Supporting Information Multicomponent hydrosulfonylation of

alkynes for the synthesis of vinyl sulfones

Lan Mei,^a Xiao-Rong Shu,^a Fa-Liang Liu,^a Jiao-Zhe Li,^a Jian-Feng Zhang,^a Keqi Tang,^{*a} and Wen-Ting Wei^{*a}

^a School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo

University, Ningbo, Zhejiang, 315211, China.

E-mail: weiwenting@nbu.edu.cn; tangkeqi@nbu.edu.cn.

List of Contents

(A) General information	S2
(B) Typical experimental procedures	
(C) Mechanistic studies	
(D) Analytical data	
(E) References	
(F) Spectra	
(G) The X-ray single-crystal diffraction analysis of product 4	la

(A) General information

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. The progress of the reactions was monitored by TLC with silica gel plates and the visualization was carried out under UV light (254 nm). ¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded on Bruker 400 (400, 101, and 376 MHz) or Bruker 500 (500, 126, and 471 MHz) advance spectrometer at room temperature in CDCl₃ (solvent signals, δ 7.26 and 77.0 ppm) using TMS as internal standard. HRMS spectra were recorded on an electrospray ionization quadrupole time-of-flight (ESI-Q-TOF) mass spectrometer.

(B) Typical experimental procedures

(1) General procedure for synthesis of compounds 4.

$$R^{1} = \frac{1}{1} + R^{2} \frac{1}{1} + \frac{1}{2} \frac{1}{3a} + \frac{1}{3a} \frac{RY-H(1.5 \text{ equiv})}{CE, N_{2}, rt} + \frac{1}{3a} \frac{1}{Y = S, O, Si} + \frac{1}{4} \frac{1}{1} + \frac{1}$$

To a dry 10 mL schlenk tube was added **1** (0.2 mmol), **2** (1.2 equiv, 0.24 mmol), **3a** (2.0 equiv, 0.6 mmol) and RY-H (1.5 equiv, 0.3 mmol). The tube was sealed, evacuated and backfilled with nitrogen three times, then 1,2-dichloroethane (DCE) (2.0 mL) was added. The resulting solution was stirred under nitrogen atmosphere at room temperature for about 10 h until complete consumption of starting material as monitored by TLC and/or gas chromatography-mass spectrometry (GC-MS) analysis. After completion of the reaction, the solvent was removed under reduced pressure, and the residue was purified by flash silica gel column chromatography (petroleum ether/ ethyl acetate) to afford the desired products **4**.

(2) Gram-scale experiment

To a dry 50 mL branched spherical flasks was added **3a** (2.0 equiv, 17.24 mmol, 3832.6 mg), **2a** (1.2 equiv, 10.34 mmol, 2295.0 mg). The tube was sealed, evacuated and backfilled with nitrogen three times, then DCE (10.0 mL), $4\text{-}CF_3C_6H_4SH$ (1.5 equiv, 12.93 mmol, 2303.7 mg) and **1a** (8.62 mmol, 1000.0 mg) were sequentially added. The resulting solution was stirred under nitrogen atmosphere at room temperature for about 36 h until complete consumption of starting material as monitored by TLC and/or GC-MS analysis. After completion of the reaction, the solvent was removed under reduced pressure, and the residue was purified by flash silica gel column chromatography (petroleum ether/ethyl acetate = 3/1) to afford the desired product **4a**.

(C) Mechanistic studies

(1) Radical trapping experiment

To a dry 10 mL branched spherical flasks was added **3a** (2.0 equiv, 0.4 mmol, 88.9 mg), **2a** (1.2 equiv, 0.24 mmol, 53.3 mg), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (3.0 equiv, 0.6 mmol, 93.8 mg). The tube was sealed, evacuated and backfilled with nitrogen three times, then DCE (2.0 mL), $4-CF_3C_6H_4SH$ (1.5 equiv, 0.3 mmol, 53.5 mg) and **1a** (0.2 mmol, 23.2 mg) were sequentially added. The resulting solution was stirred under nitrogen atmosphere at room temperature for about 10 h. In

this reaction, the formation of 4a was completely suppressed. Moreover, GC-MS analysis of this reaction mixture showed that the TEMPO-trapped product 5a was formed.

MeO

Chemical Formula: C₁₆H₂₅NO₂ Molecular Weight: 263.3810

80.05	1865	4.87	103.10	375	0.98	126.15	862	2.25
81.05	4220	11.01	104.10	324	0.85	127.15	502	1.31
82.05	2307	6.02	105.05	749	1.95	128.15	394	1.03
83.05	1599	4.17	106.10	642	1.68	129.10	326	0.85
84.10	1354	3.53	107.05	1675	4.37	130.15	399	1.04
85.15	1561	4.07	108.05	4918	12.83	131.10	470	1.23
86.05	283	0.74	109.05	14105	36.80	132.05	440	1.15
87.10	305	0.80	110.10	3970	10.36	133.10	823	2.15
88.10	170	0.44	111.05	1517	3.96	134.10	705	1.84
89.05	621	1.62	112.15	451	1.18	135.10	1138	2.97
90.05	455	1.19	113.20	577	1.51	136.10	708	1.85
91.10	4276	11.16	114.10	210	0.55	137.10	922	2.41
92.05	2015	5.26	115.10	641	1.67	138.10	5754	15.01
93.05	1310	3.42	116.15	403	1.05	139.10	38327	100.00
94.10	1207	3.15	117.10	522	1.36	140.10	5711	14.90
95.10	3690	9.63	118.10	506	1.32	141.10	828	2.16
96.10	2450	6.39	119.05	1028	2.68	142.20	894	2.33
97.05	1075	2.80	120.10	598	1.56	143.20	252	0.66
98.10	550	1.44	121.10	1226	3.20	144.20	326	0.85
99.10	665	1.74	122.10	1844	4.81	145.10	406	1.06
100.10	246	0.64	123.05	4143	10.81	146.05	563	1.47
101.10	142	0.37	124.05	4896	12.77	147.10	698	1.82
102.10	204	0.53	125.10	919	2.40	148.10	1604	4.19

