Supporting Information

CO₂-Facilitated Radical Sequential (3+2) Annulation of 1,6-Enynes via Cooperation of Sulfinate Catalysis and Photocatalysis

Yuzhen Gao,^{*a*} Siqing Liu,^{*a,b*} and Weiping Su*^{*a,b*}

^aState Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002 (China)

^bUniversity of Chinese Academy of Sciences, Beijing, 100049, China

*E-mail: wpsu@fjirsm.ac.cn

Table of Contents

1. General Information	S 3
2. Experimental Section	S 3
2.1 General procedures for synthesis of products	S 3
2.2 Characterization of products	S 4
2.3 Gram-scale experiments	S29
2.4 Further transformation of products	S 30
2.5 General photoredox reaction setup	S 31
2.6 Unsuccessful examples	S 31
3. Mechanistic studies	S32
3.1 Stern-Volmer fluorescence quenching experiments	S32
3.2 Control experiment with radical scavengers	S33
3.3 Reaction with radical clock	S34
3.4 Investigation of using d_5 -1g	S35
3.5 Isotope-labelling studies	S37
3.6 Investigation of using 2'	S38
3.7 Light On-Off Experiment	S39
4. NMR Spectra of Compounds	S40
5. X-Ray Crystallographic Spectrum	S120
6. References	S123

1. General Information

All reactions were conducted under an atmosphere of carbon dioxided. Unless otherwise noted, chemical reagents were purchased from commercial supplies (Accela, Acros Organics, Adamas-beta®, Alfa Aesar, Aladdin, Bidepharmatech Energy Chemical, TCI Chemicals, Innochem, J&K Chemicals, Laajoo, Leyan, Sigma-Aldrich, Sinocompound, and 3A Chemicals) and used directly without further purification. The solvent DMF did not dry out the water. Flash chromatography was performed with Sepaflash columns produced by Santai Technologies. Purification of products was performed by flash chromatography (FC) using silica gel or preparative thin layer chromatography. ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE III spectrometer (400 MHz and 101 MHz, respectively). The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, td = triplet of doublet and m = multiplet. To distinguish, some ¹³C NMR chemical shifts retain two decimal places. High-resolution mass spectra (HRMS) were obtained on an Impact II UHR-TOF mass spectrometry equipped with an ESI source from Bruker at Fujian Institute of Research on the Structure of Matter. The Blue LED strips (1 meter, 30W) were purchased from Prime LED Co., Ltd. (China). CO2 gas (Purity: 99.995%) was purchased from Linde. The staring materials 1 were synthesized following the known procedures^[S1], and all the products were identified by ¹H NMR, ¹³C NMR and HRMS.

2. Experimental Section

2.1 General procedures for the reactions reported herein (a) (3+2) annulation of 1,6-enynes

The oven-dried Schlenk tube (38 mL) containing a stirring bar was charged with 1 (0.2 mmol), PhSO₂Na (0.1 mmol, 50 mol%), 4CzIPN or [Ir(ppy)₂(dtbbpy)]PF₆ (0.002 mmol, 1 mmol%) and DMF (2 mL). The mixture was evacuated and back-filled with CO₂ for 3 times. The mixture was placed under a 30 W blue LED (λ_{max} = 465 nm, 7.5 cm away from the LEDs, with cooling fan to keep the reaction temperature at 25~30 °C) light source and stirred at ambient temperature for 16 h or 40 h. Upon completion of the reaction, all the solvents were removed under reduced pressure at high temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 25 mL of EtOAc. The filtrate was concentrated in vacuo, and crude ¹H NMR spectrum was taken using coumarin as internal standard. The resulting residue was purified by flash silica gel chromatography or preparative thin layer chromatography using petroleum ether/EtOAc (20:1-5:1) as the eluent to give the desired products.

(b) One-pot two-step procedure for isomerization of the tetrahydrofluorenes

The oven-dried Schlenk tube (38 mL) containing a stirring bar was charged with **1** (0.2 mmol), PhSO₂Na (0.1 mmol, 50 mol%), 4CzIPN or [Ir(ppy)₂(dtbbpy)]PF₆ (0.002 mmol, 1 mmol%) and DMF (2 mL). The mixture was evacuated and back-filled with CO₂ for 3 times. The mixture was placed under a 30 W blue LED (λ_{max} = 465 nm, 7.5 cm away from the LEDs, with cooling fan to keep the reaction temperature at 25~30 °C) light source and stirred at ambient temperature for 16 h or 40 h. Upon completion of the reaction, all the solvents were removed under reduced pressure at high temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 25 mL of EtOAc. The filtrate was concentrated in vacuo.

Then $Fe(OTf)_3$ (0.02 mmol, 10 mol %) and DCE (2 mL) were added to the crud products, and the mixture was stirred at 60 °C for 3 h (for products **61-66**, **68**, **69**) or 6 h (for product **67**) under Ar atmosphere. Upon completion of the reaction, the crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 25 mL of EtOAc. The filtrate was concentrated in vacuo and crude ¹H NMR spectrum was taken using coumarin as internal standard. The resulting residue was purified by flash silica gel chromatography or preparative thin layer chromatography using petroleum ether/EtOAc (20:1-10:1) as the eluent to give the desired products.

(c) CO₂-facilitated addition of sulfonyl radicals to alkenes

$$R^{1} \xrightarrow{\qquad} R^{2} + RSO_{2}Na \xrightarrow{\qquad 4CzIPN (1 \text{ mol } \%)} \qquad R^{2} \xrightarrow{\qquad R^{2}} R^{2}$$

$$DMF, \text{ blue LEDs} \qquad R^{1} \xrightarrow{\qquad SO_{2}R} R^{2}$$

$$CO_{2}, RT, 16 \text{ h} \qquad 72.79$$

The oven-dried Schlenk tube (38 mL) containing a stirring bar was charged alkyne substrates (0.2 mmol), PhSO₂Na (0.4 mmol, 2.0 equiv), 4CzIPN (0.002 mmol, 1 mmol%) and DMF (2 mL). The mixture was evacuated and back-filled with CO₂ for 3 times. The mixture was placed under a 30 W blue LED (λ_{max} =465 nm, 7.5 cm away from the LEDs, with cooling fan to keep the reaction temperature at 25~30 °C) light source and stirred at ambient temperature for 16 h. Upon completion of the reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 25 mL of EtOAc. The filtrate was concentrated in vacuo, and crude ¹H NMR spectrum was taken using coumarin as internal standard. The resulting residue was purified by flash silica gel chromatography or preparative thin layer chromatography using petroleum ether/EtOAc (20:1-5:1) as the eluent to give the desired products**72-79**.

2.2 Characterization of products

dimethyl-7,9,9-trimethyl-1,3,9,9a-tetrahydro-2*H*-fluorene-2,2-dicarboxylate (2)

PC: 4CzIPN; Reaction time: 16 h; Yield: 57.7 mg, 88%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a white solid (m.p. = 70-71 °C).

¹**H NMR (400 MHz, CDCl₃)** δ 7.18 (d, *J* = 8.1 Hz, 1H), 6.93 (s, 1H), 6.93 – 6.89 (m, 1H), 5.86 – 5.83 (m, 1H), 3.68 (s, 3H), 3.64 (s, 3H), 3.03 – 2.97 (m, 1H), 2.47 – 2.37 (m, 2H), 2.32 – 2.27 (m, 4H), 1.82

(t, J = 12.5 Hz, 1H), 1.30 (s, 3H), 0.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.0, 171.7, 154.3, 141.0, 138.0, 135.8, 127.7, 123.0, 120.2, 113.2, 54.1, 52.9, 52.9, 48.7, 44.4, 31.3, 28.7, 26.12, 26.08, 21.7. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₄O₄Na⁺ [M+Na⁺] 351.1567, found 351.1570.

dimethyl-7,9,9-trimethyl-4-(phenylsulfonyl)-1,3,9,9a-tetrahydro-2H-fluorene-2,2-dicarboxylate (2')

¹**H NMR (400 MHz, CDCl₃)** δ 8.05 (d, J = 8.1 Hz, 1H), 8.01 – 7.91 (m, 2H), 7.58 – 7.52 (m, 1H), 7.50 – 7.46 (m, 2H), 7.03 (s, 1H), 6.99 (d, J = 8.3 Hz, 1H), 3.77 (s, 3H), 3.66 (s, 3H), 3.48 (dt, J = 18.3, 2.0 Hz, 1H), 2.84 (dd, J = 18.2, 3.4 Hz, 1H), 2.57 – 2.44 (m, 2H), 2.35 (s, 3H), 1.94 – 1.81 (m, 1H), 1.36 (s, 3H), 0.94 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 171.5, 170.5, 157.5, 151.5, 141.8, 141.3, 133.0, 131.3, 129.0, 128.7, 127.5, 126.4, 126.3, 122.4, 53.8, 53.7, 53.2, 53.0, 44.2, 33.3, 27.4, 26.3, 25.4, 21.7. **HRMS (m/z, ESI-TOF):** Calcd for C₂₆H₂₈O₆SNa⁺ [M+Na⁺] 491.1499, found 491.1501.

2,2-bis(methoxymethyl)-7,9,9-trimethyl-2,3,9,9a-tetrahydro-1*H*-fluorene (3)

PC: 4CzIPN; Reaction time: 16 h; Yield: 43.2 mg, 72%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 15/1) as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, J = 7.6 Hz, 1H), 7.03 (s, 1H), 6.99 (d, J = 7.7 Hz, 1H), 5.90 (q, J = 3.0 Hz, 1H), 3.38 – 3.25 (m, 10H), 2.48 (dd, J = 7.7, 4.6 Hz, 1H), 2.35 (s, 3H), 2.15 – 1.98 (m, 2H), 1.83 (dd, J = 12.2, 5.0 Hz, 1H), 1.37 (s, 3H), 1.29 (t, J = 12.3 Hz, 1H), 0.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.6, 140.9, 137.4, 136.4, 127. 5, 123.0, 119.8, 114.9, 79.4, 74.0, 59.5, 59.4, 48.0, 44.2, 38.6, 30.9, 26.8, 26.1, 26.0, 21.7. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₈O₂Na⁺ [M+Na⁺] 323.1982, found 323.1985.

(7,9,9-trimethyl-2,3,9,9a-tetrahydro-1*H*-fluorene-2,2-diyl)bis(methylene) diacetate (4)

PC: 4CzIPN; Reaction time: 16 h; Yield: 54.1 mg, 76%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 10/1) as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.23 (m, 1H), 7.02 (s, 1H), 7.00 (d, J = 7.7 Hz, 1H), 5.87 (q, J = 3.4 Hz, 1H), 4.13 – 3.99 (m, 4H), 2.50 – 2.44 (m, 1H), 2.35 (s, 3H), 2.16 – 2.11 (m, 2H), 2.10 (s, 3H), 2.06 (s, 3H), 1.85 (dd, J = 12.4, 5.1 Hz, 1H), 1.38 – 1.32 (m, 4H), 0.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 171.1, 154.3, 141.2, 137.8, 135.9, 127.6, 123.0, 119.9, 113.3, 69.6, 64.7, 47.6, 44.2, 36.8, 30.5, 26.8, 26.0, 25.9, 21.7, 21.0, 20.9. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₂₈O₄Na⁺ [M+Na⁺] 379.1880, found 379.1878.

7,9,9-trimethyl-2-tosyl-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridine (5)

PC: 4CzIPN; Reaction time: 16 h; Yield: 57.3 mg, 78%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow oil.

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.72 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 7.6 Hz, 1H), 7.00 (d, J = 7.3 Hz, 1H), 6.99 (s, 1H), 5.82 (q, J = 3.1 Hz, 1H), 4.25 (dt, J = 17.1, 3.5 Hz, 1H), 4.12 (dd, J = 11.0, 5.3 Hz, 1H), 3.40 (dt, J = 17.2, 3.2 Hz, 1H), 2.83 – 2.78 (m, 1H), 2.46 (t, J = 11.0 Hz, 1H), 2.42 (s, 3H), 2.35 (s, 3H), 1.42 (s, 3H), 0.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.2, 143.6, 141.0, 138.8, 134.9, 134.2, 129.8, 128.0, 127.6, 123.1, 120.4, 110.9, 50.8, 45.2, 44.2, 44.1, 26.8, 26.3, 21.8, 21.7. **HRMS (m/z, ESI-TOF):** Calcd for C₂₂H₂₆NO₂S⁺ [M+H⁺] 368.1679, found 368.1672.

7,9,9-trimethyl-2-(methylsulfonyl)-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridine (6)

PC: 4CzIPN; Reaction time: 40 h; Yield: 41.9 mg, 72%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 15/1) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.2 Hz, 1H), 7.04 (d, J = 6.8 Hz, 2H), 5.95 – 5.87 (m, 1H), 4.24 (dd, J = 17.6, 3.1 Hz, 1H), 4.09 (d, J = 6.3 Hz, 1H), 3.75 (d, J = 17.3 Hz, 1H), 2.87 (s, 3H), 2.85 – 2.77 (m, 2H), 2.37 (s, 3H), 1.44 (s, 3H), 0.96 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.0, 141.1, 138.9, 134.8, 128.0, 123.1, 120.3, 111.0, 50.7, 44.9, 44.1, 43.9, 35.8, 26.8, 26.2, 21.7. HRMS (m/z, ESI-TOF): Calcd for C₁₆H₂₁NO₂SNa⁺ [M+Na⁺] 314.1185, found 314.1185.

2',2',7,9,9-pentamethyl-1,3,9,9a-tetrahydrospiro[fluorene-2,5'-[1,3]dioxane] (7)

PC: 4CzIPN; Reaction time: 16 h; Yield: 41.8 mg, 67%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow oil.

¹**H NMR** (400 **MHz**, **CDCl**₃) δ 7.26 (d, *J* = 8.3 Hz, 1H), 7.03 (s, 1H), 7.00 (d, *J* = 7.7 Hz, 1H), 5.93 – 5.90 (m, 1H), 3.77 (d, *J* = 11.6 Hz, 1H), 3.67 (d, *J* = 13.9 Hz, 3H), 2.53 – 2.41 (m, 2H), 2.35 (s, 3H), 2.01 – 1.90 (m, 2H), 1.47 (s, 3H), 1.45 (s, 3H), 1.38 (s, 3H), 1.21 (t, *J* = 12.2 Hz, 1H), 0.90 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 154.4, 140.7, 137.6, 136.1, 127.5, 123.0, 119.9, 114.4, 98.3, 71.5, 66.9, 47.7, 44.1, 32.6, 32.0, 28.0, 26.1, 25.9, 24.6, 23.1, 21.7. **HRMS** (m/z, **ESI-TOF**): Calcd for C₂₁H₂₉O₂⁺ [M+H⁺] 313.2162, found 313.2154.

dimethyl-9,9-dimethyl-1,3,9,9a-tetrahydro-2H-fluorene-2,2-dicarboxylate (8)

PC: 4CzIPN; Reaction time: 16 h; Yield: 45.8 mg, 73%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a white solid (m.p. = 105-106 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 7.1 Hz, 1H), 7.17 – 7.06 (m, 3H), 5.99 – 5.85 (m, 1H), 3.69 (s, 3H), 3.65 (s, 3H), 3.05 – 2.98 (m, 1H), 2.49 – 2.37 (m, 2H), 2.35 – 2.28 (m, 1H), 1.83 (t, J = 12.5 Hz, 1H), 1.32 (s, 3H), 0.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.0, 171.7, 154.1, 141.1, 138.4, 128.1, 126.8, 122.4, 120.5, 114.3, 54.1, 52.94, 52.88, 48.5, 44.6, 31.4, 28.7, 26.2, 26.1. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₃O₄⁺ [M+H⁺] 315.1591, found 315.1596.

9,9-dimethyl-2-tosyl-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridine (9)

PC: 4CzIPN; Reaction time: 16 h; Yield: 47.3 mg, 67%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow solid (m.p. = 65-66 °C).

