# Machine Learning for CO<sub>2</sub> Conversion Driven by Dielectric Barrier Discharge Plasma and Cs<sub>2</sub>TeCl<sub>6</sub> Photocatalyst

Yangyi Shen<sup>a</sup>, Chengfan Fu<sup>a</sup>, Wen Luo<sup>a</sup>, Zhiyu Liang<sup>a</sup>, Zi-Rui Wang<sup>b,\*</sup>, Qiang Huang<sup>a,\*</sup>

a School of Optoelectronic Engineering, Chongqing University of Posts and

Telecommunications, Chongqing 400065, China

b School of Computer Science and Technology, Chongqing University of Posts and

Telecommunications, Chongqing 400065, China

\* Corresponding author

E-mail: wangzr@cqupt.edu.cn (Z. Wang), huangqiang@cqupt.edu.cn (Q. Huang)

#### Materials

Cesium chloride (CsCl, 99.9% metals basis, Macklin), Tellurium chloride (TeCl<sub>4</sub>, 99.5%, Aladdin), Hydrochloric acid (HCl, 37 wt% in water), Ethanol (>99.7%) was purchased from Chongqing Wansheng East Sichuan Chemical Co. LTD. All the chemicals were used without further purification.

#### **Preparation of Cs<sub>2</sub>TeCl<sub>6</sub> Perovskites.**

First of all, the precursor solution was obtained by dissolving 2 mmol CsCl (0.3367 g) and 1mmol TeCl<sub>4</sub> in 5 ml hydrochloric acid according to the stoichiometric ratio, and placed in 25ml polytetrafluoroethylene autoclave. The precursor was heated to 180  $^{\circ}$  C within 10 hours and maintained at this temperature for 10 hours, which was then slowly cooled to room temperature within 24 hours. The product was washed with anhydrous ethanol, and centrifuged at 10000 rpm for 5 minutes. Finally, the supernatant was removed and dried at 70  $^{\circ}$  C for 4 hours in vacuum, and the Cs<sub>2</sub>TeCl<sub>6</sub> microcrystals was obtained.

#### Characterization

The crystal structure of the as prepared  $Cs_2TeCl_6$  was determined by Cu Ka radiation (MADZU, Japan) powder X-ray diffraction (XRD). The morphology of  $Cs_2TeCl_6$  was determined by scanning electron microscopy (SEM, TM4000Plus II). Plasma experiments were conducted with a plasma generator (CTP-2000, Nanjing Suman Electronics Co., Ltd.). The experimentally obtained gas mixture was analyzed by gas chromatography (GC, Fuli 9790II).

#### K-fold cross validation

k-fold cross validation is a method that divides all samples equally into k sample subsets, and each time the current subset is used as the validation set while all the remaining samples are used as the training set. The training and evaluation of the model are performed, and finally the average of the k evaluation metrics is taken as the final evaluation metric, and the k value is set to be 5 in this work.

#### Hyperparameters

In this paper, the hidden layer nodes and the regularization term parameters of the BPANN model are optimized. Where the hidden layer nodes represent the number of neurons in the hidden layer, which determine the complexity of the neural network. Too few hidden layer nodes will result in poor training of the network, while too many will lengthen the training time of the network, and will also result in overfitting when the limited information contained in the training set is not enough to train all the neurons in the hidden layer. The regularization term parameters are also known as the L2 penalty coefficient. When the model performs very well in the training set but poorly in the testing set, this represents model overfitting, and the regularization term parameters serve to prevent overfitting.

## **Genetic Algorithm**

Genetic Algorithm  $(GA)^{1,2}$  is a stochastic search algorithm that draws on natural genetic mechanisms in the biological world. It imitates the natural evolutionary process and genetically manipulating individuals in a population with a certain structural form to generate a new population that gradually approaches the optimal solution.

The basic Genetic Algorithm consists of the coding initialization, the fitness function, the selection operations, the crossover operations, the mutation operations and the operating parameters. In this study, the hyperparameters in the basic model are encoded as individuals in the Genetic Algorithm through binary, which is due to the genetic operator operates directly on strings of numbers. Then the objective function  $R^2$  is chosen to calculate the fitness value for all individuals generated randomly and based on this fitness value, the better solution is selected. The selected solutions are then reassembled by crossover and mutation operations (Fig. S1) to generate new solutions, and iterations are repeated until the best combination of hyperparameters is found. And the operating parameters contain the coding length, population size, crossover probabilities, mutation probabilities and termination conditions. The model of GA algorithm combined with the BPANN is named GA-BPANN model.



**Fig. S1** (a) The crossover operations: chromosomes of two individuals are exchanged after a random exchange of starting points. (b) The mutation operations: mutation operators change the genes in solutions.