S-4

149.10	1710	4.46	189.90	3599	9.39	231.10	98	0.26
150.10	1644	4.29	191.05	622	1.62	232.10	1012	2.64
151.05	537	1.40	192.10	6524	17.02	233.10	289	0.75
152.10	401	1.05	193.10	1158	3.02	234.10	289	0.75
153.10	230	0.60	194.05	341	0.89	235.10	188	0.49
154.00	226	0.59	195.10	178	0.46	236.10	268	0.70
155.05	692	1.81	196.10	103	0.27	237.10	110	0.29
156.00	492	1.28	197.10	134	0.35	238.10	114	0.30
157.00	591	1.54	198.10	167	0.44	239.10	121	0.32
158.00	538	1.40	199.10	140	0.37	240.10	113	0.29
159.00	284	0.74	200.10	298	0.78	241.10	71	0.19
160.10	583	1.52	201.10	234	0.61	242.10	100	0.26
161.05	479	1.25	202.10	3807	9.93	243.10	110	0.29
162.10	770	2.01	203.00	1092	2.85	244.10	73	0.19
163.10	1094	2.85	204.10	636	1.66	245.10	158	0.41
164.05	8935	23.31	205.05	513	1.34	246.10	394	1.03
165.10	1369	3.57	206.00	204	0.53	247.15	429	1.12
166.10	326	0.85	207.00	1956	5.10	248.15	23058	60.16
167.10	169	0.44	208.05	483	1.26	249.15	4148	10.82
168.10	116	0.30	209.00	286	0.75	250.10	644	1.68
169.10	190	0.50	210.00	95	0.25	251.10	223	0.58
170.10	143	0.37	211.00	143	0.37	252.10	114	0.30
171.10	186	0.49	212.00	78	0.20	253.10	223	0.58
172.10	218	0.57	213.00	106	0.28	254.10	134	0.35
173.10	210	0.55	214.00	313	0.82	255.10	47	0.12
174.05	430	1.12	215.00	140	0.37	256.10	113	0.29
175.05	575	1.50	216.00	166	0.43	257.10	57	0.15
176.00	966	2.52	217.10	647	1.69	258.10	63	0.16
177.05	859	2.24	218.10	279	0.73	259.10	52	0.14
178.10	506	1.32	219.10	329	0.86	260.10	84	0.22
179.10	606	1.58	220.05	588	1.53	261.10	577	1.51
180.10	7783	20.31	221.10	302	0.79	262.15	362	0.94
181.10	1022	2.67	222.10	226	0.59	<u>263.20</u>	<u>7478</u>	<u>19.51</u>
182.10	204	0.53	223.10	98	0.26	264.20	1602	4.18
183.10	159	0.41	224.10	79	0.21	265.20	236	0.62
184.10	233	0.61	225.10	130	0.34	266.20	105	0.27
185.10	114	0.30	226.10	81	0.21	267.20	129	0.34
186.10	194	0.51	227.10	95	0.25	268.20	86	0.22
186.95	390	1.02	228.10	100	0.26	269.20	70	0.18
187.95	3618	9.44	229.10	62	0.16			
188.95	607	1.58	230.10	329	0.86			

(2) Radical clock experiment

To a dry 10 mL branched spherical flasks was added **3a** (2.0 equiv, 0.4 mmol, 88.9 mg), **2a** (1.2 equiv, 0.24 mmol, 53.3 mg). The tube was sealed, evacuated and backfilled with nitrogen three times, then DCE (2.0 mL), 4-CF₃C₆H₄SH (1.5 equiv, 0.3 mmol, 53.5 mg) and **6a** (0.2 mmol, 28.8 mg) were sequentially added. The resulting solution was stirred under nitrogen atmosphere at room temperature for about 10 h until complete consumption of starting material as monitored by TLC and/or GC-MS analysis. After completion of the reaction, the solvent was removed under reduced pressure, and the residue was purified by flash silica gel column chromatography to afford the ring-opening product **7a** (49.9 mg, 79%, petroleum ether/ethyl acetate = 6:1) and the coupling product **8a** (58.1 mg, 82%, petroleum ether/ethyl acetate = 30:1).

(3) Deuterium-labelling experiments

To a dry 10 mL branched spherical flasks was added **3a** (2.0 equiv, 0.4 mmol, 88.9 mg), **2a** (1.2 equiv, 0.24 mmol, 53.3 mg). The tube was sealed, evacuated and backfilled with nitrogen three times, then DCE (2.0 mL), 4-CF₃C₆H₄SH (1.5 equiv, 0.3 mmol,

53.5 mg), D₂O (1.5 equiv, 0.3 mmol, 6.0 mg) and **1a** (0.2 mmol, 23.2 mg) were sequentially added. The resulting solution was stirred under nitrogen atmosphere at room temperature for about 10 h until complete consumption of starting material as monitored by TLC and/or gas chromatography-mass spectrometry (GC-MS) analysis. After completion of the reaction, the solvent was removed under reduced pressure, and the residue was purified by flash silica gel column chromatography (petroleum ether/ ethyl acetate =3:1) to afford the desired product in 84% yield (27% of D).

To a dry 10 mL branched spherical flasks was added **3a** (2.0 equiv, 0.4 mmol, 88.9 mg), **2a** (1.2 equiv, 0.24 mmol, 53.3 mg). The tube was sealed, evacuated and backfilled with nitrogen three times, then DCE (2.0 mL), D₂O (1.5 equiv, 0.3 mmol, 6.0 mg) and **1a** (0.2 mmol, 23.2 mg) were sequentially added. The resulting solution was stirred under nitrogen atmosphere at room temperature for about 10 h until complete consumption of starting material as monitored by TLC and/or gas chromatographymass spectrometry (GC-MS) analysis.

(D) Analytical data

(E)-1-Methoxy-4-((4-methylstyryl)sulfonyl)benzene (4a).^[1] The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1, v/v). white solid (49.0 mg, 85%

yield); ¹H NMR (400 MHz, CDCl₃) δ: 7.86 (d, J = 8.8 Hz, 2H), 7.60 (d, J = 15.6 Hz, 1H), 7.36 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 7.6 Hz, 2H), 7.00 (d, J = 8.8 Hz, 2H), 6.78 (d, J = 15.6 Hz, 1H), 3.87 (s, 3H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ: 163.5, 141.6, 141.4, 132.4, 129.8, 129.7, 128.5, 126.7, 114.5, 55.7, 21.5.

(E)-1-Methyl-4-((4-methylstyryl)sulfonyl)benzene (4b).^[2] The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1, v/v). white solid (44.1 mg, 81% yield); ¹H NMR

 $(400 \text{ MHz}, \text{CDCl}_3) \delta$: 7.82 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 15.2 Hz, 1H), 7.37-7.31 (m, 4H), 7.18 $(d, J = 8.0 \text{ Hz}, 2\text{H}), 6.80 (d, J = 15.2 \text{ Hz}, 1\text{H}), 2.42 (s, 3\text{H}), 2.35 (s, 3\text{H}); {}^{13}\text{C} \text{ NMR} (101 \text{ MHz}, 100 \text{ MHz})$ CDCl₃) *δ*: 144.1, 141.9, 141.6, 137.8, 129.8, 129.7, 129.4, 128.4, 127.5, 126.3, 21.5, 21.4.