¹**H NMR** (400 **MHz**, **CDCl**₃) δ 7.65 (d, J = 8.1 Hz, 2H), 7.27 (dd, J = 10.7, 7.6 Hz, 3H), 7.19 – 7.09 (m, 3H), 5.82 (q, J = 3.1 Hz, 1H), 4.19 (dt, J = 17.2, 3.6 Hz, 1H), 4.06 (dd, J = 11.0, 5.3 Hz, 1H), 3.34 (dt, J = 17.3, 3.3 Hz, 1H), 2.80 – 2.71 (m, 1H), 2.40 (d, J = 11.0 Hz, 1H), 2.35 (s, 3H), 1.37 (s, 3H), 0.81 (s, 3H). ¹³C **NMR** (101 MHz, **CDCl**₃) δ 154.0, 143.6, 141.2, 129.9, 128.8, 127.6, 127.1, 122.5, 120.6, 112.0, 50.6, 45.2, 44.3, 44.2, 26.9, 26.3, 21.7. **HRMS** (m/z, **ESI-TOF**): Calcd for C₂₁H₂₄NO₂S⁺ [M+H⁺] 354.1522, found 354.1521.

dimethyl-9,9-dimethyl-7-phenyl-1,3,9,9a-tetrahydro-2H-fluorene-2,2-dicarboxylate (10)

PC: 4CzIPN; Reaction time: 16 h; Yield: 51.5 mg, 66%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow solid (m.p. = 120-121 °C).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ7.61 (d, J = 6.9 Hz, 2H), 7.51 – 7.41 (m, 5H), 7.35 (t, J = 7.4 Hz, 1H), 6.06 (q, J = 3.6, 2.9 Hz, 1H), 3.80 (s, 3H), 3.76 (s, 3H), 3.17 – 3.12 (m, 1H), 2.62 – 2.43 (m, 3H), 1.96 (t, J = 12.4 Hz, 1H), 1.48 (s, 3H), 1.03 (s, 3H). ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 172.9, 171.6, 154.8, 141.6, 141.3, 140.7, 137.6, 128.8, 127.3, 126.1, 121.2, 120.8, 114.6, 54.1, 53.0, 52.9, 48.8, 44.7, 31.4, 28.7, 26.2. **HRMS** (**m/z**, **ESI-TOF):** Calcd for C₂₅H₂₆O₄Na⁺ [M+Na⁺] 413.1723, found 413.1722.

9,9-dimethyl-7-phenyl-2-tosyl-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridine (11)

PC: 4CzIPN; Reaction time: 16 h; Yield: 54.1 mg, 63%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow solid (m.p. = 170-171 °C).

¹**H** NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.0 Hz, 2H), 7.57 (d, *J* = 7.2 Hz, 2H), 7.49 – 7.38 (m, 5H), 7.35 – 7.31 (m, 3H), 5.92 (q, *J* = 3.1 Hz, 1H), 4.29 (dt, *J* = 17.2, 3.5 Hz, 1H), 4.16 (dd, *J* = 11.0, 5.3 Hz, 1H), 3.43 (dt, *J* = 17.4, 3.1 Hz, 1H), 2.90 – 2.84 (m, 1H), 2.49 (t, *J* = 11.0 Hz, 1H), 2.42 (s, 3H), 1.49 (s, 3H), 0.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.6, 143.6, 142.0, 141.3, 140.7, 136.7, 134.1, 129.9, 128.9, 127.6, 127.5, 127.2, 126.4, 121.3, 120.9, 112.2, 50.9, 45.3, 44.4, 44.2, 26.9, 26.3, 21.7. HRMS (m/z, ESI-TOF): Calcd for C₂₇H₂₈NO₂S⁺ [M+H⁺] 430.1835, found 430.1826.

dimethyl-7-(tert-butyl)-9,9-dimethyl-1,3,9,9a-tetrahydro-2H-fluorene-2,2-dicarboxylate (12)

PC: 4CzIPN; Reaction time: 16 h; Yield: 55.5 mg, 75%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a white solid (m.p. = 125-126 °C).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.31 (d, J = 8.7 Hz, 1H), 7.26 – 7.21 (m, 2H), 5.96 – 5.93 (m, 1H), 3.76 (s, 3H), 3.71 (s, 3H), 3.13 – 3.01 (m, 1H), 2.54 – 2.42 (m, 2H), 2.40 – 2.37 (m, 1H), 1.91 (t, J = 12.4 Hz, 1H), 1.41 (s, 3H), 1.32 (s, 9H), 0.96 (s, 3H). ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 173.0, 171.6, 153.9, 151.4, 140.8, 135.7, 124.0, 119.9, 118.9, 113.4, 54.0, 52.9, 52.8, 48.7, 44.6, 35.0, 31.6, 31.3, 28.6, 26.1, 26.1. **HRMS** (**m/z**, **ESI-TOF):** Calcd for C₂₃H₃₁O₄⁺ [M+H⁺] 371.2217, found 371.2219.

7-(tert-butyl)-9,9-dimethyl-2-tosyl-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridine (13)

PC: 4CzIPN; Reaction time: 16 h; Yield: 63.8 mg, 78%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow solid (m.p. = 98-99 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.2 Hz, 2H), 7.34 – 7.28 (m, 3H), 7.24 (dd, J = 8.0, 1.5 Hz, 1H), 7.20 (s, 1H), 5.84 (q, J = 2.8 Hz, 1H), 4.25 (dt, J = 17.0, 3.3 Hz, 1H), 4.13 (dd, J = 11.0, 5.3 Hz, 1H), 3.40 (dt, J = 17.0, 3.1 Hz, 1H), 2.83 – 2.80 (m, 1H), 2.49 – 2.42 (m, 4H), 1.45 (s, 3H), 1.31 (s, 9H), 0.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.7, 152.2, 143.5, 140.8, 134.8, 134.0, 129.8, 127.5, 124.3, 120.0, 119.0, 111.0, 50.8, 45.1, 44.3, 44.1, 35.0, 31.5, 26.8, 26.3, 21.6. HRMS (m/z, ESI-TOF): Calcd for C₂₅H₃₂NO₂S⁺ [M+H⁺] 410.2148, found 410.2150.

6,8,9,9-tetramethyl-2-tosyl-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridine (14)

PC: 4CzIPN; Reaction time: 16 h; Yield: 51.4 mg, 67%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a white solid (m.p. = 170-171 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (d, J = 8.2 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 6.96 (s, 1H), 6.74 (s, 1H), 5.75 (q, J = 3.1 Hz, 1H), 4.17 (dt, J = 17.1, 3.6 Hz, 1H), 4.02 (dd, J = 11.0, 5.3 Hz, 1H), 3.32 (dt, J = 17.0, 3.0 Hz, 1H), 2.77 – 2.63 (m, 1H), 2.38 (t, J = 10.9 Hz, 1H), 2.34 (s, 3H), 2.27 (s, 3H), 2.20 (s, 3H), 1.45 (s, 3H), 0.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.6, 143.6, 141.1, 138.3, 136.9, 134.1, 134.0, 132.7, 129.8, 127.6, 118.9, 111.1, 51.2, 45.3, 45.2, 43.8, 27.0, 23.1, 21.7, 21.1, 19.3. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₇NO₂SNa⁺ [M+Na⁺] 404.1655, found 404.1648.

dimethyl-7-methoxy-9,9-dimethyl-1,3,9,9a-tetrahydro-2H-fluorene-2,2-dicarboxylate (15)

PC: 4CzIPN; Reaction time: 16 h; Yield: 53.0 mg, 77%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.25 – 7.19 (m, 1H), 6.71 – 6.62 (m, 2H), 5.78 – 5.76 (m, 1H), 3.73 (s, 3H), 3.68 (s, 3H), 3.65 (s, 3H), 3.06 – 2.93 (m, 1H), 2.48 – 2.35 (m, 2H), 2.35 – 2.25 (m, 1H), 1.82 (t, *J* = 12.5 Hz, 1H), 1.30 (s, 3H), 0.88 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 173.0, 171.7, 160.2, 155.9, 140.5, 131.3, 121.4, 112.7, 112.1, 107.8, 55.5, 54.1, 52.9, 52.9, 48.8, 44.7, 31.3, 28.7, 26.04, 26.01. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₄O₅Na⁺ [M+Na⁺] 367.1516, found 367.1515.

7-methoxy-9,9-dimethyl-2-tosyl-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridine (16)

PC: 4CzIPN; Reaction time: 16 h; Yield: 59.7 mg, 78%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow solid (m.p. = 105-106 °C).

¹**H NMR** (400 **MHz, CDCl₃**) δ 7.72 (d, *J* = 8.1 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 8.5 Hz, 1H), 6.74 (dd, *J* = 8.3, 2.4 Hz, 1H), 6.71 (d, *J* = 2.3 Hz, 1H), 5.74 (q, *J* = 3.2 Hz, 1H), 4.23 (dt, *J* = 16.9, 3.5 Hz, 1H), 4.12 (dd, *J* = 10.9, 5.3 Hz, 1H), 3.80 (s, 3H), 3.39 (dt, *J* = 17.0, 3.4 Hz, 1H), 2.85 – 2.78 (m, 1H), 2.46 (t, *J* = 10.9 Hz, 1H), 2.42 (s, 3H), 1.42 (s, 3H), 0.88 (s, 3H). ¹³**C NMR** (101 **MHz, CDCl₃**) δ 160.7, 155.8, 143.6, 140.5, 134.1, 130.4, 129.8, 127.6, 121.5, 113.1, 109.7, 107.7, 55.5, 51.0, 45.1, 44.3, 44.2, 26.7, 26.2, 21.6. **HRMS** (m/z, **ESI-TOF**): Calcd for C₂₂H₂₆NO₃S⁺ [M+H⁺] 384.1628, found 384.1621.

9,9-dimethyl-7-(methylthio)-2-tosyl-2,3,9,9a-tetrahydro-1H-indeno[2,1-c]pyridine (17)

PC: 4CzIPN; Reaction time: 16 h; Yield: 43.0 mg, 54%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow solid (m.p. = 127-128 °C).

¹**H NMR (400 MHz, CDCl₃)** δ 7.72 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.4 Hz, 1H), 7.08 (d, J = 7.0 Hz, 1H), 7.07 (s, 1H), 5.84 (q, J = 3.0 Hz, 1H), 4.25 (dt, J = 17.2, 3.6 Hz, 1H),

4.12 (dd, J = 11.0, 5.3 Hz, 1H), 3.47 – 3.33 (m, 1H), 2.87 – 2.74 (m, 1H), 2.48 (s, 3H), 2.45 (t, J = 11.2 Hz, 1H), 2.42 (s, 3H),1.43 (s, 3H), 0.88 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 154.7, 143.6, 140.5, 139.1, 134.8, 134.1, 129.9, 127.6, 125.4, 120.9, 120.7, 111.5, 50.8, 45.2, 44.3, 44.1, 26.7, 26.2, 21.6, 16.2. **HRMS** (m/z, **ESI-TOF**): Calcd for C₂₂H₂₆NO₂S₂⁺ [M+H⁺] 400.1399, found 400.1396.

dimethyl-7-acetamido-9,9-dimethyl-1,3,9,9a-tetrahydro-2*H*-fluorene-2,2-dicarboxylate (18)

PC: 4CzIPN; Reaction time: 16 h; Yield: 53.4 mg, 72%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 3/1) as a yellow solid (m.p. = 181-182 °C).

¹**H NMR (400 MHz, CDCl₃)** δ 7.79 (s, 1H), 7.52 (d, J = 1.8 Hz, 1H), 7.32 – 7.20 (m, 2H), 5.91 (q, J = 3.0 Hz, 1H), 3.77 (s, 3H), 3.74 (s, 3H), 3.14 – 3.03 (m, 1H), 2.52 – 2.46 (m, 2H), 2.41 – 2.31 (m, 1H), 2.17 (s, 3H), 1.90 (t, J = 12.5 Hz, 1H), 1.37 (s, 3H), 0.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 171.7, 168.5, 155.1, 140.5, 138.2, 134.5, 120.8, 118.7, 114.0, 113.4, 54.0, 52.9, 52.9, 48.7, 44.7, 31.3, 28.6, 26.03, 25.96, 24.7. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₂₆NO₅⁺ [M+H⁺] 372.1805, found 372.1804.

N-(9,9-dimethyl-2-tosyl-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridin-7-yl)acetamide (19)

PC: 4CzIPN; Reaction time: 16 h; Yield: 66.4 mg, 81%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 3/1) as a yellow solid (m.p. = 190-191 °C).

¹**H** NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.63 (d, J = 8.1 Hz, 2H), 7.40 (s, 1H), 7.25 (d, J = 8.0 Hz, 2H), 7.22 – 7.14 (m, 2H), 5.71 (q, J = 3.1 Hz, 1H), 4.15 (dt, J = 17.1, 3.5 Hz, 1H), 4.01 (dd, J = 11.0, 5.4 Hz, 1H), 3.31 (dt, J = 16.2, 2.7 Hz, 1H), 2.71 – 2.64 (m, 1H), 2.38 – 2.33 (m, 4H), 2.07 (s, 3H), 1.30 (s, 3H), 0.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 154.9, 143.8, 140.5, 138.8, 133.8, 133.4, 129.9, 127.6, 121.0, 119.0, 114.0, 111.0, 50.8, 45.2, 44.4, 44.1, 26.6, 26.1, 24.7, 21.6. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₇N₂O₃S⁺ [M+H⁺] 411.1737, found 411.1732.

dimethyl-7-fluoro-9,9-dimethyl-1,3,9,9a-tetrahydro-2H-fluorene-2,2-dicarboxylate (20)

PC: [Ir(ppy)₂(dtbbpy)](PF₆); Reaction time: 16 h; Yield: 35.2 mg, 53%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a white solid (m.p. = 80-81 °C).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.23 (dd, J = 8.2, 5.2 Hz, 1H), 6.82 – 6.76 (m, 2H), 5.86 – 5.84 (m, 1H), 3.69 (s, 3H), 3.66 (s, 3H), 3.07 – 2.95 (m, 1H), 2.47 – 2.37 (m, 2H), 2.35 – 2.29 (m, 1H), 1.82 (t, J = 12.4 Hz, 1H), 1.30 (s, 3H), 0.87 (s, 3H). ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 172.8, 171.6, 163.2 (d, J = 246.1 Hz), 156.4 (d, J = 7.2 Hz), 140.0, 134.3 (d, J = 2.5 Hz), 121.7 (d, J = 8.8 Hz), 114.0 (d, J = 21.2

Hz), 113.9, 109.5 (d, J = 22.0 Hz), 53.9, 53.0, 52.9, 48.8, 44.8 (d, J = 1.9 Hz), 31.3, 28.6, 26.0, 25.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.73. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₁FO₄Na⁺ [M+Na⁺] 355.1316, found 355.1324.

7-fluoro-9,9-dimethyl-2-tosyl-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridine (21)

PC: 4CzIPN; Reaction time: 16 h; Yield: 54.9 mg, 74%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow solid (m.p. = 96-97 °C).

¹**H** NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.2 Hz, 2H), 7.31 – 7.20 (m, 3H), 6.86 – 6.75 (m, 2H), 5.76 (q, J = 3.1 Hz, 1H), 4.17 (dt, J = 17.2, 3.6 Hz, 1H), 4.05 (dd, J = 11.0, 5.3 Hz, 1H), 3.32 (dt, J = 17.1, 3.4 Hz, 1H), 2.81 – 2.74 (m, 1H), 2.40 – 2.35 (m, 4H), 1.35 (s, 3H), 0.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.6 (d, J = 247.3 Hz), 156.4 (d, J = 7.2 Hz), 143.7, 140.0, 134.0, 133.5 (d, J = 2.5 Hz), 129.9, 127.6, 121.9 (d, J = 8.9 Hz), 114.4 (d, J = 23.2 Hz), 111.6 (d, J = 2.2 Hz), 109.7 (d, J = 22.1 Hz), 51.0, 45.1, 44.5 (d, J = 1.9 Hz), 44.1, 26.7, 26.1, 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.50. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₂₃FNO₂S⁺ [M+H⁺] 372.1428, found 372.1429.

dimethyl-7-chloro-9,9-dimethyl-1,3,9,9a-tetrahydro-2*H*-fluorene-2,2-dicarboxylate (22)

PC: 4CzIPN; Reaction time: 16 h; Yield: 55.7 mg, 80%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow solid (m.p. = 74-75 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 7.27 (d, J = 7.9 Hz, 1H), 7.20 – 7.09 (m, 2H), 6.04 – 5.93 (m, 1H), 3.77 (s, 3H), 3.73 (s, 3H), 3.12 – 3.05 (m, 1H), 2.56 – 2.44 (m, 2H), 2.41 – 2.36 (m, 1H), 1.88 (t, J = 12.5 Hz, 1H), 1.38 (s, 3H), 0.95 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ172.8, 171.6, 155.9, 140.0, 136.9, 133.6, 127.1, 122.9, 121.6, 115.0, 53.9, 53.0, 52.9, 48.6, 44.8, 31.3, 28.5, 25.97, 25.95. **HRMS** (m/z, **ESI-TOF):** Calcd for C₁₉H₂₁ClO₄Na⁺ [M+Na⁺] 371.1021, found 371.1029.

