTTTTAGATCA AATTATTTCCCGCAAGGATATGAAATGGGTCGGAAATGCTAATGAATTAA ATGCTTCATATATGGCTGATGGCTATGCTCGTACTAAAAAAGCTGCCGCAT TTCTTACAACCTTTGGAGTAGGTGAATTGAGTGCAGTTAATGGATTAGCAG GAAGTTACGCCGAAAATTTACCAGTAGTAGAAATAGTGGGATCACCTACA TGATTTTAAACACTTTATGAAAATGCACGAACCTGTTACAGCAGCTCGAA CTTTACTGACAGCAGAAAATGCAACCGTTGAAATTGACCGAGTACTTTCT GCACTATTAAAAGAAAGAAAACCTGTCTATATCAACTTACCAGTTGATGT TGCTGCTGCAAAAGCAGAGAAACCCTCACTCCCTTTGAAAAAAGAAAACT CAACTTCAAATACAAGTGACCAAGAGATCTTGAACAAAATTCAAGAAAGC TTGAAAAATGCCAAAAAACCAATCGTGATTACAGGACATGAAATAATTAG TTTTGGCTTAGAAAAAACAGTCTCTCAATTTATTTCAAAGACAAAACTACC TATTACGACATTAAACTTTGGAAAAAGTTCAGTTGATGAAGCTCTCCCTTC ATTTTTAGGAATCTATAATGGTAAACTCTCAGAGCCTAATCTTAAAGAATT CGTGGAATCAGCCGACTTCATCCTGATGCTTGGAGTTAAACTCACAGACT CTTCAACAGGAGCCTTCACTCATCATTTAAATGAAAATAAAATGATTTCAC TGAATATAGATGAAGGAAAAATATTTAACGAAAGCATCCAAAATTTTGAT TTTGAATCCCTCATCTCCTCTCTCTAGACCTAAGCGAAATAGAATACAAA GGAAAATATATCGATAAAAAGCAAGAAGACTTTGTTCCATCAAATGCGCT TTTATCACAAGACCGCCTATGGCAAGCAGTTGAAAACCTAACTCAAAGCA ATGAAACAATCGTTGCTGAACAAGGGACATCATTCTTTGGCGCTTCATCA ATTTTCTTAAAACCAAAGAGTCATTTTATTGGTCAACCCTTATGGGGGATCA ATTGGATATACATTCCCAGCAGCATTAGGAAGCCAAATTGCAGATAAAGA AAGCAGACACCTTTTATTTATTGGTGATGGTTCACTTCAACTTACGGTGCA AGAATTAGGATTAGCAATCAGAGAAAAAATTAATCCAATTTGCTTTATTA TCAATAATGATGGTTATACAGCCGAAAGAGAAATTCATGGACCAAATCAA AGCTACAATGATATTCCAATGTGGAATTACTCAAAATTACCAGAATCATTT GGAGCAACAGAAGAACGAGTAGTCTCGAAAAATCGTTAGAACTGAAAATG AATTTGTGTCTGTCATGAAAGAAGCTCAAGCAGATCCAAATAGAATGTAC TGGATTGAGTTAATTTTGGCAAAAGAAGAAGATGCACCAAAAGTACTGAAAAA AATGGGCAAACTATTTGCTGAACAAAATAAATCATAA

DNA sequence of AdhA

References

- 1. K. Li, D. Cai, Z. Wang, Z. He and S. Chen, *Appl Environ Microbiol*, 2018, 84.
- Y. Satoh, K. Tajima, M. Munekata, J. D. Keasling and T. S. Lee, *Metab Eng*, 2012, 14, 603-610.
- 3. H. J. Choo, E. J. Kim, S. Y. Kim, Y. Lee, B.-G. Kim and J.-H. Ahn, *Appl Biol Chem*, 2018, **61**, 295-301.
- 4. E. Trantas, E. Navakoudis, T. Pavlidis, T. Nikou, M. Halabalaki, L. Skaltsounis and F. Ververidis, *PLoS One*, 2019, **14**, e0212243.
- X. Li, Z. Chen, Y. Wu, Y. Yan, X. Sun and Q. Yuan, ACS Synth Biol, 2018, 7, 647-654.
- 6. C. Liu, Y. Xia, L. Qi, H. Yang, L. Chen, W. Shen and X. Chen, *Sheng Wu Gong Cheng Xue Bao*, 2021, **37**, 4243-4253.
- Y. Liu, H. Liu, H. Hu, K. R. Ng, R. Yang and X. Lyu, *J Agric Food Chem*, 2022, 70, 7490-7499.
- R. Bisquert, A. Planells-Carcel, E. Valera-Garcia, J. M. Guillamon and S. Muniz-Calvo, *Microb Biotechnol*, 2022, 15, 1499-1510.
- H. Liu, X. Wu, H. Ma, J. Li, Z. Liu, X. Guo, J. Dong, S. Zou and Y. Luo, ACS Synth Biol, 2022, 11, 3706-3713.