(E)-1-Bromo-4-((4-methylstyryl)sulfonyl)benzene (4c).^[3] The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1, v/v). white solid (50.4 mg, 75% yield); ¹H NMR (400 MHz, CDCl₃) δ : 7.79 (d, J = 8.0 Hz, 2H), 7.65 (t, J = 7.6 Hz, 3H), 7.37 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 6.79 (d, J = 15.6 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 143.1, 142.0, 139.9, 132.5, 129.8, 129.3, 129.1, 128.6, 128.4, 125.4, 21.5.

(E)-1-Bromo-4-((4-(tert-butyl)styryl)sulfonyl)benzene (4d). The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1, v/v). white solid (59.0 mg, 78%

yield); ¹H NMR (400 MHz, CDCl₃) δ : 7.80 (d, J = 8.4 Hz, 2H), 7.68 (t, J = 8.0 Hz, 3H), 7.44-7.40 (m, 4H), 6.81 (d, J = 15.2 Hz, 1H), 1.30 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ : 155.1, 143.0, 139.9, 132.5, 129.3, 129.0, 128.5, 128.4, 126.0, 125.6, 34.9, 31.0; HRMS m/z (ESI) calcd for C18H20BrO2S ([M+H]⁺) 379.0362, found 379.0368.

(E)-1-Bromo-4-((4-chlorostyryl)sulfonyl)benzene $(4e).^{[4]}$ The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1, v/v). white solid (51.3 mg, 72%

yield); ¹H NMR (400 MHz, CDCl₃) δ: 7.80 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 15.2 Hz, 1H), 7.43-7.36 (m, 4H), 6.81 (d, J = 15.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ : 141.5, 139.5, 137.5, 132.7, 130.6, 129.8, 129.4, 129.2, 128.8, 127.4.

(E)-1-(2-((4-Methoxyphenyl)sulfonyl)vinyl)-3-methylbenzene (4f). The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1, v/v). white solid (48.4 mg, 84% yield); ¹H NMR (400 MHz, CDCl₃) δ : 7.78 (d, J = 8.8 Hz, 2H), 7.51 (d, J = 15.6

Hz, 1H), 7.18 (d, J = 4.8 Hz, 3H), 7.12 (d, J = 4.4 Hz, 1H), 6.91 (d, J = 8.8 Hz, 2H), 6.75 (d, J = 15.6 Hz, 1H), 3.77 (s, 3H), 2.25 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ: 163.4, 141.4, 138.7, 132.3, 132.2, 131.7, 129.7, 128.9, 128.8, 127.6, 125.6, 114.4, 55.6, 21.1; HRMS m/z (ESI) calcd for C₁₆H₁₇O₃S ([M+H]⁺) 289.0893, found 289.0889.

(*E*)-1-(2-((4-Methoxyphenyl)sulfonyl)vinyl)-2-methylbenzene (4g).

The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1, v/v). white solid (47.8 mg, 83% yield); OMe

¹H NMR (400 MHz, CDCl₃) δ : 7.80 (t, J = 12.4 Hz, 3H), 7.32 (d, J = 7.6 Hz, 1H), 7.18 (t, Hz, 1H), 7.11-7.06 (m, 2H), 6.91 (d, J = 8.8 Hz, 2H), 6.68 (d, J = 15.2 Hz, 1H), 3.76 (s, 3H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ: 163.4, 138.8, 137.9, 132.0, 131.2, 130.8, 130.6, 129.7, 128.7, 126.6, 126.3, 114.4, 55.6, 19.6; HRMS m/z (ESI) calcd for C₁₆H₁₇O₃S ([M+H]⁺) 289.0893, found 289.0889.

(E)-1-Methoxy-4-(2-((4-methoxyphenyl)sulfonyl)vinyl)benzene (4h).^[1] The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1, v/v). white solid (52.9 mg, 87% yield); ¹H NMR (400 MHz, CDCl₃) δ: 7.85 (d,

J = 8.4 Hz, 2H), 7.57 (d, *J* = 15.2 Hz, 1H), 7.41 (d, *J* = 8.0 Hz, 2H), 6.99 (d, *J* = 8.4 Hz, 2H), 6.88 $(d, J = 8.0 \text{ Hz}, 2\text{H}), 6.69 (d, J = 15.6 \text{ Hz}, 1\text{H}), 3.86 (s, 3\text{H}), 3.82 (s, 3\text{H}); {}^{13}\text{C} \text{ NMR} (101 \text{ MHz}, 100 \text{ MHz})$ CDCl₃) *δ*: 163.3, 161.9, 141.1, 132.6, 130.2, 129.7, 125.1 (2), 114.4 (2), 55.6, 55.4.

S II O ⁿBu

(E)-1-Butyl-4-(2-((4-methoxyphenyl)sulfonyl)vinyl)benzene (4i). The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1, v/v). white solid (55.5 mg, 84% OMe yield); ¹H NMR (400 MHz, CDCl₃) δ : 7.86 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 15.6 Hz, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 7.00 (d, J = 8.8 Hz, 2H), 6.79 (d, J = 15.6 Hz, 1H), 3.86 $(s, 3H), 2.61 (t, J = 8.0 Hz, 2H), 1.63-1.56 (m, 2H), 1.36-1.30 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H); {}^{13}C$ NMR (101 MHz, CDCl₃) δ: 163.4, 146.6, 141.5, 132.4, 129.9, 129.8, 129.1, 128.5, 126.7, 114.5, 55.6, 35.5, 33.3 22.2, 13.9; HRMS m/z (ESI) calcd for C₁₉H₂₃O₃S ([M+H]⁺) 331.1362, found: 331.1360.

(E)-1-(tert-Butyl)-4-(2-((4-

0=0=0

methoxyphenyl)sulfonyl)vinyl)benzene (4j).^[5] The product was

purified by silica gel column chromatography with petroleum ОМе ether/ethyl acetate (3:1, v/v). white solid (54.8 mg, 83% yield); ¹H NMR (400 MHz, CDCl₃) δ : 7.86 (d, J = 8.8 Hz, 2H), 7.62 (d, J = 15.6 Hz, 1H), 7.42-7.39 (m, 4H), 7.00 (d, J = 8.8 Hz, 2H), 6.80 (d, J = 15.2 Hz, 1H), 3.87 (s, 3H), 1.31 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.4, 154.7, 141.4, 132.4, 129.8, 129.7, 128.3, 126.9, 126.0, 114.5, 55.7, 34.9, 31.1.