7-chloro-9,9-dimethyl-2-tosyl-2,3,9,9a-tetrahydro-1H-indeno[2,1-c]pyridine (23)

PC: 4CzIPN; Reaction time: 16 h; Yield: 51.1 mg, 66%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow solid (m.p. = 81-82 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.4 Hz, 1H), 7.17 – 7.15 (m, 2H), 5.88 (q, J = 3.2 Hz, 1H), 4.25 (dt, J = 17.3, 3.6 Hz, 1H), 4.12 (dd, J = 11.0, 5.3 Hz, 1H), 3.39 (dt, J = 17.3, 3.4 Hz, 1H), 2.85 – 2.80 (m, 1H), 2.47 – 2.41 (m, 4H), 1.43 (s, 3H), 0.88 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 155.7, 143.7, 140.1, 136.1, 134.4, 134.0, 129.9, 127.6,

127.4, 123.1, 121.7, 112.7, 50.8, 45.2, 44.5, 44.0, 26.7, 26.1, 21.7. **HRMS (m/z, ESI-TOF):** Calcd for C₂₁H₂₂ClNO₂SNa⁺ [M+Na⁺] 410.0952, found 410.0945.

dimethyl-7-bromo-9,9-dimethyl-1,3,9,9a-tetrahydro-2H-fluorene-2,2-dicarboxylate (24)

PC: 4CzIPN; Reaction time: 16 h; Yield: 56.4 mg, 72%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow solid (m.p. = 92-93 °C).

¹**H** NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 1.7 Hz, 1H), 7.21 (dd, J = 8.1, 1.8 Hz, 1H), 7.14 (d, J = 8.1 Hz, 1H), 5.94 – 5.91 (m, 1H), 3.69 (s, 3H), 3.66 (s, 3H), 3.03 – 2.97 (m, 1H), 2.47 – 2.36 (m, 2H), 2.36 – 2.27 (m, 1H), 1.80 (t, J = 12.5 Hz, 1H), 1.30 (s, 3H), 0.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 171.6, 156.2, 140.1, 137.4, 129.9, 125.9, 122.0, 121.8, 115.2, 53.9, 53.00, 52.96, 48.5, 44.9, 31.3, 28.5, 26.0. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₁NaBrO₄Na⁺ [M+Na⁺] 415.0515, found 415.0517.

7-bromo-9,9-dimethyl-2-tosyl-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridine (25)

PC: 4CzIPN; Reaction time: 16 h; Yield: 52.6 mg, 61%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow solid (m.p. = 91-92 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.2 Hz, 2H), 7.29 – 7.21 (m, 4H), 7.14 (d, J = 8.5 Hz, 1H), 5.83 (q, J = 3.0 Hz, 1H), 4.17 (dt, J = 17.3, 3.6 Hz, 1H), 4.05 (dd, J = 11.0, 5.3 Hz, 1H), 3.31 (dt, J = 17.3, 3.5 Hz, 1H), 2.78 – 2.72 (m, 1H), 2.39 – 2.33 (m, 4H), 1.35 (s, 3H), 0.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 143.7, 140.1, 136.5, 134.0, 130.3, 129.9, 127.6, 126.0, 122.5, 122.0, 112.9, 50.7, 45.2, 44.5, 44.0, 26.7, 26.2, 21.7. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₂₂BrNO₂SNa⁺ [M+Na⁺] 454.0447, found 454.0446.

dimethyl-7-iodo-9,9-dimethyl-1,3,9,9a-tetrahydro-2H-fluorene-2,2-dicarboxylate (26)

PC: 4CzIPN; Reaction time: 16 h; Yield: 64.2 mg, 73%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow solid (m.p. = 105-106 °C).

¹**H** NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.41 (dd, J = 8.0, 1.6 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 5.94 – 5.92 (m, 1H), 3.69 (s, 3H), 3.65 (s, 3H), 3.03 – 2.96 (m, 1H), 2.48 – 2.35 (m, 2H), 2.31 – 2.26 (m, 1H), 1.80 (t, J = 12.5 Hz, 1H), 1.29 (s, 3H), 0.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.7, 171.5, 156.4, 140.1, 138.0, 135.8, 131.9, 122.3, 115.4, 93.4, 53.9, 53.00, 52.96, 48.3, 44.8, 31.3, 28.4, 26.0. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₁IO₄Na⁺ [M+Na⁺] 463.0377, found 463.0375.

7-iodo-9,9-dimethyl-2-tosyl-2,3,9,9a-tetrahydro-1H-indeno[2,1-c]pyridine (27)

PC: 4CzIPN; Reaction time: 16 h; Yield: 48.9 mg, 51%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow solid (m.p. = 114-115 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, J = 8.2 Hz, 2H), 7.53 (d, J = 7.4 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.4 Hz, 1H), 5.93 (q, J = 3.0 Hz, 1H), 4.27 (dt, J = 17.3, 3.6 Hz, 1H), 4.14 (dd, J = 11.0, 5.4 Hz, 1H), 3.41 (dt, J = 17.4, 3.3 Hz, 1H), 2.86 – 2.79 (m, 1H), 2.48 – 2.42 (m, 4H), 1.43 (s, 3H), 0.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.1, 143.7, 140.2, 137.1, 136.1, 134.0, 132.0, 129.9, 127.6, 122.3, 113.1, 94.2, 50.5, 45.2, 44.4, 43.9, 26.7, 26.2, 21.7. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₂₃INO₂S⁺ [M+H⁺] 480.0489, found 480.0484.

dimethyl-9,9-dimethyl-7-(trifluoromethyl)-1,3,9,9a-tetrahydro-2*H*-fluorene-2,2-dicarboxylate (28)

PC: 4CzIPN; Reaction time: 40 h; Yield: 46.6 mg, 61%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a white solid (m.p. = 92-93 °C).

¹**H NMR** (400 **MHz, CDCl₃**) δ 7.38 – 7.34 (m, 3H), 6.06 – 6.04 (m, 1H), 3.70 (s, 3H), 3.66 (s, 3H), 3.05 (dt, J = 18.5, 3.8 Hz, 1H), 2.49 – 2.40 (m, 2H), 2.38 – 2.31 (m, 1H), 1.83 (t, J = 12.4 Hz, 1H), 1.35 (s, 3H), 0.90 (s, 3H). ¹³**C NMR** (101 **MHz, CDCl₃**) δ 172.7, 171.5, 154.6, 141.9 (d, J = 1.6 Hz), 140.1, 130.0 (q, J = 31.9 Hz), 124.6 (q, J = 273.2 Hz), 124.1 (q, J = 3.8 Hz), 120.7, 119.5 (q, J = 3.9 Hz), 117.2, 53.9, 53.0, 53.0, 48.6, 44.8, 31.4, 28.5, 26.01, 25.99. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -61.95. **HRMS (m/z, ESI-TOF):** Calcd for C₂₀H₂₂F₃O₄⁺ [M+H⁺] 383.1465, found 383.1468.

9,9-dimethyl-2-tosyl-7-(trifluoromethyl)-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridine (29)

PC: 4CzIPN; Reaction time: 40 h; Yield: 53.9 mg, 64%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a white solid (m.p. = 138-139 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.61 (m, 2H), 7.35 (d, J = 7.9 Hz, 3H), 7.26 (d, J = 8.0 Hz, 2H), 5.95 (q, J = 3.1 Hz, 1H), 4.22 (dt, J = 17.5, 3.7 Hz, 1H), 4.08 (dd, J = 11.0, 5.4 Hz, 1H), 3.34 (dt, J = 17.6, 3.4 Hz, 1H), 2.85 – 2.72 (m, 1H), 2.39 (d, J = 11.0 Hz, 1H), 2.35 (s, 3H), 1.39 (s, 3H), 0.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.4, 143.8, 140.9 (d, J = 1.5 Hz), 140.0, 133.9, 130.7 (q, J = 31.9 Hz), 129.9, 127.6, 124.38 (q, J = 3.8 Hz), 124.37 (q, J = 273.3 Hz), 120.9, 119.6 (q, J = 3.9 Hz), 114.8, 50.7, 45.2, 44.5, 44.0, 26.6, 26.2, 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.04. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₂₃F₃NO₂S⁺ [M+H⁺] 422.1396, found 422.1395.

7-ethyl 2,2-dimethyl-9,9-dimethyl-1,3,9,9a-tetrahydro-2H-fluorene-2,2,7-tricarboxylate (30)

PC: [Ir(ppy)₂(dtbbpy)](PF₆); Reaction time: 16 h; Yield: 47.1 mg, 61%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 15/1) as a yellow solid (m.p. = 90-91 °C).

¹**H NMR** (400 **MHz**, **CDCl**₃) δ 7.84 – 7.77 (m, 2H), 7.32 (d, *J* = 8.5 Hz, 1H), 6.07 – 6.04 (m, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 3.70 (s, 3H), 3.66 (s, 3H), 3.08 – 3.01 (m, 1H), 2.50 – 2.39 (m, 2H), 2.39 – 2.29 (m, 1H), 1.83 (t, *J* = 12.5 Hz, 1H), 1.36 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H), 0.89 (s, 3H). ¹³**C NMR** (101 MHz, **CDCl**₃) δ 172.7, 171.5, 166.9, 154.2, 142.9, 140.5, 130.0, 128.6, 123.8, 120.2, 117.3, 61.0, 53.9, 53.00, 52.97, 48.5, 44.6, 31.5, 28.5, 26.1, 26.0, 14.5. **HRMS** (m/z, **ESI-TOF**): Calcd for C₂₂H₂₆O₆Na⁺ [M+Na⁺] 409.1622, found 409.1625.

ethyl (S)-9,9-dimethyl-2-tosyl-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridine-7-carboxylate (31)

PC: 4CzIPN; Reaction time: 40 h; Yield: 53.6 mg, 63%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 15/1) as a yellow solid (m.p. = 132-133 °C).

¹**H NMR** (400 **MHz**, **CDCl**₃) δ 7.90 (d, J = 7.9 Hz, 1H), 7.87 (s, 1H), 7.73 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 7.9 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 6.03 (q, J = 3.1 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 4.30 (dt, J = 17.5, 3.6 Hz, 1H), 4.16 (dd, J = 11.0, 5.3 Hz, 1H), 3.43 (dt, J = 17.7, 3.3 Hz, 1H), 2.89 – 2.84 (m, 1H), 2.46 (t, J = 10.9 Hz, 1H), 2.43 (s, 3H), 1.48 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H), 0.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 154.0, 143.7, 141.9, 140.4, 133.9, 130.7, 129.9, 128.8, 127.6, 123.9, 120.3, 114.8, 61.1, 50.7, 45.2, 44.3, 44.0, 26.8, 26.1, 21.6, 14.5. HRMS (m/z, ESI-TOF): Calcd for C₂₄H₂₇NO₄SNa⁺ [M+Na⁺] 448.1553, found 448.1554.

dimethyl-9,9-dimethyl-7-(trifluoromethoxy)-1,3,9,9a-tetrahydro-2*H*-fluorene-2,2-dicarboxylate (32)

PC: 4CzIPN; Reaction time: 40 h; Yield: 61.3 mg, 77%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a white solid (m.p. = 60-61 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 (d, J = 9.0 Hz, 1H), 6.99 – 6.90 (m, 2H), 5.94 – 5.92 (m, 1H), 3.69 (s, 3H), 3.66 (s, 3H), 3.05 – 2.99 (m, 1H), 2.49 – 2.38 (m, 2H), 2.38 – 2.29 (m, 1H), 1.82 (t, J = 12.4 Hz, 1H), 1.32 (s, 3H), 0.88 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 172.8, 171.5, 156.0, 149.3 (q, J = 1.9 Hz), 139.8, 137.1, 121.5, 120.6 (q, J = 257.7 Hz), 119.8, 115.4, 115.4, 53.9, 53.00, 52.96, 48.7, 44.9, 31.3, 28.5, 25.95, 25.91. ¹⁹F **NMR** (376 MHz, CDCl₃) δ -57.81. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₂F₃O₅⁺ [M+H⁺] 399.1414, found 399.1412.

9,9-dimethyl-2-tosyl-7-(trifluoromethoxy)-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridine (33)

PC: 4CzIPN; Reaction time: 40 h; Yield: 54.2 mg, 62%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow solid (m.p. = 100-101 °C).

¹**H NMR** (400 **MHz**, **CDCl**₃) δ 7.65 (d, J = 8.2 Hz, 2H), 7.27 (dd, J = 8.2, 4.0 Hz, 3H), 7.00 – 6.90 (m, 2H), 5.83 (q, J = 3.0 Hz, 1H), 4.19 (dt, J = 17.3, 3.6 Hz, 1H), 4.06 (dd, J = 11.0, 5.3 Hz, 1H), 3.32 (dt, J = 17.3, 4.1 Hz, 1H), 2.82 – 2.75 (m, 1H), 2.40 – 2.35 (m, 4H), 1.36 (s, 3H), 0.81 (s, 3H). ¹³**C NMR** (101 MHz, **CDCl**₃) δ 155.9, 149.7 (q, J = 1.9 Hz), 143.8, 139.9, 136.2, 134.0, 129.9, 127.6, 121.7, 120.6 (q, J = 258.1 Hz),120.0, 115.5, 113.0, 50.9, 45.1, 44.5, 44.0, 26.6, 26.1, 21.7. ¹⁹**F NMR** (376 MHz, **CDCl**₃) δ -57.77. **HRMS (m/z, ESI-TOF):** Calcd for C₂₂H₂₃F₃NO₃S⁺ [M+H⁺] 438.1345, found 438.1347.

dimethyl-7-cyano-9,9-dimethyl-1,3,9,9a-tetrahydro-2*H*-fluorene-2,2-dicarboxylate (34)

PC: $[Ir(ppy)_2(dtbbpy)](PF_6)$; Reaction time: 16 h; Yield: 43.4 mg, 64%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 10/1) as a yellow solid (m.p. = 98-99 °C).

¹**H NMR (400 MHz, CDCl**₃) δ 7.41 – 7.38 (m, 2H), 7.35 (d, J = 8.2 Hz, 1H), 6.11 – 6.09 (m, 1H), 3.71 (s, 3H), 3.67 (s, 3H), 3.12 – 3.01 (m, 1H), 2.50 – 2.40 (m, 2H), 2.37 – 2.30 (m, 1H), 1.81 (t, J = 12.5 Hz, 1H), 1.34 (s, 3H), 0.89 (s, 3H). ¹³**C NMR (101 MHz, CDCl**₃) δ 172.5, 171.4, 154.8, 142.9, 139.9, 131.1, 126.5, 121.2, 119.6, 118.8, 111.1, 53.8, 53.10, 53.06, 48.3, 44.9, 31.5, 28.4, 26.0, 25.9. **HRMS (m/z, ESI-TOF):** Calcd for C₂₀H₂₁NO₄Na⁺ [M+Na⁺] 362.1363, found 362.1370.

9,9-dimethyl-2-tosyl-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridine-7-carbonitrile (35)

PC: 4CzIPN; Reaction time: 40 h; Yield: 43.8 mg, 58%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 10/1) as a yellow solid (m.p. = 109-110 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (d, J = 8.3 Hz, 2H), 7.43 – 7.38 (m, 2H), 7.35 (d, J = 7.8 Hz, 1H), 7.27 (d, J = 8.0 Hz, 2H), 6.01 – 5.99 (m, 1H), 4.23 (dt, J = 17.8, 3.6 Hz, 1H), 4.08 (dd, J = 11.1, 5.4 Hz, 1H), 3.34 (dt, J = 17.8, 3.2 Hz, 1H), 2.84 – 2.73 (m, 1H), 2.39 – 2.33 (m, 4H), 1.39 (s, 3H), 0.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.6, 143.9, 141.9, 139.8, 133.8, 131.3, 129.9, 127.6, 126.6, 121.3, 119.3, 116.3, 111.8, 50.5, 45.2, 44.5, 43.9, 26.6, 26.1, 21.7. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₂₂N₂O₂SNa⁺ [M+Na⁺] 401.1294, found 401.1297.

dimethyl-7-acetyl-9,9-dimethyl-1,3,9,9a-tetrahydro-2*H*-fluorene-2,2-dicarboxylate (36)

PC: 4CzIPN; Reaction time: 40 h; Yield: 34.2 mg, 48%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 10/1) as a white solid (m.p. = 126-127 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.69 (m, 2H), 7.35 (d, J = 8.0 Hz, 1H), 6.10 – 6.07 (m, 1H), 3.70 (s, 3H), 3.67 (s, 3H), 3.09 – 3.02 (m, 1H), 2.53 (s, 3H), 2.49 – 2.40 (m, 2H), 2.39 – 2.30 (m, 1H), 1.83 (t, J = 12.5 Hz, 1H), 1.37 (s, 3H), 0.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.1, 172.7, 171.5, 154.5, 143.2, 140.4, 137.0, 127.9, 122.3, 120.4, 117.8, 53.9, 53.04, 53.01, 48.6, 44.7, 31.5, 28.53, 26.9, 26.10, 26.06. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₂₅O₅⁺ [M+H⁺] 357.1697, found 357.1692.