#### **Particle Swarm Optimization**

The basic idea of the Particle Swarm Optimization (PSO)<sup>3</sup> is to simulate birds in nature and find a path closest to food by competing and cooperating with other birds. When it is used to optimize a neural network, the hyperparameters are the particles, and each particle searches independently in the set hyperparameter area and marks the best location found. Then, the particles are evaluated by the fitness function, and the current particle will compare with the historical individual optimum and population optimum to update its own speed and position,<sup>4</sup> with the following formula:

$$V_i = V_i + C_1 r(P_i - X_i) + C_2 r(G_i - X_i)$$
 MERGEFORMAT (1)  
$$X_i = X_i + V_i$$
 \\* MERGEFORMAT (2)

Where  $V_i$  is the velocity of the particle,  $P_i$  and  $G_i$  is the historical best positions of the individual and the population, respectively, r is a random number between the interval (0,1),  $X_i$  is the current position of the particle, and both  $C_1$  and  $C_2$  are learning factors.

Before reaching the expected error accuracy or maximum number of iterations, the PSO can be used to iterate repeatedly to find the optimal hyperparameters. The BP neural network model combining PSO algorithm is named as PSO-BPANN model in this study.

#### **Bayesian Optimization**

Bayesian Optimization (Bayesian)<sup>5</sup> is an algorithm for automatically adjusting parameters. Its basic idea contains two points: the surrogate function and the acquisition function.

Bayesian optimization is a loop iterative process (Fig. S2) until the target value reaches the desired. First, the prediction of observation points is completed by Gaussian process regression (GPR) as the surrogate function, and the predicted mean value of each point on the objective function and the confidence level corresponding to that point are estimated based on a small number of observation points. In this study, the observation points are hyperparametric samples, and the objective function is the value of the corresponding evaluation index R<sup>2</sup>. Then the acquisition function is based on the mean  $\mu(x)$  and variance  $\sigma(x)$  obtained by GPR, and the point with the global maximum is selected for the next observation, and the iterative results will be closer to the true maximum as the number of observation points increases.<sup>6</sup> The difference between Bayesian optimization and other automatic parameter adjusting algorithms is that the previous evaluation results will be referred to when trying the next set of hyperparameters, which can obtain results quickly and save more time, making it an effective global optimization method. The neural network model obtained by combining Bayesian optimization with BPANN is named as Bayesian-BPANN model in this study.



Fig. S2 The basic element of Bayesian optimization: the acquisition function finds the next observation based on the information obtained from the GPR model, thus approaching the maximum  $R^2$  value the fastest.

#### **Training Error Curves**

The Fig. S3 shows the training error curves of the four BPANN prediction models, and it can be found that the three optimized models have improved both in terms of convergence rate and prediction performance compared with the basic BPANN model, and the GA-BPANN model holds the best comprehensive performance. This also demonstrates that the three optimized BPANN models can improve some shortcomings of the BP algorithm to a certain extent.



Fig. S3 The training error curves of the four BPANN prediction models.

|                 |          |               |                            | -              |
|-----------------|----------|---------------|----------------------------|----------------|
| Discharge Power | Gas Flow | Catalyst Dose | CO <sub>2</sub> Conversion | Energy         |
| (W)             | (sccm)   | (mg)          | Ratio (%)                  | Efficiency (%) |
| 17.86           | 20       | 10            | 23.40                      | 4.01           |
| 18              | 30       | 10            | 20.71                      | 5.25           |
| 18.9            | 40       | 10            | 19.85                      | 6.40           |
| 16.59           | 50       | 10            | 17.78                      | 8.17           |
| 11.97           | 60       | 10            | 12.57                      | 9.64           |
| 11.41           | 70       | 10            | 8.80                       | 8.24           |
| 21.6            | 20       | 10            | 28.30                      | 4.01           |
| 23.5            | 30       | 10            | 23.37                      | 4.53           |
| 27.3            | 40       | 10            | 20.40                      | 4.55           |

Table S1: The dataset of ML contains 90 plasma samples

| 24.77 | 50 | 10 | 18.59 | 5.72 |
|-------|----|----|-------|------|
| 21.28 | 60 | 10 | 16.19 | 6.98 |
| 23.4  | 70 | 10 | 15.45 | 7.05 |
| 41.2  | 20 | 10 | 17.09 | 1.27 |
| 39.62 | 30 | 10 | 16.35 | 1.88 |
| 39.15 | 40 | 10 | 15.64 | 2.43 |
| 33.93 | 50 | 10 | 14.96 | 3.36 |
| 32.21 | 60 | 10 | 14.81 | 4.22 |
| 33.32 | 70 | 10 | 14.19 | 4.55 |
| 54.41 | 20 | 10 | 13.39 | 0.75 |
| 45.68 | 30 | 10 | 14.48 | 1.44 |
| 46.66 | 40 | 10 | 14.92 | 1.94 |
| 43    | 50 | 10 | 12.78 | 2.26 |
| 39.92 | 60 | 10 | 10.68 | 2.45 |
| 43.25 | 70 | 10 | 11.53 | 2.84 |
| 57.33 | 20 | 10 | 13.23 | 0.70 |
| 59.06 | 30 | 10 | 13.25 | 1.02 |
| 57.19 | 40 | 10 | 11.00 | 1.17 |
| 51.38 | 50 | 10 | 10.52 | 1.56 |
| 48.24 | 60 | 10 | 10.20 | 1.94 |
| 62.82 | 70 | 10 | 10.29 | 1.75 |
| 20.31 | 20 | 5  | 17.22 | 2.59 |
| 25.19 | 30 | 5  | 16.68 | 3.02 |
| 18.1  | 40 | 5  | 14.12 | 4.75 |
| 18.04 | 50 | 5  | 13.24 | 5.59 |
| 15.4  | 60 | 5  | 11.16 | 6.65 |
| 15.84 | 70 | 5  | 10.54 | 7.11 |
| 26.77 | 20 | 5  | 18.90 | 2.16 |
| 26.66 | 30 | 5  | 16.90 | 2.89 |
| 21.29 | 40 | 5  | 14.80 | 4.23 |
| 24.75 | 50 | 5  | 14.40 | 4.43 |
| 23.89 | 60 | 5  | 13.20 | 5.07 |
| 26.17 | 70 | 5  | 12.83 | 5.24 |
| 31.72 | 20 | 5  | 13.26 | 1.27 |
| 36.97 | 30 | 5  | 12.46 | 1.53 |
| 39.99 | 40 | 5  | 11.14 | 1.69 |
| 41    | 50 | 5  | 10.65 | 1.98 |
| 36.63 | 60 | 5  | 10.21 | 2.56 |
| 30.57 | 70 | 5  | 9.73  | 3.40 |
| 46.36 | 20 | 5  | 13.69 | 0.90 |
| 45.04 | 30 | 5  | 13.26 | 1.34 |
| 40.24 | 40 | 5  | 11.00 | 1.66 |
| 47.23 | 50 | 5  | 11.20 | 1.80 |