(E)-4-(2-((4-Methoxyphenyl)sulfonyl)vinyl)-1,1'-biphenyl (4k). The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1, v/v). white solid (56.7 mg, 81%

ОМе yield); ¹H NMR (500 MHz, CDCl₃) δ : 7.89 (d, J = 9.0 Hz, 2H), 7.67 (d, J = 15.5 Hz, 1H), 7.62-7.58 (m, 4H), 7.54 (d, J = 8.0 Hz, 2H), 7.45 (t, J = 7.5 Hz, 2H), 7.37 (t, J = 7.5 Hz, 1H), 7.01 (d, J = 9.0 Hz, 2H), 6.88 (d, J = 15.0 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ : 163.5, 143.7, 140.9, 139.8, 132.2, 131.4, 129.9, 129.0, 128.9, 128.0, 127.6 (2), 127.0, 114.5, 55.7.; HRMS m/z (ESI) calcd for C₂₁H₁₉O₃S ([M+H]⁺) 351.1049, found: 351.1045.

CDCl₃) δ: 7.86 (d, *J* = 8.8 Hz, 2H), 7.62 (d, *J* = 15.6 Hz, 1H), 7.45 (d, *J* = 7.6 Hz, 2H), 7.37 (d, *J* = 6.4 Hz, 3H), 6.99 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 15.2 Hz, 1H), 3.85 (s, 3H); ¹³C NMR (101 MHz,

CDCl₃) *b*: 163.4, 141.2, 132.3, 132.0, 130.9, 129.7, 128.9, 128.3, 127.8, 114.5, 55.6.

(*E*)-1-Fluoro-4-(2-((4-methoxyphenyl)sulfonyl)vinyl)benzene (4m).^[6] The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1, v/v). white solid (44.4 mg, 76%

yield); ¹H NMR (400 MHz, CDCl₃) δ : 7.84 (d, *J* = 8.8 Hz, 2H), 7.57 (d, *J* = 15.2 Hz, 1H), 7.44 (t, *J* = 6.8 Hz, 2H), 7.04 (t, *J* = 8.8 Hz, 2H), 6.98 (d, *J* = 8.8 Hz, 2H), 6.79 (d, *J* = 15.2 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 164.0 (d, *J*_{C-F} = 253.5 Hz), 163.4, 139.9, 131.9, 130.4 (d, *J*_{C-F} = 8.8 Hz), 129.7, 128.6 (d, *J*_{C-F} = 3.3 Hz), 127.6 (d, *J*_{C-F} = 2.3 Hz), 116.1 (d, *J*_{C-F} = 22.1 Hz), 114.5, 55.6; ¹⁹F NMR (376 MHz, CDCl₃) δ : -108.1.

(*E*)-1-Chloro-4-(2-((4-methoxyphenyl)sulfonyl)vinyl)benzene (4n).^[6] The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1, v/v). white

solid (45.0 mg, 73% yield); ¹H NMR (400 MHz, CDCl₃) δ : 7.86 (d, J = 8.8 Hz, 2H), 7.57 (d, J = 15.6 Hz, 1H), 7.41-7.34 (m, 4H), 7.01 (d, J = 8.8 Hz, 2H), 6.82 (d, J = 15.6 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.7, 139.8, 137.0, 131.9, 131.0, 129.9, 129.6, 129.3, 128.5, 114.6, 55.7.

(*E*)-1-Bromo-4-(2-((4-methoxyphenyl)sulfonyl)vinyl)benzene (40). The product was purified by silica gel column chromatography with

Br OMe petroleum ether/ethyl acetate (3:1, v/v). white solid (50.7 mg, 72% yield); ¹H NMR (400 MHz, CDCl₃) δ : 7.86 (d, *J* = 8.8 Hz, 2H), 7.57-7.50 (m, 3H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.01 (d, *J* = 8.8 Hz, 2H), 6.84 (d, *J* = 15.2 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.6, 139.9, 132.3, 131.8, 131.4, 129.9, 129.8, 128.6, 125.4, 114.6, 55.7; HRMS *m*/*z* (ESI) calcd for C₁₅H₁₄BrO₃S ([M+H]⁺) 352.9842, found: 352.9846.

*CF*₃ *(E)*-1-Methoxy-4-((4-(trifluoromethyl)styryl)sulfonyl)benzene (4p).^[1] The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1, v/v). white solid (47.9 mg, 70% yield); ¹H NMR (500 MHz, CDCl₃) δ : 7.88 (d, *J* = 9.0 Hz, 2H), 7.66-7.63 (m, 3H), 7.58 (d, *J* = 8.5 Hz, 2H), 7.03 (d, *J* = 9.0 Hz, 2H), 6.94 (d, J = 15.5 Hz, 1H), 3.88 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ : 163.8, 139.3, 135.9, 132.4 (q, *J*_{C-F} = 32.9 Hz), 131.5, 130.6, 130.0, 126.0 (q, *J*_{C-F} = 3.8 Hz), 123.6 (q, *J*_{C-F} = 272.9 Hz),122.5, 114.7, 55.7; ¹⁹F NMR (471 MHz, CDCl₃) δ : -63.0.

(*E*)-1-Methoxy-4-((4-nitrostyryl)sulfonyl)benzene (4q).^[4] The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1, v/v). Yellow solid (35.7 mg, 56%)

yield); ¹H NMR (400 MHz, CDCl₃) δ : 8.24 (t, J = 7.6 Hz, 2H), 7.89 (t, J = 8.4 Hz, 2H), 7.67-7.52 (m, 4H), 7.03 (d, J = 9.2 Hz, 2H), 3.88 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 164.0, 147.9, 140.2, 138.1, 133.0, 132.3, 130.2, 129.1, 124.2, 114.8, 55.7.

OMe

(*E*)-4-(2-((4-Methoxyphenyl)sulfonyl)vinyl)benzaldehyde (4r). The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1, v/v). white solid (36.9 mg, 61%)

yield); ¹H NMR (400 MHz, CDCl₃) δ : 10.02 (s, 1H), 7.88-7.85 (m, 4H), 7.67-7.58 (m, 3H), 7.03-6.95 (m, 3H), 3.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 191.2, 163.8, 139.4, 138.0, 137.5, 131.4, 131.1, 130.2, 130.1, 128.9, 114.7, 55.7; HRMS *m*/*z* (ESI) calcd for C₁₆H₁₅O₄S ([M+H]⁺) 303.0686, found: 303.0680.

(*E*)-1-(2-((4-Methoxyphenyl)sulfonyl)vinyl)naphthalene (4s). The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1, v/v). white solid (48.0 mg, 74% yield); ¹H NMR (500 MHz, CDCl₃) δ : 8.46 (d, *J* = 15.0 Hz, 1H), 8.14

(d, J = 8.5 Hz, 1H), 7.93 (d, J = 9.0 Hz, 2H), 7.90-7.85 (m, 2H), 7.65- 7.52 (m, 3H), 7.43 (t, J = 8.0 Hz, 1H), 7.02 (d, J = 9.0 Hz, 2H), 6.95 (d, J = 15.0 Hz, 1H), 3.86 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ : 163.6, 138.3, 133.6, 132.0, 131.2, 130.2, 129.9, 129.6, 128.8, 127.2, 126.4, 125.5, 125.3, 123.0, 114.6, 55.7; HRMS m/z (ESI) calcd for C₁₉H₁₇O₃S ([M+H]⁺) 325.0893, found: 325.0897.