1-(9,9-dimethyl-2-tosyl-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridin-7-yl)ethan-1-one (37)

PC: 4CzIPN; Reaction time: 40 h; Yield: 40.3 mg, 51%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 10/1) as a yellow solid (m.p. = 108-109 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (d, J = 7.5 Hz, 2H), 7.73 (d, J = 8.1 Hz, 2H), 7.43 (d, J = 8.1 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 6.06 (d, J = 3.0 Hz, 1H), 4.30 (dt, J = 17.6, 3.3 Hz, 1H), 4.16 (dd, J = 11.0, 5.3 Hz, 1H), 3.42 (dt, J = 17.6, 3.1 Hz, 1H), 2.91 – 2.81 (m, 1H), 2.60 (s, 3H), 2.48 – 2.43 (m, 4H), 1.49 (s, 3H), 0.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 154.3, 143.7, 142.1, 140.2, 137.5, 133.7, 129.8, 128.0, 127.5, 122.4, 120.5, 115.2, 50.7, 45.2, 44.2, 44.0, 26.9, 26.7, 26.1, 21.6. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₆NO₃S⁺ [M+H⁺] 396.1628, found 396.1626.

9,9-dimethyl-2-tosyl-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridine-7-carbaldehyde (38)

PC: 4CzIPN; Reaction time: 40 h; Yield: 28.2 mg, 37%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 10/1) as a yellow solid (m.p. = 89-90 °C).

¹**H NMR (400 MHz, CDCl₃)** δ 9.97 (s, 1H), 7.74 – 7.71 (m, 4H), 7.50 (d, J = 8.3 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 6.11 (q, J = 2.8 Hz, 1H), 4.31 (dt, J = 17.7, 3.5 Hz, 1H), 4.17 (dd, J = 11.0, 5.4 Hz, 1H), 3.43 (dt, J = 17.8, 3.3 Hz, 1H), 2.96 – 2.84 (m, 1H), 2.48 – 2.44 (m, 4H), 1.50 (s, 3H), 0.91 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 191.9, 154.7, 143.8, 143.5, 140.2, 136.8, 133.7, 130.0, 129.9, 127.5, 123.3, 121.0, 116.0, 50.6, 45.2, 44.2, 43.9, 26.7, 26.1, 21.6. **HRMS (m/z, ESI-TOF):** Calcd for C₂₂H₂₄NO₃S⁺ [M+H⁺] 328.1471, found 328.1472.

dimethyl-5,9,9-trimethyl-1,3,9,9a-tetrahydro-2H-fluorene-2,2-dicarboxylate (39)

PC: 4CzIPN; Reaction time: 16 h; Yield: 38.0 mg, 58%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow solid (m.p. = 85-86 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 7.10 – 6.96 (m, 2H), 6.90 (d, J = 7.1 Hz, 1H), 5.95 – 5.93 (m, 1H), 3.69 (s, 3H), 3.65 (s, 3H), 3.11 – 3.04 (m, 1H), 2.48 – 2.43 (m, 1H), 2.42 – 2.39 (m, 1H), 2.36 (s, 3H), 2.33 – 2.27 (m, 1H), 1.84 (t, J = 12.5 Hz, 1H), 1.30 (s, 3H), 0.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 171.6, 154.8, 141.3, 136.4, 133.7, 128.9, 127.5, 119.8, 117.8, 53.7, 53.0, 52.9, 48.8, 44.2, 31.9, 28.7, 26.11, 26.05, 20.9. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₄O₄Na⁺ [M+Na⁺] 351.1567, found 351.1575.

dimethyl-5-fluoro-9,9-dimethyl-1,3,9,9a-tetrahydro-2H-fluorene-2,2-dicarboxylate (40)

PC: 4CzIPN; Reaction time: 16 h; Yield: 41.8 mg, 63%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.12 (m, 1H), 6.98 (d, J = 7.5 Hz, 1H), 6.90 – 6.81 (m, 1H), 6.27 – 6.18 (m, 1H), 3.77 (s, 3H), 3.74 (s, 3H), 3.18 – 3.10 (m, 1H), 2.55 – 2.45 (m, 2H), 2.43 – 2.39 (m, 1H), 1.90 (t, J = 12.4 Hz, 1H), 1.39 (s, 3H), 0.96 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 171.5, 158.6 (d, J = 251.8 Hz), 157.2 (d, J = 4.6 Hz), 137.2 (d, J = 3.2 Hz), 129.0 (d, J = 7.3 Hz), 125.3 (d, J = 14.5 Hz), 119.2 (d, J = 6.4 Hz), 117.9 (d, J = 3.3 Hz), 113.6 (d, J = 20.1 Hz), 53.6, 52.90, 52.86, 48.4, 45.1 (d, J = 1.5 Hz), 31.4, 28.4, 25.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.61. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₂FO₄⁺ [M+H⁺] 333.1497, found 333.1504.

5,9,9-trimethyl-2-tosyl-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridine (41)

PC: 4CzIPN; Reaction time: 40 h; Yield: 16.9 mg, 23%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow oil.

¹**H NMR** (400 **MHz**, **CDCl**₃) δ 7.66 (d, J = 8.0 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 7.13 (t, J = 7.7 Hz, 1H), 6.96 (d, J = 7.8 Hz, 1H), 6.92 (d, J = 7.5 Hz, 1H), 6.32 (q, J = 3.1 Hz, 1H), 4.27 (dt, J = 17.3, 3.6 Hz, 1H), 4.03 (dd, J = 11.0, 5.3 Hz, 1H), 3.32 (dt, J = 17.2, 3.3 Hz, 1H), 2.78 – 2.73 (m, 1H), 2.42 (s, 3H), 2.39 – 2.36 (m, 4H), 1.34 (s, 3H), 0.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.3, 143.7, 134.0, 134.9, 134.0, 129.9, 128.7, 127.7, 123.1, 118.6, 117.4, 50.8, 45.4, 44.1, 44.0, 26.8, 26.2, 21.7, 15.2. **HRMS (m/z, ESI-TOF):** Calcd for C₂₂H₂₅NO₂SNa⁺ [M+Na⁺] 390.1498, found 390.1510.

5-fluoro-9,9-dimethyl-2-tosyl-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridine (42)

PC: 4CzIPN; Reaction time: 40 h; Yield: 32.6 mg, 44%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 7.9 Hz, 2H), 7.27 (d, J = 7.9 Hz, 2H), 7.11 (td, J = 7.7, 5.0 Hz, 1H), 6.90 (d, J = 7.5 Hz, 1H), 6.79 (t, J = 9.0 Hz, 1H), 6.05 (q, J = 3.3 Hz, 1H), 4.22 (dt, J = 18.5, 3.5 Hz, 1H), 4.06 (dd, J = 11.0, 5.3 Hz, 1H), 3.33 (dt, J = 17.4, 3.4 Hz, 1H), 2.80 – 2.73 (m, 1H), 2.40 (t, J = 11.0 Hz, 1H), 2.36 (s, 3H), 1.37 (s, 3H), 0.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.6 (d, J = 252.1 Hz), 157.0 (d, J = 4.3 Hz), 143.7, 137.2 (d, J = 3.0 Hz), 134.0, 129.89, 129.88 (d, J = 7.4 Hz), 127.6, 124.7 (d, J = 14.6 Hz), 118.1 (d, J = 3.4 Hz), 116.8 (d, J = 6.2 Hz), 113.9 (d, J = 19.9 Hz), 50.7, 45.2, 44.9 (d, J = 1.6 Hz), 44.0, 26.7, 26.2, 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.43. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₂₃FNO₂S⁺ [M+H⁺] 372.1428, found 372.1432.

dimethyl-8,9,9-trimethyl-1,3,9,9a-tetrahydro-2H-fluorene-2,2-dicarboxylate (43)

PC: 4CzIPN; Reaction time: 16 h; Yield: 43.3 mg, 66%.

The products were isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a white oil (m.p. = 114-115 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 7.18 – 7.14 (m, 1H), 7.00 (q, J = 7.7 Hz, 1H), 6.88 (d, J = 7.4 Hz, 1H), 5.90 – 5.87 (m, 1H), 3.69 (s, 3H), 3.64 (s, 3H), 3.06 – 2.96 (m, 1H), 2.45 – 2.38 (m, 2H), 2.33 – 2.24 (m, 4H), 1.82 (t, J = 12.4 Hz, 1H), 1.36 (s, 3H), 0.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.0, 171.6, 150.5, 141.1, 139.0, 134.1, 131.0, 129.0, 126.9, 122.1, 121.0, 118.3, 114.0, 113.7, 54.2, 52.91, 52.85, 48.82, 48.75, 45.8, 31.5, 31.4, 28.7, 28.2, 26.4, 26.3, 26.1, 22.8, 19.6. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₅O₄⁺ [M+H⁺] 329.1747, found 329.1745.

8,9,9-trimethyl-2-tosyl-2,3,9,9a-tetrahydro-1H-indeno[2,1-c]pyridine (44)

PC: 4CzIPN; Reaction time: 16 h; Yield: 48.4 mg, 66%.

The products were isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow solid (m.p. = 152-153 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (d, J = 8.2 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 7.18 – 7.08 (m, 1H), 7.04 – 6.87 (m, 2H), 5.78 (q, J = 3.0 Hz, 1H), 4.17 (dt, J = 17.1, 3.6 Hz, 1H), 4.03 (dd, J = 11.1, 5.3 Hz, 1H), 3.36 – 3.29 (m, 1H), 2.75 – 2.68 (m, 1H), 2.41 – 2.34 (m, 4H), 2.31, 2.25 (s, 3H), 1.47, 1.34 (s, 3H), 0.86, 0.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.2, 150.3, 143.6, 141.14, 141.08, 138.1, 137.6, 136.8, 134.2, 134.1, 131.7, 129.8, 129.7, 127.6, 127.2, 122.2, 121.0, 118.4, 111.6, 111.4, 51.0, 50.8, 45.6, 45.3, 45.2, 44.2, 43.9, 43.8, 26.94, 26.92, 26.3, 23.0, 21.6, 21.4, 19.4. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₂₆NO₂S⁺ [M+H⁺] 368.1679, found 368.1684.

PC: $[Ir(ppy)_2(dtbbpy)](PF_6)$; Reaction time: 16 h; Yield: 36.0 mg, 47%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.64 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 7.9 Hz, 2H), 7.08 (t, J = 7.8 Hz, 1H), 6.89 (d, J = 7.6 Hz, 1H), 6.65 (d, J = 8.1 Hz, 1H), 5.77 (q, J = 3.2 Hz, 1H), 4.17 (dt, J = 17.2, 3.5 Hz, 1H), 4.03 (dd, J = 11.0, 5.3 Hz, 1H), 3.73 (s, 3H), 3.38 – 3.27 (m, 1H), 2.78 – 2.65 (m, 1H), 2.40 – 2.35 (m, 4H), 1.48 (s, 3H), 0.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.0, 143.6, 141.7, 139.8, 139.5, 134.1, 129.8, 128.6, 127.6, 112.9, 111.9, 110.8, 55.2, 50.8, 45.2, 45.0, 43.9, 26.9, 22.8, 21.7. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₂₆NO₃S⁺ [M+H⁺] 384.1628, found 384.1629.

6-methoxy-9,9-dimethyl-2-tosyl-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridine (45')

PC: [Ir(ppy)₂(dtbbpy)](PF₆); Reaction time: 16 h; Yield: 10.7 mg, 14%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (d, J = 8.0 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 8.3 Hz, 1H), 6.79 (d, J = 2.4 Hz, 1H), 6.74 (dd, J = 8.3, 2.4 Hz, 1H), 5.80 (q, J = 3.1 Hz, 1H), 4.19 (dt, J = 17.2, 3.6 Hz, 1H), 4.05 (dd, J = 11.0, 5.3 Hz, 1H), 3.72 (s, 3H), 3.34 (dt, J = 17.3, 3.2 Hz, 1H), 2.79 – 2.72 (m, 1H), 2.37 (d, J = 8.5 Hz, 4H), 1.34 (s, 3H), 0.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 146.4, 143.7, 141.2, 138.8, 134.1, 129.9, 127.6, 123.3, 115.6, 112.1, 104.9, 55.6, 51.1, 45.2, 44.2, 43.7, 27.1, 26.4, 21.7. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₂₆NO₃S⁺ [M+H⁺] 384.1628, found 384.1623.

9,9-dimethyl-2-tosyl-6-(trifluoromethyl)-2,3,9,9a-tetrahydro-1H-indeno[2,1-c]pyridine (46)

PC: 4CzIPN; Reaction time: 40 h; Yield: 44.6 mg, 53%.

The products were isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow solid (m.p. = 105-106 °C).

¹**H** NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.3 Hz, 2H), 7.52 (s, 1H), 7.42 (d, J = 8.3 Hz, 1H), 7.27 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.4 Hz, 1H), 5.93 (q, J = 3.1 Hz, 1H), 4.22 (dt, J = 17.5, 3.7 Hz, 1H), 4.08 (dd, J = 11.0, 5.4 Hz, 1H), 3.40 – 3.30 (m, 1H), 2.83 – 2.76 (m, 1H), 2.42 – 2.34 (m, 4H), 1.39 (s, 3H), 0.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.5, 143.8, 140.0, 138.2, 134.0, 129.9, 128.5 (q, J = 220.5 Hz), 127.6, 125.7 (q, J = 4.2 Hz), 123.0, 117.7 (q, J = 4.1 Hz), 114.2, 50.7, 45.2, 44.5, 44.0, 26.6, 26.0, 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.16. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₂₂F₃NO₂SNa⁺ [M+Na⁺] 444.1216, found 444.1219.

9,9-dimethyl-7-tosyl-7,8,8a,9-tetrahydro-6*H*-[1,3]dioxolo[4',5':5,6]indeno[2,1-c]pyridine (47)

PC: 4CzIPN; Reaction time: 16 h; Yield: 59.6 mg, 75%.

The products were isolated by flash column chromatography (petroleum ether/EtOAc = 10/1) as a yellow solid (m.p. = 151-152 °C).

¹**H** NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 6.69 (s, 1H), 6.56 (s, 1H), 5.85 (d, J = 8.5 Hz, 2H), 5.60 (q, J = 3.1 Hz, 1H), 4.15 (dt, J = 17.0, 3.6 Hz, 1H), 4.02 (dd, J = 10.9, 5.3 Hz, 1H), 3.30 (dt, J = 17.0, 3.2 Hz, 1H), 2.77 – 2.71 (m, 1H), 2.39 – 2.33 (m, 4H), 1.30 (s, 3H), 0.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.7, 148.4, 147.3, 143.6, 140.8, 134.0, 131.1, 129.8, 127.6, 109.7, 103.0, 101.4, 100.7, 51.1, 45.1, 44.2, 44.1, 27.0, 26.3, 21.7. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₂₃NO₄SNa⁺ [M+Na⁺] 420.1240, found 420.1243.

12,12-dimethyl-2-tosyl-1,2,3,7,12,12a-hexahydropyrido[3',4':4,5]cyclopenta[1,2-c]carbazole (48)

PC: 4CzIPN; Reaction time: 40 h; Yield: 56.6 mg, 64%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 5/1) as a yellow solid (m.p. = 269-271 °C).

¹**H** NMR (400 MHz, DMSO-*d*₆) δ 11.59 (s, 1H), 8.17 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 7.9 Hz, 2H), 7.56 – 7.36 (m, 6H), 7.21 (t, J = 7.6 Hz, 1H), 5.82 (s, 1H), 4.29 – 4.07 (m, 2H), 3.34 (s, 1H), 2.84 – 2.71 (m, 1H), 2.48 (t, J = 11.0 Hz, 1H), 2.38 (s, 3H), 1.80 (s, 3H), 1.21 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 147.7, 144.0, 142.0, 141.7, 140.6, 133.8, 130.4, 129.1, 127.8, 125.6, 124.3, 120.8, 119.3, 118.9, 117.9, 111.8, 111.1, 108.8, 51.9, 45.4, 45.3, 44.3, 27.5, 22.4, 21.5. HRMS (m/z, ESI-TOF): Calcd for C₂₇H₂₆N₂O₂SNa⁺ [M+Na⁺] 465.1607, found 465.1612.

10,10-dimethyl-8-tosyl-1,7,8,9,9a,10-hexahydropyrido[3',4':4,5]cyclopenta[1,2-g]indole (49)

PC: 4CzIPN; Reaction time: 40 h; Yield: 32.9 mg, 42%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 5/1) as a brownness solid (m.p. = 118-119 °C).

¹**H NMR (400 MHz, CDCl₃)** δ 8.37 (s, 1H), 7.74 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 7.26 – 7.20 (m, 3H), 6.63 (s, 1H), 5.74 (q, J = 2.9 Hz, 1H), 4.27 (dt, J = 16.8, 3.3 Hz, 1H), 4.17 (dd, J = 10.8, 5.2 Hz, 1H), 3.43 (dt, J = 16.7, 3.1 Hz, 1H), 2.93 – 2.89 (m, 1H), 2.54 (t, J = 11.0 Hz, 1H), 2.42 (s, 3H), 1.68 (s, 3H), 1.07 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 145.4, 143.5, 142.3, 136.9, 134.0, 129.7, 129.2, 127.6, 124.5, 122.9, 114.8, 110.5, 108.4, 100.8, 51.0, 45.3, 45.2, 44.0, 27.3, 24.3, 21.6. **HRMS (m/z, ESI-TOF):** Calcd for C₂₃H₂₄N₂O₂SNa⁺ [M+Na⁺] 415.1451, found 415.1451.

