Supplementary Information

Upcycling of spent graphite and iron housing from waste lithiumion batteries for fabricating cost-effective high-capacity anode

Seokju Maeng^{a,†}, Jaeyun Ha^a, Jinhee Lee^a, Yong-Tae Kim^{b,*}, Jinsub Choi^{a,*}

^{*a*} Department of Chemistry and Chemical Engineering, Inha University, 22212, Incheon, Republic of Korea

^b Department of Chemical and Biomolecular Engineering, Chonnam National University, 59626, Yeosu, Republic of Korea

*To whom correspondence should be addressed.

Tel.: +82-32-860-7476

e-mail: yongtaekim@jnu.ac.kr, jinsub@inha.ac.kr

Table of contents

Supporting Figures and Tables

S1.1 Degree of degradation of pristine and spent graphite.	p.3
Figure S1	
S1.2 Iron housing in LIBs.	p.4
Figure S2	
S1.3 Morphological characterizations of F–SGO before heat treatment.	p.5
Figure S3	
Table S1	
S1.4 Physical characterizations of F–SGO before and after heat treatment.	p.7
Figure S4	
Figure S5	
Figure S6	
S1.5 Volume expansion of the anode before cycling and after 100 th cycle.	p.10
Figure S7	
S1.6 Physical characterizations of the composite.	p.11
Table S2	
Table S3	
Table S4	

Supporting Figures and Tables

Figure S1. Discharge profile of coin type pristine graphite (PG) and spent graphite (SG) half-cell.

Figure S2. (a) Cross-sectional SEM image of the iron housing and (b) corresponding EDX line profile. SEM and corresponding EDX mapping images of (c) cross-, (d) inner-, and (e) outer-sections of the iron housing.

S1.3. Morphological characterization of F–SGO before heat treatment

(a)

Figure S3. HR-TEM and corresponding EDX mapping images and SAED patterns of (a) F–SGO 30, (b) F–SGO 50, (c) F–SGO 70, and (d) F–SGO 90.

Element	Weight%	Atomic%
С	33.01	53.93
0	25.68	31.50
Na	0.00	0.00
S	0.11	0.07
Cl	0.07	0.04
K	0.00	0.00
Mn	0.38	0.14
Fe	40.76	14.32
Ni	0.00	0.00
Total	100.00	100.00

 Table S1. Element composition of F-SGO 30 detected by TEM-EDX.

Figure S4. (a) XRD patterns, (b) FT-IR spectra, and C 1s XPS analysis of (c) F–SGO 30, (d) F–SGO 50, (e) F–SGO 70, and (f) F–SGO 90. (g) Fe 2p XPS profiles of F-SGO30, 50, 70, and 90.

Figure S5. C 1s XPS analysis of (a) FT-SGO 30, (b) FT–SGO 50, (c) FT–SGO 70, and (d) FT–SGO 90. (e) XRD patterns of SGO (green) and rGO (black).

Figure S6. Raman spectra of F–SGO at different reaction times.

S1.5. Volume expansion of anode before cycling and after 100th cycle

Figure S7. SEM images before and after 100th cycle at a current density of 1 A g⁻¹ for (a) FT– SGO 30 and (b) FT–SGO 90.

S1.6. Physical characterizations of FT-SGO

Zeta potential (mV)				
	1st	2nd	3rd	Average
FT	55.09	54.77	52.98	54.28
SGO	-40.37	-38.58	-41.09	-40.01

Table S2. Zeta potentials of FT and GO

Table S3. Electrochemical impedance spectroscopy (EIS) data for FT–SGO anode at different reaction times

		6030_450	6050_450	6070_450	6090_450
$R_s(\Omega)$	0 th	4.58	5.29	6.853	6.49
$R_{ct}(R)(\Omega)$	0 th	37.45	51.618	73.16	76.85

Materials	Conditions	Unit price	Cost	Reference
H ₂ SO ₄	8.42 mL	0.01 (\$ mL ⁻¹)	0.0841 (\$)	http://www.daejungchem.co.kr/02_produc t/search/?search_value=7664-93-9
H ₂ O ₂	2.26 mL	0.0076 (\$ mL ⁻¹)	0.0171 (\$)	http://www.daejungchem.co.kr/02_produc t/search/?search_value=7664-93-9
KMno ₄	1.6 g	0.0118 (\$ g ⁻¹)	0.0188 (\$)	http://www.daejungchem.co.kr/02_produc t/search/?search_value=7664-93-9
NaCl	3 g × 1 g product/0.4 g per rep	0.0144 (\$ g ⁻¹)	0.108 (\$)	https://www.junsei.co.jp/product_search/ search_seihin_result_e.html
Electricity price	2.5 V × 0.18 A × 0.5 h ×1 g product/0.4 g per rep (potentiostat) + 0.164 kWh (ultrasonication) + 0.355 kWh (tube furnace)	0.1219 (\$/KW h)	0.0632 (\$)	https://doi.org/10.1016/j.jpowsour.2020.2 29163
Argon price	25.3 L (including purification and synthesis)	0.009 (\$ L ⁻¹)	0.227 (\$)	http://www.higas.co.kr/
Graphite anode	0.753 g	0.2378 (\$ g ⁻¹)	0.179 (\$)	https://www.sigmaaldrich.com/KR/ko/pro duct/aldrich/907154
SiO anode	0.247 g	6.593 (\$ g ⁻¹)	1.628 (\$)	https://www.sigmaaldrich.com/KR/ko/pro duct/aldrich/336823

Table S4. Economic analysis of the upcycling process and graphite-silicon monoxide with a9:1 weight ratio

* All price calculations are based on the retail price and 1 g of product.

* Most chemical prices are in Korean Won and all costs are converted to US Dollars using the exchange rate as of February 10, 2023.

* Theoretical capacity calculation was based on the following equation:

774 mAh $g^{-1} \times 0.336 + 924$ mAh $g^{-1} \times 0.664 = 873.6$ mAh g^{-1}

- 774 and 924 $mAh g^{-1}$ represent the theoretical capacities of reduced graphene oxide and Fe₃O₄, respectively.
- The weight ratios of reduced graphene oxide and Fe₃O₄ based on TGA were 0.336 and 0.664, respectively.