(*E*)-2-(2-((4-Methoxyphenyl)sulfonyl)vinyl)thiophene (4t). The product was purified by silica gel column chromatography with petroleum
e ether/ethyl acetate (5:1, v/v). Yellow solid (36.4 mg, 65% yield); ¹H NMR

(500 MHz, CDCl₃) δ : 7.86 (t, J = 7.0 Hz, 2H), 7.74 (d, J = 15.0 Hz, 1H), 7.42 (d, J = 5.0 Hz, 1H), 7.29 (d, J = 3.5 Hz, 1H), 7.06 (t, J = 4.5 Hz, 1H), 7.01 (d, J = 8.5 Hz, 2H), 6.63 (d, J = 15.5 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ : 163.5, 137.0, 134.0, 132.2, 132.1, 129.8, 129.7, 128.2, 126.1, 114.5, 55.7; HRMS m/z (ESI) calcd for C₁₃H₁₃O₃S₂ ([M+H]⁺) 281.0301, found: 281.0307.

(E)-1-(Hex-1-en-1-ylsulfonyl)-4-methoxybenzene (4u). The product was purified by silica gel column chromatography with petroleum
 rOMe ether/ethyl acetate (10:1, v/v). Yellow oil (27.4 mg, 54% yield); ¹H

NMR (500 MHz, CDCl₃) δ : 7.84 (d, J = 9.0 Hz, 2H), 7.00 (d, J = 9.0 Hz, 2H), 6.28-6.17 (m, 2H), 3.88 (s, 3H), 2.68-2.63 (m, 2H), 1.41-1.33 (m, 4H), 0.90 (t, J = 7.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ : 163.4, 146.4, 133.5, 130.8, 129.5, 114.4, 55.7, 30.8, 27.4, 22.3, 13.8; HRMS m/z (ESI) calcd for C₁₃H₁₉O₃S ([M+H]⁺) 255.1049, found: 255.1045.

(*E*)-1-Methoxy-4-(oct-1-en-1-ylsulfonyl)benzene (4v). The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (8:1, v/v). Yellow oil (28.8 mg, 51%)

yield); ¹H NMR (500 MHz, CDCl₃) δ : 7.84 (d, *J* = 8.5 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 8.5 Hz, 1H), 7.00 (d, *J* = 8.5 Hz, 1H), 6.27 (d, *J* = 11.0 Hz, 1H), 6.22-6.18 (m, 1H), 3.88 (s, 3H), 2.64 (t, *J* = 7.5 Hz, 1H), 2.22 (t, *J* = 7.0 Hz, 1H), 1.31-1.25 (m, 4H), 0.88 (t, *J* = 6.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ : 163.4, 146.5, 132.5, 129.5, 126.0, 114.4, 55.6, 32.1, 31.5, 28.7, 27.7, 22.5, 14.0; HRMS *m*/*z* (ESI) calcd for C₁₅H₂₃O₃S ([M+H]⁺) 283.1362, found: 283.1364.

(E)-1-(Dodec-1-en-1-ylsulfonyl)-4-methoxybenzene(4w). The product was purified by silica gel columncome chromatography with petroleum ether/ethyl acetate (8:1,

v/v). Yellow oil (33.8 mg, 50% yield); ¹H NMR (400 MHz, CDCl₃) δ : 7.84 (d, *J* = 8.8 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 2H), 6.30-6.15 (m, 2H), 3.87 (s, 3H), 2.67-2.61 (m, 2H), 1.29-1.22 (m, 16H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.4, 146.5, 133.5, 130.8, 129.4, 114.3, 55.6, 31.9, 29.7, 29.5 (2), 29.3 (2), 28.7, 27.7, 22.7, 14.1; HRMS *m*/*z* (ESI) calcd for C₁₉H₃₁O₃S ([M+H]⁺) 339.1988, found: 339.1984.

(*E*)-1-Methoxy-4-((4-phenylbut-1-en-1-yl)sulfonyl)benzene (4x).^[7] The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1, v/v). Colorless oil (39.3 mg, 65% yield); ¹H NMR (500 MHz, CDCl₃) δ :

7.76-7.73 (m, 2H), 7.30-7.27 (m, 2H), 7.22-7.17 (m, 3H), 6.97-6.94 (m, 2H), 6.29-6.17 (m, 2H), 3.87 (s, 3H), 3.04-2.99 (m, 2H), 2.76 (t, J = 7.5 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ : 163.4,

144.8, 140.3, 133.2, 131.3, 129.5, 128.5 (2), 126.2, 114.4, 55.6, 34.8, 29.7.

1-Methoxy-4-((2-phenylpent-2-en-1-yl)sulfonyl)benzene (7a). The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1, v/v). Yellow oil (49.9 mg, 79% yield, 1.5:1); ¹H NMR (500 MHz, CDCl₃) δ : 7.68-7.62 (m, 2H), 7.24-7.15 (m,

4H), 7.04 (d, J = 7.0 Hz, 1H), 6.88 (d, J = 8.5 Hz, 0.8H), 6.81 (d, J = 9.0 Hz, 1.2H), 5.95 (t, J = 7.5 Hz, 0.6H), 5.60 (t, J = 7.5 Hz, 0.4H), 4.33 (s, 1.2H), 4.09 (s, 0.8H), 3.83 (s, 1.2H), 3.80 (s, 1.8H), 2.12-2.08 (m, 1.2H), 2.03-1.97 (m, 0.8H), 0.98 (t, J = 7.5 Hz, 1.8H), 0.88 (t, J = 7.5 Hz, 1.2H); ¹³C NMR (126 MHz, CDCl₃) δ : 163.5, 163.4, 140.8, 140.0 (2), 138.4, 130.6, 130.5, 128.4, 128.1, 128.0, 127.7, 127.5, 127.0, 126.9, 126.3, 114.0, 113.9, 65.2, 57.7, 55.6, 55.5, 22.7, 22.6, 13.9, 13.5; HRMS m/z (ESI) calcd for C₁₈H₂₁O₃S ([M+H]⁺) 317.1206, found: 317.1202.

1,2-Bis(4-(trifluoromethyl)phenyl)disulfane (8a).^[8] The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (30:1, v/v). Yellow solid (58.1 mg, 82% yield); ¹H NMR (500 MHz, CDCl₃) δ : 7.58-7.54 (m, 8H); ¹³C NMR (126 MHz,

CDCl₃) δ : 140.8 (q, J = 1.3 Hz), 129.4 (q, J = 32.9 Hz), 126.6, 126.1 (q, J = 3.8 Hz), 123.9 (q, J = 272.4 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ : -62.6.