9,9-dimethyl-2-tosyl-2,3,9,9a-tetrahydro-1H-cyclopenta[1,2-c:4,3-c']dipyridine (50)

PC: [Ir(ppy)₂(dtbbpy)](PF₆); Reaction time: 40 h; Yield: 36.8 mg, 52%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 10/1) as a brownness paste.

¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (s, 1H), 8.37 (d, J = 5.1 Hz, 1H), 7.65 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 4.9 Hz, 1H), 6.06 (q, J = 3.0 Hz, 1H), 4.23 (dt, J = 17.8, 3.6 Hz, 1H), 4.08 (dd, J = 11.1, 5.4 Hz, 1H), 3.40 – 3.30 (m, 1H), 2.80 – 2.73 (m, 1H), 2.39 – 2.33 (m, 4H), 1.44 (s, 3H), 0.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.3, 148.2, 145.3, 145.0, 143.9, 139.7, 133.8, 129.9, 127.6, 117.3, 115.1, 50.5, 45.2, 43.9, 43.6, 26.7, 26.2, 21.7. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₃N₂O₂S⁺ [M+H⁺] 355.1475, found 355.1482.

dimethyl-4,4-dimethyl-4,4a,5,7-tetrahydro-6*H*-indeno[1,2-b]thiophene-6,6-dicarboxylate (51)

PC: 4CzIPN; Reaction time: 16 h; Yield: 42.2 mg, 66%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a brownness oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.10 (d, J = 4.9 Hz, 1H), 6.73 (d, J = 4.9 Hz, 1H), 5.55 (dt, J = 4.7, 2.9 Hz, 1H), 3.68 (s, 3H), 3.67 (s, 3H), 2.99 (dt, J = 19.3, 3.4 Hz, 1H), 2.60 (dtt, J = 11.2, 4.7, 2.6 Hz, 1H), 2.44 – 2.34 (m, 2H), 1.89 (t, J = 12.8 Hz, 1H), 1.28 (s, 3H), 0.93 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 172.8, 171.7, 159.5, 139.3, 137.3, 128.4, 120.7, 112.0, 53.9, 53.0, 52.9, 43.1, 31.0, 28.8, 26.8, 25.3. **HRMS (m/z, ESI-TOF):** Calcd for C₁₇H₂₀O₄SNa⁺ [M+Na⁺] 343.0975, found 343.0977.

4,4-dimethyl-6-tosyl-4a,5,6,7-tetrahydro-4*H*-thieno[2',3':3,4]cyclopenta[1,2-c]pyridine (52)

PC: 4CzIPN; Reaction time: 16 h; Yield: 40.2 mg, 56%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow solid (m.p. = 88-89 °C).

¹**H NMR (400 MHz, CDCl₃)**δ 7.74 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 4.9 Hz, 1H), 6.81 (d, J = 4.9 Hz, 1H), 5.54 (q, J = 3.1 Hz, 1H), 4.25 (dt, J = 17.1, 3.4 Hz, 1H), 4.11 (dd, J = 11.0, 5.1 Hz, 1H), 3.40 (dt, J = 17.1, 3.3 Hz, 1H), 3.16 – 3.09 (m, 1H), 2.55 (t, J = 11.1 Hz, 1H), 2.45 (s, 3H), 1.43 (s, 3H), 0.96 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 159.9, 143.7, 138.4, 137.1, 134.1, 129.9, 129.5, 127.6, 120.7, 109.5, 55.0, 44.8, 44.0, 42.7, 27.5, 25.5, 21.7. **HRMS (m/z, ESI-TOF):** Calcd for C₁₉H₂₁NO₂S₂Na⁺ [M+Na⁺] 382.0906, found 382.0912.

8,8-dimethyl-6-tosyl-6,7,7a,8-tetrahydro-5*H*-thieno[3',2':3,4]cyclopenta[1,2-c]pyridine (53)

PC: 4CzIPN; Reaction time: 16 h; Yield: 41.6 mg, 58%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a brownness oil.

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.71 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 5.0 Hz, 1H), 6.86 (d, J = 5.0 Hz, 1H), 5.54 (q, J = 2.8 Hz, 1H), 4.22 (dt, J = 16.8, 3.2 Hz, 1H), 4.08 (dd, J = 10.9, 5.2 Hz, 1H), 3.36 (dt, J = 16.8, 3.1 Hz, 1H), 3.16 – 3.10 (m, 1H), 2.52 (t, J = 11.1 Hz, 1H), 2.43 (s, 3H), 1.46 (s, 3H), 1.01 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.2, 143.6, 142.0, 137.3, 134.0, 129.8, 128.6, 127.5, 118.7, 109.3, 54.8, 44.7, 44.1, 43.9, 28.4, 26.5, 21.6. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₂NO₂S₂⁺ [M+H⁺] 360.1086, found 360.1088.

9,9-dimethyl-2-tosyl-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridin-7-yl 4-(N,N-dipropylsulfamoyl)benzoate (55)

PC: [Ir(ppy)₂(dtbbpy)](PF₆); Reaction time: 40 h; Yield: 42.0 mg, 33%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 5/1) as a yellow solid (m.p. = 95-96 °C).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.31 (d, J = 8.5 Hz, 2H), 7.95 (d, J = 8.5 Hz, 2H), 7.73 (d, J = 8.3 Hz, 2H), 7.42 (d, J = 8.8 Hz, 1H), 7.35 (d, J = 7.9 Hz, 2H), 7.08 – 7.01 (m, 2H), 5.91 (q, J = 2.9 Hz, 1H), 4.28 (dt, J = 17.2, 3.5 Hz, 1H), 4.15 (dd, J = 11.0, 5.3 Hz, 1H), 3.45 – 3.39 (m, 1H), 3.13 (dd, J = 8.7, 6.6 Hz, 4H), 2.90 – 2.85 (m, 1H), 2.46 (d, J = 14.8 Hz, 4H), 1.60 – 1.54 (m, 4H), 1.45 (s, 3H), 0.94 – 0.86 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 155.6, 151.1, 145.0, 143.7, 140.0, 135.6, 133.9, 132.8, 130.8, 129.8, 127.5, 127.2, 121.4, 120.4, 115.8, 112.4, 50.7, 49.9, 45.1, 44.4, 44.0, 26.6, 26.1, 21.9, 21.6, 11.2. HRMS (m/z, ESI-TOF): Calcd for $C_{34}H_{41}N_2O_6S_2$ [M+H⁺] 637.2401, found 637.2404.

7-((3aS,5S,6R,6aS)-5-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3] dioxol-6-yl) 2,2-dimethyl 9,9-dimethyl-1,3,9,9a-tetrahydro-2*H*-fluorene-2,2,7-tricarboxylate (56)

PC: 4CzIPN; Reaction time: 16 h; Yield: 78.2 mg, 65%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 5/1) as a yellow solid (m.p. = 105-106 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (dd, J = 7.4, 2.2 Hz, 2H), 7.39 – 7.30 (m, 1H), 6.09 (q, J = 3.1 Hz, 1H), 5.89 (t, J = 3.2 Hz, 1H), 5.42 (t, J = 3.0 Hz, 1H), 4.57 (dd, J = 3.7, 1.8 Hz, 1H), 4.32 – 4.25 (m, 2H), 4.07 – 4.01 (m, 2H), 3.70 (s, 3H), 3.66 (s, 3H), 3.05 (dt, J = 18.6, 3.8 Hz, 1H), 2.53 – 2.39 (m, 2H), 2.39 – 2.26 (m, 1H), 1.88 – 1.77 (m, 1H), 1.49 (s, 3H), 1.36 (d, J = 1.6 Hz, 3H), 1.34 (s, 3H), 1.25 (s, 3H), 1.19 (d, J = 1.5 Hz, 3H), 0.89 (d, J = 3.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 165.5, 154.4, 143.6, 140.3, 128.7, 124.1, 120.4, 117.9, 112.4, 109.4, 105.2, 83.5, 80.1, 76.7, 76.7, 72.7, 67.3, 53.9, 53.00, 52.97, 48.5, 48.5, 44.6, 31.5, 28.5, 26.9, 26.8, 26.3, 26.10, 26.05, 25.3. HRMS (m/z, ESI-TOF): Calcd for C₃₂H₄₀O₁₁Na⁺ [M+Na⁺] 623.2463, found 623.2454.

(3aS,5S,6R,6aS)-5-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dio xol-6-yl 9,9-dimethyl-2-tosyl-2,3,9,9a-tetrahydro-1*H*-indeno[2,1-c]pyridine-7-carboxylate (57)

PC: 4CzIPN; Reaction time: 16 h; Yield: 96.0 mg, 75%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 5/1) as a luminous yellow solid (m.p. = 125-126 °C).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.86 (t, J = 6.0 Hz, 2H), 7.73 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 7.9 Hz, 1H), 7.35 (d, J = 8.1 Hz, 2H), 6.07 (d, J = 2.9 Hz, 1H), 5.96 (d, J = 3.6 Hz, 1H), 5.49 (dd, J = 5.1, 2.1 Hz, 1H), 4.64 – 4.62 (m, 1H), 4.40 – 4.26 (m, 3H), 4.20 – 4.06 (m, 3H), 3.50 – 3.36 (m, 1H), 2.89 – 2.85 (m, 1H), 2.48 – 2.43 (m, 4H), 1.56 (s, 3H), 1.48 (s, 3H), 1.42 (s, 3H), 1.32 (s, 3H), 1.27 (s, 3H), 0.90 (d, J = 3.7 Hz, 3H). ¹³**C NMR (101 MHz, CDCl**₃) δ 165.2, 154.2, 143.7, 142.5, 140.2, 133.8 (d, J = 3.1 Hz), 129.8, 129.6 (d, J = 4.1 Hz), 128.9, 127.5, 124.1 (d, J = 2.5 Hz), 120.5, 115.4, 112.4, 109.4, 105.1, 83.4, 79.9 (d, J = 3.0 Hz), 76.7 (d, J = 6.5 Hz), 72.6, 67.2, 50.6 (d, J = 4.0 Hz), 45.2, 44.2, 43.9, 26.8, 26.7, 26.7 (d, J = 4.0 Hz), 26.2, 26.1 (d, J = 7.6 Hz), 25.2, 21.6. **HRMS (m/z, ESI-TOF):** Calcd for C₃₄H₄₁NO₉SNa⁺ [M+Na⁺] 662.2394, found 662.2398.

7-((38,88,98,10R,138,148,17R)-17-acetyl-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetrad ecahydro-1*H*-cyclopenta[a]phenanthren-3-yl) 2,2-dimethyl

9,9-dimethyl-1,3,9,9a-tetrahydro-2H-fluorene-2,2,7-tricarboxylate (58)

PC: 4CzIPN; Reaction time: 40 h; Yield: 70.8 mg, 54%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 3/1) as a yellow paste.

¹**H** NMR (400 MHz, CDCl₃) δ 7.92 – 7.83 (m, 2H), 7.39 (d, J = 7.9 Hz, 1H), 6.17 – 6.08 (m, 1H), 5.42 (d, J = 5.0 Hz, 1H), 4.90 – 4.82 (m, 1H), 3.78 (s, 3H), 3.74 (s, 3H), 3.16 – 3.08 (m, 1H), 2.57 – 2.46 (m, 5H), 2.44 – 2.37 (m, 1H), 2.23 – 2.17 (m, 1H), 2.14 (s, 3H), 2.08 – 1.99 (m, 3H), 1.97 – 1.86 (m, 2H), 1.79 – 1.65 (m, 4H), 1.52 – 1.47 (m, 2H), 1.44 (s, 3H), 1.28 – 1.18 (m, 6H), 1.08 (s, 3H), 0.97 (s, 3H), 0.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 209.6, 172.6, 171.5, 154.1, 142.8, 140.4, 139.8, 130.3, 128.5, 123.7, 122.4, 120.1, 117.1, 63.7, 56.9, 53.9, 52.9, 49.9, 48.5, 44.5, 44.0, 38.8, 38.2, 37.1, 36.7, 31.9, 31.8, 31.6, 31.4, 28.5, 27.9, 26.0, 25.9, 24.5, 22.9, 21.1, 19.4, 13.2. HRMS (m/z, ESI-TOF): Calcd for C₄₁H₅₂O₇Na⁺ [M+Na⁺] 679.3605, found 679.3605.

2,2-dimethyl

7-(((5S,5aS,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-5*H*-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl) methyl) 9,9-dimethyl-1,3,9,9a-tetrahydro-2*H*-fluorene-2,2,7-tricarboxylate (59)

PC: 4CzIPN; Reaction time: 40 h; Yield: 74.5 mg, 62%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 5/1) as a yellow solid (m.p. = 102-103 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 – 7.86 (m, 2H), 7.40 (d, J = 8.4 Hz, 1H), 6.15 – 6.12 (m, 1H), 5.57 (dd, J = 5.0, 1.7 Hz, 1H), 4.66 (dd, J = 7.9, 2.4 Hz, 1H), 4.54 – 4.50 (m, 1H), 4.46 – 4.39 (m, 1H), 4.38 – 4.31 (m, 2H), 4.21 – 4.18 (m, 1H), 3.78 (s, 3H), 3.74 (s, 3H), 3.15 – 3.09 (m, 1H), 2.58 – 2.46 (m, 2H), 2.46 – 2.36 (m, 1H), 1.90 (t, J = 12.5 Hz, 1H), 1.52 (s, 3H), 1.48 (s, 3H), 1.43 (s, 3H), 1.36 (s, 3H), 1.34 (s, 3H), 0.96 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 172.6, 171.5, 166.6, 154.1, 143.0, 140.4, 129.5, 128.7, 124.0, 120.2, 117.3, 109.7, 108.9, 96.3, 71.2, 70.7, 70.6, 66.2, 63.91, 63.88, 53.8, 52.93, 52.91, 48.4, 44.5, 31.4, 28.4, 26.1, 26.0, 25.9, 25.0, 24.5. **HRMS** (m/z, **ESI-TOF):** Calcd for C₃₂H₄₀O₁₁Na⁺ [M+Na⁺] 623.2463, found 623.2455.

7-((3R,5S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)hexadecahydro-1 H-cyclopenta[a]phenanthren-3-yl) 2,2-dimethyl

9,9-dimethyl-1,3,9,9a-tetrahydro-2H-fluorene-2,2,7-tricarboxylate (60)

PC: 4CzIPN; Reaction time: 40 h; Yield: 61.3 mg, 42%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 10/1) as a yellow solid (m.p. = 94-95 °C).

¹**H** NMR (400 MHz, CDCl₃) δ 7.91 – 7.82 (m, 2H), 7.38 (d, J = 7.8 Hz, 1H), 6.12 (dt, J = 4.4, 2.9 Hz, 1H), 5.00 – 4.85 (m, 1H), 3.77 (s, 3H), 3.74 (s, 3H), 3.12 (d, J = 18.4 Hz, 1H), 2.55 – 2.47 (m, 2H), 2.44 – 2.36 (m, 1H), 1.99 – 1.87 (m, 3H), 1.84 – 1.75 (m, 2H), 1.73 – 1.64 (m, 4H), 1.61 – 1.46 (m, 5H), 1.43 (s, 3H), 1.37 – 1.23 (m, 9H), 1.17 – 1.05 (m, 7H), 1.04 – 1.00 (m, 2H), 0.97 (s, 3H), 0.91 (d, J = 6.5 Hz, 3H), 0.87 (d, J = 2.0 Hz, 6H), 0.86 (d, J = 1.8 Hz, 3H), 0.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 171.5, 166.3, 154.0, 142.7, 140.4, 130.4, 128.5, 123.7, 120.1, 117.0, 74.3, 56.4, 56.3, 54.2, 53.8, 52.91, 52.89, 48.5, 44.7, 44.5, 42.6, 40.0, 39.5, 36.8, 36.2, 35.8, 35.6, 35.5, 34.2, 32.0, 31.4, 28.7, 28.5, 28.3, 28.0, 27.6, 26.0, 25.9, 24.2, 23.9, 22.9, 22.6, 21.3, 18.7, 12.4, 12.1. HRMS (m/z, ESI-TOF): Calcd for C₄₇H₆₈O₆Na⁺ [M+Na⁺] 751.4908, found 751.4910.

dimethyl 7,9,9-trimethyl-1,3,4,9-tetrahydro-2H-fluorene-2,2-dicarboxylate (61)

PC: 4CzIPN; Reaction time: 16 h; then $Fe(OTf)_3$ (10 mol %), 3 h. Yield: 53.1 mg, 81%. The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.05 (s, 1H), 6.95 (d, J = 1.1 Hz, 2H), 3.64 (s, 6H), 2.71 (t, J = 2.3 Hz, 2H), 2.45 – 2.40 (m, 2H), 2.31 (s, 3H), 2.28 (t, J = 6.3 Hz, 2H), 1.14 (s, 6H). ¹³C **NMR** (101 MHz, CDCl₃) δ 172.1, 153.9, 145.9, 140.0, 134.3, 131.2, 127.1, 122.2, 117.9, 54.3, 52.8, 48.8, 28.4, 28.0, 23.7, 21.7, 19.7. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₄O₄Na⁺ [M+Na⁺] 351.1567, found 351.1569.

dimethyl 9,9-dimethyl-7-phenyl-1,3,4,9-tetrahydro-2H-fluorene-2,2-dicarboxylate (62)

PC: 4CzIPN; Reaction time: 16 h; then Fe(OTf)₃ (10 mol %), 3 h. Yield: 49.1 mg, 63%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.61 (dd, J = 8.3, 1.3 Hz, 2H), 7.53 (s, 1H), 7.49 – 7.39 (m, 3H), 7.35 – 7.29 (m, 1H), 7.21 (d, J = 7.7 Hz, 1H), 3.73 (s, 6H), 2.83 (d, J = 2.3 Hz, 2H), 2.57 – 2.53 (m, 2H), 2.38 (t, J = 6.4 Hz, 2H), 1.28 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 154.2, 147.5, 142.0, 141.8, 137.9, 131.1, 128.7, 127.2, 126.8, 125.6, 120.1, 118.3, 54.2, 52.8, 49.1, 28.2, 28.1, 23.6, 19.6. HRMS (m/z, ESI-TOF): Calcd for C₂₅H₂₆O₄Na⁺ [M+Na⁺] 413.1723, found 413.1725.

dimethyl 7-methoxy-9,9-dimethyl-1,3,4,9-tetrahydro-2H-fluorene-2,2-dicarboxylate (63)

PC: 4CzIPN; Reaction time: 16 h; then Fe(OTf)₃ (10 mol %), 3 h. Yield: 42.0 mg, 61%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a brownness oil.

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 6.96 (d, J = 8.1 Hz, 1H), 6.83 (d, J = 2.3 Hz, 1H), 6.68 (dd, J = 8.2, 2.4 Hz, 1H), 3.75 (s, 3H), 3.64 (s, 6H), 2.71 (s, 1H), 2.45 – 2.38 (m, 2H), 2.27 (t, J = 6.4 Hz, 2H), 1.14 (s, 6H). ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 172.1, 158.0, 155.6, 144.8, 135.8, 130.9, 118.4, 111.0, 108.6, 55.7, 54.3, 52.8, 49.0, 28.3, 28.0, 23.8, 19.7. **HRMS** (**m/z**, **ESI-TOF**): Calcd for $C_{20}H_{24}O_5Na^+$ [M+Na⁺] 367.1516, found 367.1517.

dimethyl 9,9-dimethyl-7-(trifluoromethoxy)-1,3,4,9-tetrahydro-2*H*-fluorene-2,2-dicarboxylate (64)

PC: 4CzIPN; Reaction time: 40 h; then Fe(OTf)₃ (10 mol %), 3 h. Yield: 49.3 mg, 62%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.13 (m, 1H), 7.12 – 7.05 (m, 2H), 3.73 (s, 6H), 2.80 (t, J = 2.2 Hz, 2H), 2.52 – 2.48 (m, 2H), 2.36 (t, J = 6.3 Hz, 2H), 1.23 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 155.4, 148.1, 147.0, 141.1, 130.5, 121.9, 119.3, 118.5, 114.8, 54.0, 52.8, 49.2, 28.1, 28.0, 23.3,

19.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.91. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₁F₃O₅Na⁺ [M+Na⁺] 421.1233, found 421.1232.

dimethyl 7-acetamido-9,9-dimethyl-1,3,4,9-tetrahydro-2H-fluorene-2,2-dicarboxylate (65)

PC: 4CzIPN; Reaction time: 16 h; then Fe(OTf)₃ (10 mol %), 3 h. Yield: 48.1 mg, 65%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 3/1) as a yellow solid (m.p. = 156-157 °C).

¹**H** NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 2.0 Hz, 2H), 7.21 – 7.16 (m, 1H), 6.96 (d, J = 7.9 Hz, 1H), 3.64 (s, 6H), 2.71 (s, 2H), 2.43 – 2.39 (m, 2H), 2.27 (t, J = 6.3 Hz, 2H), 2.09 (s, 3H), 1.13 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 168.4, 154.6, 146.6, 139.0, 135.2, 130.9, 118.3, 118.2, 113.9, 54.2, 52.8, 49.1, 28.2, 28.1, 24.7, 23.6, 19.6. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₂₆NO₅⁺ [M+H⁺] 372.1805, found 372.1806.

dimethyl 7-chloro-9,9-dimethyl-1,3,4,9-tetrahydro-2H-fluorene-2,2-dicarboxylate (66)

PC: 4CzIPN; Reaction time: 16 h; then $Fe(OTf)_3$ (10 mol %), 3 h. Yield: 46.5 mg, 67%. The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow oil.

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.26 (s, 1H), 7.19 (dd, J = 7.9, 1.9 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 3.73 (s, 6H), 2.78 (t, J = 2.2 Hz, 2H), 2.50 – 2.46 (m, 2H), 2.35 (t, J = 6.3 Hz, 2H), 1.22 (s, 6H). ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 171.8, 155.3, 147.4, 140.9, 130.7, 130.6, 126.4, 121.8, 118.9, 54.0, 52.8, 49.1, 28.1, 27.9, 23.4, 19.5. **HRMS** (**m/z**, **ESI-TOF**): Calcd for C₁₉H₂₁ClO₄Na⁺ [M+Na⁺] 371.1021, found 371.1019.

7-ethyl 2,2-dimethyl 9,9-dimethyl-1,3,4,9-tetrahydro-2H-fluorene-2,2,7-tricarboxylate (67)

PC: $[Ir(ppy)_2(dtbbpy)](PF_6)$; Reaction time: 16 h; then Fe(OTf)₃ (10 mol %), 6 h. Yield: 32.3 mg, 42%. The product was isolated by flash column chromatography (petroleum ether/EtOAc = 15/1) as a yellow solid (m.p. = 69-70 °C).

¹**H NMR** (400 **MHz**, **CDCl**₃) δ 7.96 – 7.91 (m, 2H), 7.13 (d, *J* = 8.4 Hz, 1H), 4.35 (q, *J* = 7.1 Hz, 2H), 3.70 (s, 6H), 2.79 (t, *J* = 2.2 Hz, 2H), 2.52 – 2.48 (m, 2H), 2.34 (t, *J* = 6.3 Hz, 2H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.23 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 171.8, 167.5, 153.5, 151.2, 147.2, 131.2, 128.9, 126.6, 122.1, 117.8, 60.9, 54.0, 52.9, 49.2, 28.2, 28.1, 23.3, 19.5, 14.5. **HRMS** (m/z, **ESI-TOF**): Calcd for C₂₂H₂₇O₆⁺ [M+H⁺] 387.1802, found 387.1803.

dimethyl 4,4-dimethyl-4,5,7,8-tetrahydro-6H-indeno[1,2-b]thiophene-6,6-dicarboxylate (68)

PC: 4CzIPN; Reaction time: 16 h; then Fe(OTf)₃ (10 mol %), 3 h. Yield: 18.0 mg, 28%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a brownness oil.

¹H NMR (400 MHz, CDCl₃) δ 7.01 (d, J = 4.8 Hz, 1H), 6.88 (dd, J = 4.8, 1.4 Hz, 1H), 3.65 (s, 6H), 2.70 (d, J = 2.9 Hz, 2H), 2.49 – 2.39 (m, 2H), 2.25 (t, J = 6.5 Hz, 2H), 1.13 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 156.9, 147.3, 142.5, 128.5, 123.8, 120.3, 53.9, 52.8, 47.5, 28.22, 28.18, 23.0, 20.9. HRMS (m/z, ESI-TOF): Calcd for C₁₇H₂₁O₄S⁺ [M+H⁺] 321.1155, found 321.1151.

7-methoxy-9,9-dimethyl-2-tosyl-2,3,4,9-tetrahydro-1*H*-indeno[2,1-c]pyridine (69)

PC: 4CzIPN; Reaction time: 16 h; then Fe(OTf)₃ (10 mol %), 3 h. Yield: 38.6 mg, 44%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 20/1) as a yellow oil.

¹**H NMR** (400 **MHz**, **CDCl**₃) δ 7.65 (d, J = 8.1 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 6.96 (d, J = 8.1 Hz, 1H), 6.81 (d, J = 2.3 Hz, 1H), 6.68 (dd, J = 8.2, 2.4 Hz, 1H), 3.78 (t, J = 2.5 Hz, 2H), 3.74 (s, 3H), 3.30 (t, J = 5.7 Hz, 2H), 2.48 – 2.44 (m, 2H), 2.34 (s, 3H), 1.13 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 158.3, 155.3, 143.7, 142.3, 134.7, 134.03 130.7, 129.8, 127.7, 118.8, 111.1, 108.5, 55.7, 48.6, 43.3, 43.0, 24.4, 22.5, 21.7. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₂₅NO₃SNa⁺ [M+Na⁺] 406.1447, found 406.1442.

(1-(phenylsulfonyl)vinyl)benzene (72)

Yield: 30.7 mg, 63%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 10/1) as a white solid (m.p. = 73-74 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.57 (m, 2H), 7.48 – 7.42 (m, 1H), 7.33 (t, *J* = 7.8 Hz, 2H), 7.29 – 7.16 (m, 5H), 6.56 (s, 1H), 5.89 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.0, 138.7, 133.4, 132.5, 129.4, 129.2, 128.9, 128.4, 128.3, 125.9.

NMR spectroscopic data was in good agreement with the literature.^[S2]

1-methyl-4-((1-phenylvinyl)sulfonyl)benzene (73)

Yield: 28.3 mg, 55%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 10/1) as a yellow solid (m.p. = 62-63 °C).

¹**H NMR (400 MHz, CDCl₃)** δ 7.49 (d, *J* = 7.9 Hz, 2H), 7.29 – 7.23 (m, 3H), 7.19 (dd, *J* = 9.0, 6.2 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 6.53 (s, 1H), 5.85 (s, 1H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.1, 144.4, 135.8, 132.6, 129.6, 129.3, 129.1, 128.4, 128.3, 125.6, 21.6. NMR spectroscopic data was in good agreement with the literature.^[S2]

1-chloro-4-((1-phenylvinyl)sulfonyl)benzene (74)

Yield: 21.2 mg, 38%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 10/1) as a yellow solid (m.p. = 90-91 ℃).

¹**H NMR (400 MHz, CDCl₃)** δ 7.53 (d, *J* = 8.2 Hz, 2H), 7.33 – 7.19 (m, 7H), 6.57 (s, 1H), 5.91 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 150.7, 140.1, 137.3, 132.2, 129.8, 129.6, 129.2, 129.2, 128.4, 126.4. NMR spectroscopic data was in good agreement with the literature.^[S2]

2-(1-(phenylsulfonyl)vinyl)benzonitrile (75)

Yield: 31.2 mg, 58%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 8/1) as a yellow solid (m.p. = 116-117 ℃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (dd, J = 7.9, 1.2 Hz, 1H), 7.68 – 7.62 (m, 2H), 7.62 – 7.55 (m, 2H), 7.52 (dd, J = 7.8, 1.6 Hz, 1H), 7.48 – 7.39 (m, 3H), 6.91 (s, 1H), 6.12 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) & 147.2, 137.6, 135.6, 134.2, 133.1, 132.4, 131.2, 129.9, 129.6, 129.3, 128.8, 116.5, 113.5. NMR spectroscopic data was in good agreement with the literature.^[S3]

ethyl 3-phenyl-2-(phenylsulfonyl)acrylate (76), ethyl 3-phenyl-3-(phenylsulfonyl)acrylate (77)

Yield: 55.4 mg, 88%. (76, 55%; 77, 33%. The yields of 76 and 77 were determined by 1 H NMR of the mixed products, and the NMR data of the mixture are provided.)

The products were isolated by flash column chromatography (petroleum ether/EtOAc = 10/1) as a white paste.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 – 7.90 (m, 3H), 7.66 – 7.50 (m, 5H), 7.46 – 7.35 (m, 7H), 7.22 (dd, *J* = 8.6, 1.1 Hz, 1H), 7.00 (dt, *J* = 8.4, 1.2 Hz, 1H), 4.20 (qd, *J* = 7.1, 1.0 Hz, 2H), 4.00 (qd, *J* = 7.1, 1.0 Hz, 1H), 1.13 (td, J = 7.1, 1.0 Hz, 3H), 1.01 (td, J = 7.1, 1.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.9, 163.2, 154.5, 143.9, 140.0, 137.1, 134.9, 134.1, 133.8, 131.62, 131.58, 130.1, 129.8, 129.7, 129.6, 129.2, 129.13, 129.06, 128.9, 128.6, 128.0, 127.3, 62.51, 61.47, 13.8, 13.7. NMR spectroscopic data was in good agreement with the literature.^[S4]

Yield: 81.3 mg, 88%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 10/1) as a yellow solid (m.p. = 175-176 °C).

¹**H NMR (400 MHz, CDCl₃)** δ 8.11 (dd, J = 8.1, 1.1 Hz, 1H), 7.59 – 7.55 (m, 3H), 7.52 – 7.48 (m, 1H), 7.46 – 7.40 (m, 3H), 7.34 – 7.28 (m, 4H), 7.26 – 7.19 (m, 2H), 7.16 – 7.11 (m, 1H), 7.09 (s, 1H), 7.07 – 6.98 (m, 4H), 6.51 (s, 1H). ¹³**C NMR (101 MHz, CDCl₃)** δ 164.6, 149.1, 139.1, 137.6, 137.1, 133.9, 133.0, 131.0, 129.6, 129.4, 129.34, 129.29, 129.25, 129.1, 128.9, 128.8, 127.9, 125.3, 124.3, 120.6, 115.2, 111.6. **HRMS (m/z, ESI-TOF):** Calcd for C₂₉H₂₁NO₃SNa⁺ [M+Na⁺] 486.1134, found 486.1131.

(E)-3-phenyl-1-(2-phenyl-1H-indol-1-yl)-3-tosylprop-2-en-1-one (79)

Yield: 71.4 mg, 75%.

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 10/1) as a yellow solid (m.p. = 165-166 °C).

¹**H NMR (400 MHz, CDCl₃)** δ 8.09 (dd, J = 8.1, 1.1 Hz, 1H), 7.59 – 7.53 (m, 3H), 7.47 – 7.39 (m, 3H), 7.25 – 7.20 (m, 2H), 7.19 – 7.08 (m, 5H), 7.06 – 6.98 (m, 5H), 6.50 (s, 1H), 2.35 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 164.7, 149.4, 145.0, 139.1, 137.6, 134.1, 133.0, 130.61 129.5, 129.3, 129.2, 129.1, 128.9, 128.8, 127.8, 125.2, 124.2, 120.5, 115.2, 111.5, 21.8. **HRMS (m/z, ESI-TOF):** Calcd for C₃₀H₂₃NO₃SNa⁺ [M+Na⁺] 500.1291, found 500.1292.

2.3 Gram-scale experiments

The oven-dried Schlenk tube (250 mL) containing a stirring bar was charged with 1,6-enynes (5 mmol), PhSO₂Na (2.5 mmol, 50 mol %), 4CzIPN (1 mmol%) and anhydrous DMF (50 mL). N₂ gas in a balloon was bubbled into the mixture under stirring for 10 min through a needle and the tube was then evacuated and back-filled with CO₂ for 3 times. The mixture was placed under a 30 W blue LED ($\lambda_{max} = 465$ nm, 7.5 cm away from the LEDs, with cooling fan to keep the reaction temperature at 25~30 °C) light source and stirred at ambient temperature for 24 h. Upon completion of the reaction, all the solvents were removed under reduced pressure at high temperature. The crude reaction mixture was diluted with EtOAc (25 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 125 mL of EtOAc. The filtrate was concentrated in vacuo, and crude

¹H NMR spectrum was taken using coumarin as internal standard. The resulting residue was purified by flash silica gel chromatography using petroleum ether/EtOAc (15:1) as the eluent to give the desired products.

2.4 Further transformation of products

To a mixture of 1.50 mL of 6 M NaOH aq (9 mmol) and 5 mL of ethanol was added 1.0 mmol **2** under air and the mixture was heated to reflux for 15 h. After cooled to room temperature, the resulting mixture was neutralized by adding a 6 M solution of HCl and extracted three times with EtOAc. Combined organic portions were quickly dried over MgSO₄, filtered, and concentrated to obtain the dicarboxylic acid (0.97 mmol, 97% yield), which was used for the next step without further purification. The dicarboxylic acid (0.5 mmol) was heated at 160 °C for 2.0 h in DMSO (3 mL) to obtain isomerized monocarboxylic acid **70** in 68% yield. The product was isolated by flash column chromatography (petroleum ether/EtOAc = 5/1, 1% HOAc) as a brownness solid (m.p. = 85-86 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.13 (s, 1H), 7.07 – 7.02 (m, 2H), 2.85 – 2.74 (m, 1H), 2.62 – 2.54 (m, 1H), 2.53 – 2.40 (m, 3H), 2.39 (s, 3H), 2.28 – 2.21 (m, 1H), 1.96 – 1.86 (m, 1H), 1.21 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 182.4, 154.0, 147.1, 140.3, 134.2, 131.8, 127.0, 122.2, 117.8, 48.7, 40.0, 25.4, 24.1, 24.0, 23.9, 21.7, 21.3. HRMS (m/z, ESI-TOF): Calcd for $C_{17}H_{19}O_2^{-1}$ [M-H⁺] 255.1391, found 255.1390.