(*E*)-1-Methoxy-4-((2-(*p*-tolyl)vinyl-2-d)sulfonyl)benzene (4a-D). The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1, v/v). White solid (48.6 mg, 84%)

yield); ¹H NMR (500 MHz, CDCl₃) δ : 7.86 (d, J = 9.0 Hz, 2H), 7.59 (d, J = 15.5 Hz, 0.73H), 7.36 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 7.00 (d, J = 9.5 Hz, 2H), 6.80 (d, J = 15.5 Hz, 1H), 3.86 (s, 3H), 2.36 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ : 163.4, 141.5, 141.4, 132.4, 129.7, 129.7, 128.4, 126.7, 114.5, 55.6, 21.4.

4,4'-Dimethoxybiphenyl (9a).^[9] The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (40:1, v/v). White solid; ¹H NMR (500 MHz, CDCl₃) δ : 7.46 (d, J = 9.0 Hz, 4H), 6.94 (d, J = 9.0 Hz, 4H), 3.82 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ : 158.7,

133.4, 127.7, 114.1, 55.3.

(E) References

- [1] P. Das, S. Das and R. J. Jana, Chem. Asian J., 2022, 17, e202200085.
- [2] G. W. Rong, J. C. Mao, H. Yan, Y. Zheng and G. Q. Zhang, J. Org. Chem., 2015, 80, 4697-4703.
- [3] S. Tang, Y. Wu, W. Q. Liao, R. P. Bai, C. Liu and A. W. Lei, *Chem. Commun.*, 2014, 50, 4496-4499.
- [4] R. Singh, B. K. Allam, N. Singh, K. Kumari, S. K. Singh and K. N. Singh, Org. Lett., 2015, 17, 2656-2659.
- [5] T. Keshari, R. Kapoorr and L. D. S. Yadav, Eur. J. Org. Chem., 2016, 15, 2695-2699.
- [6] S. Y. Woo, J. H. Kim, M. K. Moon, S. H. Han, S. K. Yeon, J. W. Choi, B. K. Jang,
 H. J. Song, Y. G. Kang, J. W. Kim, J. Lee, D. J. Kim, O. Hwang and K. D. Park, J. *Med. Chem.*, 2014, 57, 1473-1487.
- [7] D. Y. Hu, Y. Zhang, J. W. Li, K. J. Liang and C. F. Xia, *Chem. Commun.*, 2023, 59, 462-465.
- [8] P. Boehm, P. Müller, P. Finkelstein, M. A. Rivero-Crespo, M.-O. Ebert, N. Trapp and B. Morandi, J. Am. Chem. Soc., 2022, 144, 13096-13108.
- [9] X. C. Gong, J. Wu, Y. G. Meng, Y. L. Zhang, L.-W. Ye and C. Y. Zhu, *Green Chem.*, 2019, **21**, 995-999.

(E)-1-Methoxy-4-((4-methylstyryl)sulfonyl)benzene (4a)

S-14

S-15

(*E*)-1-Bromo-4-((4-methylstyryl)sulfonyl)benzene (4c)

(E)-1-Bromo-4-((4-(*tert*-butyl)styryl)sulfonyl)benzene (4d)

¹H NMR-spectrum (400 MHz, CDCl₃) of 4d

S-17

(E)-1-Bromo-4-((4-chlorostyryl)sulfonyl)benzene (4e)

S-19

(*E*)-1-(2-((4-Methoxyphenyl)sulfonyl)vinyl)-2-methylbenzene (4g)

(E)-1-Methoxy-4-(2-((4-methoxyphenyl)sulfonyl)vinyl)benzene (4h)

(E)-1-Butyl-4-(2-((4-methoxyphenyl)sulfonyl)vinyl)benzene (4i)

(E)-1-(tert-Butyl)-4-(2-((4-methoxyphenyl)sulfonyl)vinyl)benzene (4j)

(*E*)-4-(2-((4-Methoxyphenyl)sulfonyl)vinyl)-1,1'-biphenyl (4k)

(E)-1-Methoxy-4-(styrylsulfonyl)benzene (4l)

S-25

¹H NMR-spectrum (400 MHz, CDCl₃) of 4m

 ^{19}F NMR-spectrum (376 MHz, CDCl₃) of 4m

 1H NMR-spectrum (400 MHz, CDCl₃) of 4n

(E)-1-Bromo-4-(2-((4-methoxyphenyl)sulfonyl)vinyl)benzene (40)

¹H NMR-spectrum (400 MHz, CDCl₃) of 40

(*E*)-1-Methoxy-4-((4-(trifluoromethyl)styryl)sulfonyl)benzene (4p)

¹⁹F NMR-spectrum (471 MHz, CDCl₃) of 4p

S-32

¹H NMR-spectrum (400 MHz, CDCl₃) of 4r

(E)-1-(2-((4-Methoxyphenyl)sulfonyl)vinyl)naphthalene (4s)

S-34

(E)-2-(2-((4-Methoxyphenyl)sulfonyl)vinyl)thiophene (4t)

S-36

(*E*)-1-Methoxy-4-(oct-1-en-1-ylsulfonyl)benzene (4v)

S-37

(E)-1-(Dodec-1-en-1-ylsulfonyl)-4-methoxybenzene (4w)

(*E*)-1-Methoxy-4-((4-phenylbut-1-en-1-yl)sulfonyl)benzene (4x)

S-40

1,2-Bis(4-(trifluoromethyl)phenyl)disulfane (8a)

¹⁹F NMR-spectrum (471 MHz, CDCl₃) of 8a

(E)-1-Methoxy-4-((2-(p-tolyl)vinyl-2-d)sulfonyl)benzene (4a-D)

S-44

(G) The X-ray single-crystal diffraction analysis of product 4a

 $Table \ 1 \ Crystal \ data \ and \ structure \ refinement \ for \ 4a.$

4a
$C_{16}H_{16}O_{3}S$
288.35
150.0
triclinic
P-1
8.1900(3)
10.9737(3)
16.0251(5)
92.8410(10)
98.8500(10)
91.3280(10)
1420.66(8)
4
1.348
0.232
608.0
$0.12\times0.08\times0.05$
MoKa ($\lambda = 0.71073$)
3.718 to 58.434
$-10 \le h \le 11, -13 \le k \le 15, -21 \le l \le 21$
18935
7246 [$R_{int} = 0.0557$, $R_{sigma} = 0.0745$]
7246/7/365
1.031
$R_1 = 0.0571, wR_2 = 0.1096$
$R_1 = 0.0973, wR_2 = 0.1341$
0.92/-0.53

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement

Parameters ($Å^2 \times 10^3$) for **4a**.