The mixture of **2** (0.3 mmol), 10 % Pd-C (5 mol %) were dissolved in MeOH (5 mL), and the mixture was evacuated and back-filled with H₂ for 3 times. Then, the reaction mixture was vigorously stirred and heated to 40 $^{\circ}$ C under H₂ atmosphere for 18 h. Upon completion of the reaction, the reaction mixture was filtered through a short pad of Celite. The reaction tube and Celite pad were washed with an additional 25 mL of ethyl acetate. After all the solvents were removed under reduced pressure, the resulting residue was purified by preparative thin layer chromatography using petroleum ether/ethyl acetate (20:1) as the eluent to give the desired product **71** in 96% yield as a white solid (m.p. = 120-121 $^{\circ}$ C).

¹**H** NMR (400 MHz, CDCl₃) δ 6.99 (d, J = 1.1 Hz, 2H), 6.92 (s, 1H), 3.78 (s, 3H), 3.61 (s, 3H), 3.41 – 3.31 (m, 1H), 2.33 (s, 3H), 2.33 – 2.03 (m, 4H), 1.87 – 1.77 (m, 1H), 1.59 (td, J = 13.6, 3.9 Hz, 1H), 1.27 (s, 3H), 1.16 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 171.7, 151.6, 139.7, 136.3, 127.3, 123.4, 122.3, 54.6, 52.7, 52.5, 48.0, 45.8, 38.9, 30.0, 28.4, 26.5, 22.0, 21.6, 21.5. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₆O₄Na⁺ [M+Na⁺] 353.1723, found 353.1725.

2.5 General photoredox reaction setup

2.6 Unsuccessful examples

3. Mechanistic studies

3.1 Stern-Volmer fluorescence quenching experiments

Fluorescence quenching experiments were measured on a Hitachi F7000 Spectrofluorophotometer. DMF was degassed by N₂ bubbling for 30 minutes before using. The complex [Ir(ppy)₂(dtbbpy)]PF₆ was excited at 465 nm and the emission spectrum $\lambda max = 540$ nm was recorded. In a typical experiment, 2.0 mL (5.0×10^{-5} M) solution of [Ir(ppy)₂(dtbbpy)]PF₆ in DMF was added into the 4.0 mL quartz cuvette (d = 1 cm) and covered with Teflon cap. Then the emission spectrum of the solution was collected at each addition. A stock solution of **1a** (0.5 mmol) or PhSO₂Na (0.5 mmol) in 1 mL of DMF was prepared (0.5 M). Then, different amounts of these stock solutions were added to a solution of the photocatalyst [Ir(ppy)₂(dtbbpy)]PF₆ in DMF (5.0×10^{-5} M), respectively.

As shown, a significant decrease of $[Ir(ppy)_2(dtbbpy)]PF_6$ luminescence was observed, suggesting that the mechanism might operate via a photo-redox cycle consisting of a reductive quenching with PhSO₂Na.

Figure S1. Fluorescence of $[Ir(ppy)_2(dtbbpy)]PF_6$ (50 μ M) with 1a (0-0.00667M) in DMF.

Figure S2. Stern-Volmer quenching plot of 1a.

Figure S3. Fluorescence of [Ir(ppy)₂(dtbbpy)]PF₆ (50 µM) with PhSO₂Na (0-0.00667M) in DMF.

Figure S4. Stern-Volmerquenching plot of PhSO₂Na.

3.2 Control experiments with radical scavengers

The oven-dried Schlenk tube (38 mL) containing a stirring bar was charged with **1a** (0.2 mmol), PhSO₂Na (0.1 mmol, 50 mol%), 4CzIPN (0.002 mmol, 1 mmol%), TEMPO (0.1 mmol, 0.5 equiv) and DMF (2 mL). N₂ gas in a balloon was bubbled into the mixture under stirring for 10 min through a needle and the tube was then evacuated and back-filled with CO₂ for 3 times. The mixture was placed under a 30 W blue LED (λ_{max} = 465 nm, 7.5 cm away from the LEDs, with cooling fan to keep the reaction temperature at 25~30 °C) light source and stirred at ambient temperature for 16 h. Upon completion of the reaction, all the solvents were removed under reduced pressure at high temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 25 mL of EtOAc. The filtrate was concentrated in vacuo, and crude ¹H NMR spectrum was taken using coumarin as internal standard. The result was detected by ¹H NMR spectrum.

The oven-dried Schlenk tube (38 mL) containing a stirring bar was charged with 1 (0.2 mmol), (0.1)mmol, 50 mol%), $[Ir(ppy)_2(dtbbpy)]PF_6$ (0.002)PhSO₂Na mmol, 1 mmol%), ethene-1,1-diyldibenzene (0.2 mmol, 1 equiv) and DMF (2 mL). N₂ gas in a balloon was bubbled into the mixture under stirring for 10 min through a needle and the tube was then evacuated and back-filled with CO₂ for 3 times. The mixture was placed under a 30 W blue LED (λ_{max} =465 nm, 7.5 cm away from the LEDs, with cooling fan to keep the reaction temperature at 25~30 °C) light source and stirred at ambient temperature for 16 h. Upon completion of the reaction, all the solvents were removed under reduced pressure at high temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 25 mL of EtOAc. The filtrate was concentrated in vacuo, and crude ¹H NMR spectrum was taken using coumarin as internal standard. The resulting residue was purified by flash silica gel chromatography to give the desired products (2 and 80).

(2-(phenylsulfonyl)ethane-1,1-diyl)dibenzene (80)

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 10/1) as a white solid (m.p. = 164-165 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 – 7.53 (m, 2H), 7.44 – 7.38 (m, 1H), 7.27 (t, *J* = 7.8 Hz, 2H), 7.18 – 6.99 (m, 10H), 4.56 (t, *J* = 7.1 Hz, 1H), 3.85 (d, *J* = 7.1 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 141.5, 139.8, 133.4, 129.0, 128.9, 128.1, 127.7, 127.1, 61.6, 46.3. **HRMS** (m/z, **ESI-TOF**): Calcd for C₂₀H₁₈O₂SNa⁺ [M+Na⁺] 345.0920, found 345.0923.

3.3 Reaction with radical clock

The oven-dried Schlenk tube (38 mL) containing a stirring bar was charged with 1 (0.2 mmol), PhSO₂Na (0.1 mmol, 50 mol%), 4CzIPN (0.002 mmol, 1 mmol%), **73** (0.2 mmol, 1 equiv) and DMF (2 mL). N₂ gas in a balloon was bubbled into the mixture under stirring for 10 min through a needle and the tube was then evacuated and back-filled with CO₂ for 3 times. The mixture was placed under a 30 W blue LED (λ_{max} =465 nm, 7.5 cm away from the LEDs, with cooling fan to keep the reaction temperature at 25~30 °C) light source and stirred at ambient temperature for 16 h. Upon completion of the reaction, all the solvents were removed under reduced pressure at high temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 25 mL of EtOAc. The filtrate was concentrated in vacuo, and crude ¹H NMR spectrum was taken using coumarin as internal standard. The resulting residue was purified by flash silica gel chromatography to give the desired product **82**.

4-(4-phenyl-5-(phenylsulfonyl)pent-3-en-1-yl)-1,1'-biphenyl (82)

The product was isolated by flash column chromatography (petroleum ether/EtOAc = 10/1) as a yellow solid (m.p. = 105-106 °C).

¹**H** NMR (400 MHz, CDCl₃) δ 7.77 – 7.69 (m, 2H), 7.62 – 7.56 (m, 2H), 7.53 (d, J = 8.1 Hz, 2H), 7.49 (d, J = 7.4 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.38 – 7.32 (m, 3H), 7.23 (s, 1H), 7.21 – 7.10 (m, 5H), 6.04 (t, J = 7.4 Hz, 1H), 4.28 (s, 2H), 2.74 (t, J = 7.6 Hz, 2H), 2.47 (q, J = 7.5 Hz, 2H), 2.17 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.0, 140.8, 140.3, 139.1, 139.0, 137.5, 133.5, 129.0, 128.9, 128.8, 128.6, 128.5, 128.3, 127.3, 127.2, 127.0, 126.4, 57.7, 34.8, 31.2. HRMS (m/z, ESI-TOF): Calcd for C₂₉H₂₆O₂SNa⁺ [M+Na⁺] 461.1546, found 461.1544.

3.4 Investigation of using *d*₅-1g

The oven-dried Schlenk tube (38 mL) containing a stirring bar was charged with d_5 -1g (0.2 mmol), PhSO₂Na (0.1 mmol, 50 mol%), 4CzIPN (0.002 mmol, 1 mmol%) and DMF (2 mL). N₂ gas in a balloon was bubbled into the mixture under stirring for 10 min through a needle and the tube was then evacuated and back-filled with CO₂ for 3 times. The mixture was placed under a 30 W blue LED (λ_{max} = 465 nm, 7.5 cm away from the LEDs, with cooling fan to keep the reaction temperature at 25~30 °C) light source and stirred at ambient temperature for 16 h. Upon completion of the reaction, all the solvents were removed under reduced pressure at high temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 25 mL of EtOAc. The filtrate was concentrated in vacuo, and crude ¹H NMR spectrum was taken using coumarin as internal standard. The resulting residue was purified by preparative thin layer chromatography using petroleum ether/EtOAc (20:1) as the eluent to give the desired product d_4 -8 in 63% yield.

3.5 Isotope-labelling studies

The oven-dried Schlenk tube (38 mL) containing a stirring bar was charged with 1,6-enynes (0.2 mmol), PhSO₂Na (0.1 mmol, 50 mol%), 4CzIPN (0.002 mmol, 1 mmol%), D₂O (2 mmol, 10 equiv) and DMF (2 mL). N₂ gas in a balloon was bubbled into the mixture under stirring for 10 min through a needle and the tube was then evacuated and back-filled with CO₂ for 3 times. The mixture was placed under a 30 W blue LED (λ_{max} = 465 nm, 7.5 cm away from the LEDs, with cooling fan to keep the reaction temperature at 25~30 °C) light source and stirred at ambient temperature for 16 h. Upon completion of the reaction, all the solvents were removed under reduced pressure at high temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 25 mL of EtOAc. The filtrate was concentrated in vacuo, and crude ¹H NMR spectrum was taken using coumarin as internal standard. The resulting residue was purified by preparative thin layer chromatography using petroleum ether/EtOAc (20:1 or 15:1) as the eluent to give the desired products *d*-8 or *d*-5.

The oven-dried Schlenk tube (38 mL) containing a stirring bar was charged with **1a** (0.2 mmol), PhSO₂Na (0.1 mmol, 50 mol%), 4CzIPN (0.002 mmol, 1 mmol%) and d_7 -DMF (1.4 mL). N₂ gas in a balloon was bubbled into the mixture under stirring for 10 min through a needle and the tube was then evacuated and back-filled with CO₂ for 3 times. The mixture was placed under a 30 W blue LED (λ_{max} =465 nm, 7.5 cm away from the LEDs, with cooling fan to keep the reaction temperature at 25~30 °C) light source and stirred at ambient temperature for 16 h. Upon completion of the reaction, all the solvents were removed under reduced pressure at high temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 25 mL of EtOAc. The filtrate was concentrated in vacuo, and crude ¹H NMR spectrum was taken using coumarin as internal standard. The resulting residue was purified by preparative thin layer chromatography using petroleum ether/EtOAc (20:1) as the eluent to give the desired product **2**.

3.6 Investigation of using 2'

The oven-dried Schlenk tube (38 mL) containing a stirring bar was charged with **2'** (0.1 mmol), *w* or w/o PhSO₂Na (0.05 mmol, 50 mol%), 4CzIPN (0.001 mmol, 1 mmol%) and DMF (1 mL). N₂ gas in a balloon was bubbled into the mixture under stirring for 10 min through a needle and the tube was then evacuated and back-filled with CO₂ for 3 times. The mixture was placed under a 30 W blue LED (λ_{max}

= 465 nm, 7.5 cm away from the LEDs, with cooling fan to keep the reaction temperature at $25 \sim 30$ °C) light source and stirred at ambient temperature for 16 h. Upon completion of the reaction, all the solvents were removed under reduced pressure at high temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 25 mL of EtOAc. The filtrate was concentrated in vacuo, and crude ¹H NMR spectrum was taken using coumarin as internal standard. The result was detected by crud ¹H NMR spectrum.

3.7 Light On-Off Experiment

Light on-off experiment following the standard procedure: the reaction of 1,6-enyne (73.4 mg, 0.2 mmol, 1.0 equiv), PhSO₂Na (0.1 mmol, 50 mol%), 4CzIPN (0.002 mmol, 1 mmol%), 1,3,5-trimethoxybenzene (33.6 mg, 0.2 mmol, 1.0 equiv) and DMF (2 mL) was evacuated and back-filled with CO₂ for 3 times and stirred at ambient temperature. Yield was determined by ¹H NMR of the crude mixture using 1,3,5- trimethoxybenzene as internal standard.

Figure S5. Light on-off experiment. The blue area indicates the blue LED irradiation, while the grey area indicates the dark treatment. The x axis is the reaction time, and the y axis is the reaction yield of **5**.

4. NMR Spectra of Compounds

¹H NMR Spectrum of 2 (CDCl₃ as solvent, 400 MHz)

¹H NMR Spectrum of 2a' (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\} NMR Spectrum of 2' (CDCl_3 as solvent, 101 MHz)$

¹H NMR Spectrum of 3 (CDCl₃ as solvent, 400 MHz)

¹H NMR Spectrum of 4 (CDCl₃ as solvent, 400 MHz)

¹H NMR Spectrum of 5 (CDCl₃ as solvent, 400 MHz)

¹³C {¹H} NMR Spectrum of 5 (CDCl₃ as solvent, 101 MHz)

= 154.17, 124.17, 154.17, 154.17, 154.17, 154.05, 154.09, 15	$\int 50.837$ 45.187 44.191 44.144 44.144 20.273 $\int 20.273$
--	--

S44

¹H NMR Spectrum of 6 (CDCl₃ as solvent, 400 MHz)

¹H NMR Spectrum of 7 (CDCl₃ as solvent, 400 MHz)

¹H NMR Spectrum of 8 (CDCl₃ as solvent, 400 MHz)

$^{13}\mathrm{C}$ { $^{1}\mathrm{H}} NMR Spectrum of 8 (CDCl_{3} as solvent, 101 MHz)$

¹H NMR Spectrum of 9 (CDCl₃ as solvent, 400 MHz)

$^{13}\mathrm{C}$ { $^{1}\mathrm{H}} NMR Spectrum of 9 (CDCl_{3} as solvent, 101 MHz)$

¹H NMR Spectrum of 10 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\}$ NMR Spectrum of 10 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 11 (CDCl₃ as solvent, 400 MHz)

$^{13}\mathrm{C}$ { $^{1}\mathrm{H}} NMR Spectrum of 11 (CDCl_{3} as solvent, 101 MHz)$

154,604 143,604 141,3108 141,3108 141,3108 141,3108 141,3108 141,3108 136,674 136,674 136,674 128,879 127,615	77.478 77.159 76.842	50.863 45.250 44.349 44.174	26.857 26.343 21.654
	\checkmark	\sim	52.2

¹H NMR Spectrum of 12 (CDCl₃ as solvent, 400 MHz)

¹H NMR Spectrum of 13 (CDCl₃ as solvent, 400 MHz)

¹H NMR Spectrum of 14 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\}$ NMR Spectrum of 14 (CDCl_3 as solvent, 101 MHz)

147.583 143.577 141.111 138.309 138.309 138.309 138.309 133.951 133.951 133.951 132.716 129.840 129.840 129.840	160.111	77.478 77.160 76.843	51.218 45.341 45.195 43.820	27.030 23.120 21.647 21.064 19.297
	T.		242	~~~~

¹H NMR Spectrum of 15 (CDCl₃ as solvent, 400 MHz)

^{13}C $\{^{1}H\}$ NMR Spectrum of 15 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 16 (CDCl₃ as solvent, 400 MHz)

$^{13}\mathrm{C}$ { $^{1}\mathrm{H}} NMR Spectrum of 16 (CDCl_{3} as solvent, 101 MHz)$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 160.663 - 155.836	- 155.836 - 155.836 - 143.572	- 140.477 130.367 130.367 129.818 127.597 - 121.493	<pre>/ 113.145 / 109.719 / 107.711</pre>	r 77.478	$\left\{\begin{array}{c} 77.160 \\ 76.843 \end{array}\right.$	55.535 50.994 45.144	26.729	~21.626
--	------------------------	-------------------------------------	--	--	----------	---	----------------------------	--------	---------