Atom	x	У	Z	U(eq)
S2	7201.0(8)	3875.1(5)	2174.0(4)	25.96(15)
S 1	6051.0(8)	-1200.2(6)	2144.7(4)	30.46(16)
O6	7910(2)	2787.0(15)	2523.8(11)	34.5(4)
01	364(2)	1514.8(16)	611.8(12)	33.3(4)
O4	12085(2)	6502.5(16)	548.5(11)	34.1(4)
O5	5701(2)	3754.8(17)	1567.0(11)	34.9(4)
O2	5499(2)	-2301.9(17)	2467.2(12)	40.6(5)
O3	7212(2)	-1280.2(17)	1553.4(13)	42.3(5)
C27	8702(3)	4649(2)	1708.1(14)	23.8(5)
C29	11042(3)	5846(2)	945.8(15)	25.7(5)
C21	6971(3)	5416(2)	4530.1(15)	26.4(5)
C5	4314(3)	-435(2)	1679.8(15)	26.9(5)
C26	8329(3)	5755(2)	1336.5(15)	25.6(5)
C31	10247(3)	4159(2)	1704.9(15)	26.6(5)
C2	1603(3)	834(2)	990.6(15)	26.4(5)
C30	11427(3)	4756(2)	1323.0(15)	27.3(5)
C24	7271(3)	4645(2)	3794.5(16)	28.1(5)
C13	9049(3)	1867(2)	5941.4(16)	30.4(6)
C20	5823(3)	6332(2)	4479.0(16)	29.3(5)
C18	6542(3)	6871(2)	5976.0(16)	30.3(6)
C28	9493(3)	6348(2)	957.4(16)	27.7(5)
C6	2738(3)	-857(2)	1744.4(15)	28.7(5)
C19	5597(3)	7036(2)	5194.5(16)	31.1(6)
C7	1366(3)	-224(2)	1403.2(15)	27.4(5)
C23	7680(3)	5950(2)	6022.9(16)	34.0(6)
C22	7877(3)	5224(2)	5319.2(16)	32.3(6)
C25	6796(3)	4881(2)	2991.7(15)	27.2(5)
C12	9550(3)	2054(2)	5167.6(17)	34.2(6)
C3	3192(3)	1262(2)	928.6(18)	33.6(6)
C10	7745(3)	407(2)	4486.7(17)	32.5(6)
C1	-1279(3)	1212(2)	747.3(17)	33.3(6)
C14	7907(4)	921(2)	5970.9(18)	38.9(6)
C11	8893(3)	1344(2)	4446.1(17)	35.2(6)
C4	4541(3)	637(2)	1269.3(18)	35.1(6)

 $U_{eq}\xspace$ is defined as 1/3 of of the trace of the orthogonalised $U_{IJ}\xspace$ tensor.

S-46

C15	7286(3)	196(2)	5263.1(18)	39.1(6)
C32	13722(3)	6072(3)	555.1(18)	40.1(7)
C8	6985(3)	-165(2)	2959.9(18)	37.5(6)
C9	6986(4)	-396(3)	3746.2(18)	39.0(6)
C17	6324(4)	7660(3)	6749.0(18)	42.6(7)
C16	9724(4)	2640(3)	6725.0(18)	42.1(7)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for **4a**.

The Anisotropic displacement factor exponent takes the form:

```
-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+\ldots].
```

Atom	U11	U_{22}	U33	U23	U 13	U ₁₂
S2	33.5(3)	22.5(3)	22.5(3)	-1.3(2)	7.7(2)	-2.3(2)
S 1	35.1(4)	25.8(3)	28.6(3)	-2.9(3)	-0.2(3)	5.5(2)
06	51.9(12)	22.8(9)	31.9(10)	4.5(8)	15.3(8)	5.1(8)
01	28.1(9)	34.0(10)	38.5(10)	8.2(8)	5.3(8)	4.6(7)
O4	27.3(9)	40.0(10)	38.0(10)	10.4(9)	11.6(8)	2.4(8)
O5	33.4(10)	41.4(10)	28.8(10)	-1.5(8)	3.8(8)	-10.3(8)
O2	47.3(12)	34.0(10)	40.3(11)	9.3(9)	3.3(9)	4.6(8)
O3	38.2(11)	40.0(11)	50.7(12)	4.2(10)	11.9(9)	10.3(9)
C27	26.9(12)	24.9(11)	19.7(11)	-1.0(9)	4.2(9)	0.1(9)
C29	25.8(12)	29.1(12)	22.3(12)	-0.9(10)	4.7(9)	-1.5(9)
C21	33.7(13)	22.6(11)	24.1(12)	0.3(10)	9.8(10)	-4.6(10)
C5	30.9(13)	26.2(12)	23.1(12)	-2.8(10)	3.5(10)	3.1(10)
C26	23.4(12)	25.6(12)	28.3(13)	1.8(10)	5.5(9)	2.9(9)
C31	34.5(13)	23.0(11)	21.7(12)	1.5(10)	2.3(10)	3.3(10)
C2	30.5(13)	26.1(12)	21.9(12)	-2.4(10)	3.1(9)	1.0(10)
C30	25.2(12)	30.3(12)	26.7(13)	-0.2(10)	4.4(10)	6.9(10)
C24	32.7(13)	23.1(12)	29.3(13)	1.2(10)	7.5(10)	-0.4(10)
C13	35.3(14)	25.3(12)	28.5(13)	0.0(11)	-1.7(10)	1.5(10)
C20	34.3(14)	27.2(12)	26.3(13)	1.6(10)	5.1(10)	-3.4(10)
C18	38.4(14)	25.1(12)	28.6(13)	-3.9(11)	11.3(11)	-5.4(10)
C28	27.3(13)	25.3(12)	31.3(13)	5.2(10)	4.8(10)	5.0(9)
C6	37.1(14)	25.2(12)	24.5(12)	3.5(10)	6.4(10)	-0.1(10)
C19	34.5(14)	25.9(12)	34.1(14)	-0.2(11)	9.8(11)	-0.1(10)
C7	28.9(13)	29.1(12)	24.5(12)	-0.7(10)	6.3(10)	-3.8(10)
C23	42.9(15)	36.7(14)	21.6(13)	-0.4(11)	3.5(11)	-1.9(12)
C22	38.5(15)	29.5(13)	29.3(14)	-0.5(11)	6.3(11)	4.0(11)
C25	31.2(13)	23.2(11)	28.0(13)	-0.3(10)	8.2(10)	-1.2(10)
C12	37.6(15)	28.1(13)	37.2(15)	2.8(11)	7.0(12)	-1.0(11)
C3	32.8(14)	26.8(13)	42.2(16)	9.0(12)	6.9(11)	0.0(10)
C10	33.3(14)	25.8(12)	35.0(15)	-2.5(11)	-5.2(11)	8.6(10)
C1	28.7(13)	40.3(15)	32.1(14)	3.2(12)	7.6(11)	4.0(11)
C14	48.2(17)	36.4(15)	32.1(15)	-4.7(12)	9.6(12)	-7.0(12)
C11	45.1(16)	35.3(14)	26.7(13)	5.4(11)	8.2(11)	11.5(12)
C4	29.8(14)	29.6(13)	46.6(17)	4.0(12)	8.3(12)	-3.7(10)