¹H NMR Spectrum of 17 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\}$ NMR Spectrum of 17 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 18 (CDCl₃ as solvent, 400 MHz)

¹H NMR Spectrum of 19 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\}$ NMR Spectrum of 19 (CDCl_3 as solvent, 101 MHz)

168.727	154.909	143.753 140.514 138.773 138.773 133.838 133.838 133.430 129.883 127.545 120.958 120.958 120.958 119.011 114.039 1114.039 1110.947	77.478 77.160 76.842	50.834 45.162 44.353 44.134	26.642 26.098 24.646 21.633
1		NN V// ////	\checkmark	\sim	\leq

¹H NMR Spectrum of 20 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\} NMR Spectrum of 20 (CDCl_3 as solvent, 101 MHz)$

¹H NMR Spectrum of 21 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^{1}H} NMR Spectrum of 21 (CDCl_{3} as solvent, 101 MHz)$

^{13}C { $^{1}H} NMR Spectrum of 22 (CDCl_{3} as solvent, 101 MHz)$

¹H NMR Spectrum of 23 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^{1}H} NMR Spectrum of 23 (CDCl_{3} as solvent, 101 MHz)$

¹H NMR Spectrum of 24 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^{1}H} NMR Spectrum of 24 (CDCl_{3} as solvent, 101 MHz)$

¹H NMR Spectrum of 25 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^{1}H} NMR Spectrum of 25 (CDCl_{3} as solvent, 101 MHz)$

¹H NMR Spectrum of 26 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^{1}H} NMR Spectrum of 26 (CDCl_{3} as solvent, 101 MHz)$

¹H NMR Spectrum of 27 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^{1}H} NMR Spectrum of 27 (CDCl_{3} as solvent, 101 MHz)$

¹H NMR Spectrum of 28 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\}$ NMR Spectrum of 28 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 29 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\}$ NMR Spectrum of 29 (CDCl_3 as solvent, 101 MHz)

142.4423 143.805 140.925 140.925 133.927 133.927 130.503 130.503 130.503 130.503 130.503 130.503 130.503 122.4563 122.4563 119.659 119.559 119	77.478 77.160 76.842	50.724 45.186 44.452 43.989	26.644 26.147 21.643
	\checkmark	\sim	V2

¹H NMR Spectrum of 30 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\} NMR Spectrum of 30 (CDCl_3 as solvent, 101 MHz)$

¹H NMR Spectrum of 31 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^{1}H} NMR Spectrum of 31 (CDCl_{3} as solvent, 101 MHz)$

¹H NMR Spectrum of 32 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\}$ NMR Spectrum of 32 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 33 (CDCl₃ as solvent, 400 MHz)

7.660 7.640 7.256 7.7.256 7.7.256 6.973 6.9726 6.97756 6.97756 7.07756 7.07756 7.07756 7.07756 7.07756 7.077567770

^{13}C { $^{1}H} NMR Spectrum of 33 (CDCl_{3} as solvent, 101 MHz)$

¹H NMR Spectrum of 34 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^{1}H} NMR Spectrum of 34 (CDCl_{3} as solvent, 101 MHz)$

¹H NMR Spectrum of 35 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\}$ NMR Spectrum of 35 (CDCl_3 as solvent, 101 MHz)

H.613		479 160 843	468 191 502 867	569 109 648
154	141 141 133 133 126 127 126 121 121 111 111 111	77.4 76.3	50. 44. 43.	26. 21.
1		\checkmark	\sim	52.2

¹H NMR Spectrum of 36 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\}$ NMR Spectrum of 36 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 37 (CDCl₃ as solvent, 400 MHz)

¹H NMR Spectrum of 38 (CDCl₃ as solvent, 400 MHz)

¹H NMR Spectrum of 39 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\}$ NMR Spectrum of 39 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 41 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\}$ NMR Spectrum of 41 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 42 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\} NMR Spectrum of 42 (CDCl_3 as solvent, 101 MHz)$

¹H NMR Spectrum of 43 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\} NMR Spectrum of 43 (CDCl_3 as solvent, 101 MHz)$

¹H NMR Spectrum of 44 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\}$ NMR Spectrum of 44 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 45 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^{1}H} NMR Spectrum of 45 (CDCl_{3} as solvent, 101 MHz)$

¹H NMR Spectrum of 45' (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\}$ NMR Spectrum of 45' (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 46 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\}$ NMR Spectrum of 46 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 47 (CDCl₃ as solvent, 400 MHz)

 ^{13}C { $^1H\}$ NMR Spectrum of 47 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 48 (DMSO-*d*₆ as solvent, 400 MHz)

¹H NMR Spectrum of 50 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\}$ NMR Spectrum of 50 (CDCl_3 as solvent, 101 MHz)

337 242 253 008 553 853 853 845 845 845 845 845 845 845 845 845 845	42 0 26	24 148 138 148 138 138 138 138 138 138 138 138 138 13	58 58 47
48 445 39 33 33 33 33 33 15 15 15	7.4 7.1 6.8	0.6 0.5 0.6 0.6	6.66 6.16
		244 2444	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

¹H NMR Spectrum of 51 (CDCl₃ as solvent, 400 MHz)

¹H NMR Spectrum of 52 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\} NMR Spectrum of 52 (CDCl_3 as solvent, 101 MHz)$

¹H NMR Spectrum of 53 (CDCl₃ as solvent, 400 MHz)

¹H NMR Spectrum of 55 (CDCl₃ as solvent, 400 MHz)

^{13}C $\{^{1}H\}$ NMR Spectrum of 55 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 56 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^{1}H} NMR Spectrum of 56 (CDCl_{3} as solvent, 101 MHz)$

¹H NMR Spectrum of 58 (CDCl₃ as solvent, 400 MHz)

¹³C {¹H} NMR Spectrum of 58 (CDCl₃ as solvent, 101 MHz)

¹H NMR Spectrum of 59 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^{1}H} NMR Spectrum of 59 (CDCl_{3} as solvent, 101 MHz)$

¹H NMR Spectrum of 60 (CDCl₃ as solvent, 400 MHz)

7, 88 7, 98 7, 10 8, 10 1,

^{13}C { $^1H\}$ NMR Spectrum of 60 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 61 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\}$ NMR Spectrum of 61 (CDCl_3 as solvent, 101 MHz)

^{13}C { $^{1}H} NMR Spectrum of 62 (CDCl_{3} as solvent, 101 MHz)$

¹H NMR Spectrum of 62 (CDCl₃ as solvent, 400 MHz)

¹H NMR Spectrum of 63 (CDCl₃ as solvent, 400 MHz)

^{13}C $\{^{1}H\}$ NMR Spectrum of 63 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 64 (CDCl₃ as solvent, 400 MHz)

¹H NMR Spectrum of 65 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^{1}H} NMR Spectrum of 65 (CDCl_{3} as solvent, 101 MHz)$

¹H NMR Spectrum of 66 (CDCl₃ as solvent, 400 MHz)

¹H NMR Spectrum of 67 (CDCl₃ as solvent, 400 MHz)

¹H NMR Spectrum of 68 (CDCl₃ as solvent, 400 MHz)

^{13}C $\{^{1}H\}$ NMR Spectrum of 68 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 69 (CDCl₃ as solvent, 400 MHz)

	~ 158.312 ~ 155.319	∫ 143.657 ∫ 142.316 ∫ 134.714 ∫ 134.026 130.697 129.835 127.671	~ 118.746 $\int 111.142$ $\int 108.516$	77.478 77.161 76.843	~ 55.665 $\int 48.634$ $\int 43.260$ $\int 43.006$	∑ 24.434 ∑ 22.530 ∑ 21.648
--	------------------------	---	--	----------------------------	--	----------------------------------

¹H NMR Spectrum of 70 (CDCl₃ as solvent, 400 MHz)

^{13}C { $^1H\}$ NMR Spectrum of 70 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 71 (CDCl₃ as solvent, 400 MHz)

$\begin{array}{c} \mathfrak{s}_{12} \mathfrak{s}_{22} \mathfrak{s}_{23} \mathfrak{s}_{23}$

^{13}C { $^1H\}$ NMR Spectrum of 71 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 72 (CDCl₃ as solvent, 400 MHz)

^{13}C $\{^{1}H\}$ NMR Spectrum of 72 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 73 (CDCl₃ as solvent, 400 MHz)

^{13}C $\{^{1}H\}$ NMR Spectrum of 73 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 74 (CDCl₃ as solvent, 400 MHz)

^{13}C $\{^{1}H\}$ NMR Spectrum of 74 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 75 (CDCl₃ as solvent, 400 MHz)

^{13}C $\{^{1}H\}$ NMR Spectrum of 75 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 76 and 77 (CDCl₃ as solvent, 400 MHz)

^{13}C $\{^{1}H\}$ NMR Spectrum of 76 and 77 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 78 (CDCl₃ as solvent, 400 MHz)

 ^{13}C $\{^{1}H\}$ NMR Spectrum of 78 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 79 (CDCl₃ as solvent, 400 MHz)

^{13}C $\{^{1}H\}$ NMR Spectrum of 79 (CDCl_3 as solvent, 101 MHz)

¹H NMR Spectrum of 80 (CDCl₃ as solvent, 400 MHz)

¹³C {¹H} NMR Spectrum of 80 (CDCl₃ as solvent, 101 MHz)

¹H NMR Spectrum of 82 (CDCl₃ as solvent, 400 MHz)

スパース スパース 2.2.75

^{13}C { $^{1}H} NMR Spectrum of 82 (CDCl_{3} as solvent, 101 MHz)$

5. X-Ray Crystallographic Spectrum of 8, 31 and 79

Crystallographic spectrum of product 8 (CCDC number: 2203604)

Table S1. Crystal data and structure rel	mement for GYZ2.		
Identification code	gyz2		
Empirical formula	C19H22O4		
Formula weight	314.37		
Temperature	153(2) K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	a = 23.0076(2) Å	= 90 °.	
	b = 7.76760(10) Å	= 99.8830(10) °.	
	c = 18.0741(2) Å	= 90 °.	
Volume	3182.16(6) Å ³		
Z	8		
Density (calculated)	1.312 Mg/m ³		
Absorption coefficient	0.739 mm ⁻¹		
F(000)	1344		
Crystal size	0.1 x 0.1 x 0.1 mm ³		
Theta range for data collection	3.90 to 66.58 °.		
Index ranges	-27<=h<=27, -9<=k<=3,	-27<=h<=27, -9<=k<=3, -21<=l<=20	
Reflections collected	8524	8524	
Independent reflections	2777 [R(int) = 0.0230]	2777 [R(int) = 0.0230]	
Completeness to theta = 66.58 $^{\circ}$	98.8 %	98.8 %	
Absorption correction	Semi-empirical from equ	Semi-empirical from equivalents	
Max. and min. transmission	1 and 0.50432	1 and 0.50432	
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²	
Data / restraints / parameters	2777 / 0 / 208	2777 / 0 / 208	
Goodness-of-fit on F ²	1.104		
Final R indices [I>2sigma(I)]	R1 = 0.0421, wR2 = 0.11	R1 = 0.0421, $wR2 = 0.1104$	
R indices (all data)	R1 = 0.0446, wR2 = 0.11	R1 = 0.0446, $wR2 = 0.1145$	
Largest diff. peak and hole	0.287 and -0.286 e.Å ⁻³	0.287 and -0.286 e.Å ⁻³	

Table S1. Crystal data and structure refinement for GYZ2

Crystallographic spectrum of product 31 (CCDC number: 2203603)

Table S2. Crystal data and structure refinement for GYZ1.					
Empirical formula	C24H27NO4S				
Formula weight	425.53				
Temperature	153(2) K				
Wavelength	1.54178 Å				
Crystal system	Monoclinic				
Space group	P2(1)/n				
Unit cell dimensions	a = 5.42480(10) Å	= 90°.			
	b = 30.6105(6) Å	= 94.7720(10)°.			
	c = 12.8838(2) Å	= 90°.			
Volume	2132.01(7) Å ³				
Z	4				
Density (calculated)	1.326 Mg/m ³				
Absorption coefficient	1.601 mm ⁻¹				
F(000)	904				
Crystal size	0.2 x 0.1 x 0.1 mm ³				
Theta range for data collection	2.89 to 66.60 °.	2.89 to 66.60 °.			
Index ranges	-6<=h<=6, -35<=k<=35, -1	-6<=h<=6, -35<=k<=35, -11<=l<=15			
Reflections collected	10342	10342			
Independent reflections	3654 [R(int) = 0.0445]	3654 [R(int) = 0.0445]			
Completeness to theta = 66.60 $^\circ$	96.7 %				
Max. and min. transmission	1 and 0.03312				
Refinement method	Full-matrix least-squares o	n F ²			
Data / restraints / parameters	3654 / 0 / 271				
Goodness-of-fit on F ²	1.120				
Final R indices [I>2sigma(I)]	R1 = 0.0583, wR2 = 0.185	5			
R indices (all data)	R1 = 0.0689, WR2 = 0.214	R1 = 0.0689, wR2 = 0.2147			

0.704 and -0.941 e.Å⁻³

Largest diff. peak and hole

Crystallographic spectrum of product 79 (CCDC number: 2249062)

Table S3. Crystal data and structure refinement for Gao.		
Identification code	gao	
Empirical formula	C30 H23 N O3 S	
Formula weight	477.55	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.3269(8) Å	
	b = 11.8421(12) Å	
	c = 13.6257(14) Å	
Volume	1212.2(2) Å ³	
Z	2	
Density (calculated)	1.308 Mg/m ³	
Absorption coefficient	0.166 mm ⁻¹	
F(000)	500	

Space group	P-1		
Unit cell dimensions	a = 8.3269(8) Å	α= 69.743(4)°.	
	b = 11.8421(12) Å	$\beta = 74.537(4)$ °.	
	c = 13.6257(14) Å	$\gamma = 81.231(4)$ °.	
Volume	1212.2(2) Å ³		
Z	2		
Density (calculated)	1.308 Mg/m ³		
Absorption coefficient	0.166 mm ⁻¹		
F(000)	500		
Crystal size	0.2 x 0.1 x 0.1 mm ³		
Theta range for data collection	2.54 to 28.29 °.		
Index ranges	-11<=h<=11, -15<=k<=15, -18<=l<=18		
Reflections collected	49873		
Independent reflections	6013 [R(int) = 0.1690]		
Completeness to theta = 28.29°	99.8 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	6013 / 0 / 316		
Goodness-of-fit on F ²	1.257		
Final R indices [I>2sigma(I)]	R1 = 0.0687, wR2 = 0.1731		
R indices (all data)	R1 = 0.1450, wR2 = 0.2314		
Largest diff. peak and hole	0.369 and -0.581 e.Å ⁻³		

6. References

[S1] (a) Qiu, Y.-F.; Zhu, X.-Y.; Li, Y.-X.; He, Y.-T.; Yang, F.; Wang, J.; Hua, H.-L.; Zheng, L.; Wang, L.-C.; Liu, X.-Y.; Liang, Y.-M. AgSCF₃-Mediated Trifluoromethylthiolation/Radical Cascade Cyclization of 1,6-Enynes. *Org. Lett.* **2015**, *17*, 3694-3697. (b) Franchino, A.; Martí, À.; Echavarren, A. M. H-Bonded Counterion-Directed Enantioselective Au(I) Catalysis. *J. Am. Chem. Soc.* **2022**, *144*, 3497-3509.

[S2] Wang, H.; Lu, Q.; Chiang, C.-W.; Luo, Y.; Zhou, J.; Wang, G.; Lei, A. Markovnikov-Selective Radical Addition of S-Nucleophiles to Terminal Alkynes through a Photoredox Process. *Angew. Chem., Int. Ed.* **2017**, *56*, 595-599.

[S3] Xiao, F.; Hu, Y.; Huang, H.; Xu, F.; Deng, G.-J. Base-Controlled Divergent Synthesis of Vinyl Sulfones from (Benzylsulfonyl)benzenes and Paraformaldehyde. *Org. Biomol. Chem.* **2020**, *18*, 3527-3535.

[S4] (a) Liu, L.; Sun, K.; Su, L.; Dong, J.; Cheng, L.; Zhu, X.; Au, C.-T.; Zhou, Y.; Yin, S.-F. Palladium-Catalyzed Regio- and Stereoselective Coupling–Addition of Propiolates with Arylsulfonyl Hydrazides: A Pattern for Difunctionalization of Alkynes. *Org. Lett.* 2018, 20, 4023–4027. (b) Sitte, N. A.; Köring, L.; Roesky, P. W.; Paradies, J. FLP-Catalysis Meets Hydrogen-Bond Activation. *Org. Biomol. Chem.* 2020, *18*, 7321-7325.