C15	40.8(16)	32.3(14)	43.3(17)	-4.2(13)	6.8(13)	-6.3(12)
C32	25.9(14)	55.3(18)	41.1(16)	6.8(14)	10.0(11)	2.5(12)
C8	40.4(15)	30.9(13)	39.7(15)	0.8(12)	1.6(12)	3.9(11)
C9	44.6(16)	32.1(14)	40.3(16)	3.0(12)	5.2(13)	8.6(12)
C17	56.1(19)	39.9(16)	32.8(15)	-9.9(13)	14.0(13)	-1.9(13)
C16	53.7(18)	37.2(15)	32.8(15)	-6.3(13)	2.5(13)	-6.5(13)

Table 4 Bond Lengths for 4a.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S2	O6	1.4407(18)	C26	C28	1.374(3)
S2	O5	1.4439(18)	C31	C30	1.389(3)
S2	C27	1.757(2)	C2	C7	1.389(3)
S2	C25	1.747(2)	C2	C3	1.393(3)
S 1	O2	1.4288(19)	C24	C25	1.326(3)
S 1	O3	1.443(2)	C13	C12	1.388(4)
S 1	C5	1.754(2)	C13	C14	1.388(4)
S 1	C8	1.757(3)	C13	C16	1.504(3)
01	C2	1.359(3)	C20	C19	1.389(3)
01	C1	1.430(3)	C18	C19	1.390(4)
O4	C29	1.356(3)	C18	C23	1.388(4)
O4	C32	1.430(3)	C18	C17	1.511(3)
C27	C26	1.398(3)	C6	C7	1.388(3)
C27	C31	1.387(3)	C23	C22	1.380(3)
C29	C30	1.389(3)	C12	C11	1.391(4)
C29	C28	1.396(3)	C3	C4	1.369(4)
C21	C24	1.472(3)	C10	C11	1.387(4)
C21	C20	1.388(3)	C10	C15	1.382(4)
C21	C22	1.393(3)	C10	C9	1.489(4)
C5	C6	1.381(3)	C14	C15	1.376(4)
C5	C4	1.399(4)	C8	C9	1.297(4)

Table 5 Bond Angles for 4a.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O6	S2	O5	118.56(11)	01	C2	C3	114.9(2)
O6	S 2	C27	108.49(11)	C7	C2	C3	120.6(2)
O6	S2	C25	109.54(11)	C29	C30	C31	119.3(2)
O5	S2	C27	108.13(11)	C25	C24	C21	125.5(2)
O5	S2	C25	106.65(11)	C12	C13	C14	117.4(2)
C25	S2	C27	104.59(11)	C12	C13	C16	121.9(2)
O2	S 1	03	118.50(12)	C14	C13	C16	120.7(2)
O2	S 1	C5	108.44(12)	C21	C20	C19	120.8(2)
O2	S 1	C8	111.78(13)	C19	C18	C17	121.1(2)
O3	S 1	C5	108.54(12)	C23	C18	C19	117.7(2)
O3	S 1	C8	104.94(13)	C23	C18	C17	121.2(2)
C5	S 1	C8	103.60(12)	C26	C28	C29	120.1(2)
C2	01	C1	117.31(19)	C5	C6	C7	120.5(2)
C29	O4	C32	117.7(2)	C20	C19	C18	121.2(2)
C26	C27	S2	119.76(18)	C6	C7	C2	118.9(2)
C31	C27	S2	120.05(18)	C22	C23	C18	121.4(2)
C31	C27	C26	120.2(2)	C23	C22	C21	120.9(2)
O4	C29	C30	124.5(2)	C24	C25	S2	121.0(2)
O4	C29	C28	115.0(2)	C13	C12	C11	121.1(2)
C30	C29	C28	120.5(2)	C4	C3	C2	120.2(2)
C20	C21	C24	123.3(2)	C11	C10	C9	124.0(3)
C20	C21	C22	118.0(2)	C15	C10	C11	118.2(2)
C22	C21	C24	118.8(2)	C15	C10	C9	117.8(2)
C6	C5	S 1	120.62(19)	C15	C14	C13	121.7(3)
C6	C5	C4	120.1(2)	C10	C11	C12	120.7(3)
C4	C5	S 1	119.21(19)	C3	C4	C5	119.6(2)
C28	C26	C27	119.7(2)	C14	C15	C10	120.9(3)
C27	C31	C30	120.2(2)	C9	C8	S 1	120.6(2)
01	C2	C7	124.5(2)	C8	C9	C10	125.3(3)

Atom	r	V	7	U(ea)
H26	x 7275 95	y 6096 36	1346.05	31
H31	10499 79	3412 41	1964.86	32
H30	12485.81	4421.29	1319 89	33
H24	7852.97	3917.11	3904.28	34
H20	5184.73	6478.52	3948.47	35
H28	9243.88	7098.52	702.92	33
H6	2592.21	-1585.03	2024.5	34
H19	4781.17	7641	5148.55	37
H7	282.53	-511.22	1451.05	33
H23	8338.24	5816.55	6550.54	41
H22	8641.79	4584.21	5373.95	39
H25	6228.06	5608.61	2858.93	33
H12	10356.3	2676.79	5130.24	41
Н3	3341.31	1990.5	648.77	40
H1A	-2050.96	1779.19	456.22	50
H1B	-1332.3	1273.36	1354.66	50
H1C	-1581.34	376.22	523.73	50
H14	7546.49	769.84	6493.09	47
H11	9232.73	1501.4	3920.1	42
H4	5623.85	930.09	1227.11	42
H15	6531.37	-459.05	5308.38	47
H32A	14338.72	6617.55	241.27	60
H32B	13664.54	5246.1	288.26	60
H32C	14283.41	6058.21	1140.33	60
H8	7494.62	570.12	2823.76	45
H9	6459.53	-1137.76	3858.27	47
H17A	7243.37	8261.55	6877.78	64
H17B	6310.23	7146.18	7231.02	64
H17C	5279.07	8083.75	6639.46	64
H16A	10682.09	3127.62	6620.14	63
H16B	10062.06	2111.25	7192.34	63
H16C	8868.76	3183.79	6873.27	63

Table 6 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters

 $(Å^2 \times 10^3)$ for **4a**.