| 56.46 | 60 | 5  | 12.23 | 1.98 |
|-------|----|----|-------|------|
| 45.02 | 70 | 5  | 10.83 | 2.57 |
| 53.87 | 20 | 5  | 12.05 | 0.68 |
| 70.68 | 30 | 5  | 11.51 | 0.74 |
| 49.17 | 40 | 5  | 9.72  | 1.20 |
| 46.51 | 50 | 5  | 9.24  | 1.51 |
| 51.23 | 60 | 5  | 8.88  | 1.59 |
| 45.33 | 70 | 5  | 8.28  | 1.95 |
| 19.27 | 20 | 15 | 26.80 | 4.25 |
| 19.2  | 30 | 15 | 18.74 | 4.45 |
| 14.86 | 40 | 15 | 14.23 | 5.83 |
| 26.44 | 50 | 15 | 13.60 | 3.92 |
| 24.99 | 60 | 15 | 12.50 | 4.59 |
| 23.48 | 70 | 15 | 11.14 | 5.07 |
| 26.81 | 20 | 15 | 25.08 | 2.86 |
| 32.24 | 30 | 15 | 19.01 | 2.69 |
| 31.07 | 40 | 15 | 17.28 | 3.39 |
| 31.92 | 50 | 15 | 14.66 | 3.50 |
| 28.15 | 60 | 15 | 12.24 | 3.99 |
| 24.41 | 70 | 15 | 9.98  | 4.37 |
| 41.61 | 20 | 15 | 19.67 | 1.44 |
| 40.51 | 30 | 15 | 14.71 | 1.65 |
| 38.37 | 40 | 15 | 13.64 | 2.16 |
| 41.57 | 50 | 15 | 13.50 | 2.47 |
| 42.12 | 60 | 15 | 13.35 | 2.91 |
| 37.7  | 70 | 15 | 12.66 | 3.58 |
| 49.64 | 20 | 15 | 23.11 | 1.42 |
| 45.84 | 30 | 15 | 16.66 | 1.65 |
| 49.24 | 40 | 15 | 13.84 | 1.71 |
| 55.8  | 50 | 15 | 13.35 | 1.82 |
| 51.52 | 60 | 15 | 13.04 | 2.32 |
| 46.43 | 70 | 15 | 12.49 | 2.87 |
| 64.13 | 20 | 15 | 15.35 | 0.73 |
| 55.64 | 30 | 15 | 14.79 | 1.21 |
| 61.52 | 40 | 15 | 14.58 | 1.44 |
| 54.2  | 50 | 15 | 12.71 | 1.78 |
| 58.49 | 60 | 15 | 12.28 | 1.92 |
| 60.04 | 70 | 15 | 9.49  | 1.68 |

# Table S2: Optimized hyperparameters

| Value of the hyper-parameter |              |        |  |  |  |
|------------------------------|--------------|--------|--|--|--|
|                              | Hidden nodes | alpha  |  |  |  |
| BPANN                        | 100          | 0.0001 |  |  |  |
| GA-BPANN                     | 850          | 0.0681 |  |  |  |
| PSO-BPANN                    | 514          | 0.0946 |  |  |  |
| Bayesian-BPANN               | 878          | 0.1889 |  |  |  |

# TableS3:Performanceofneuralnetworkmodelsafterhyperparameters optimization

|           |        | R <sup>2</sup> of Traini | ng Set         | R <sup>2</sup> of Testing Set |                 |                |
|-----------|--------|--------------------------|----------------|-------------------------------|-----------------|----------------|
|           | Model  | CO <sub>2</sub>          | Energy         | Model                         | CO <sub>2</sub> | Energy         |
|           |        | Conversion               | Efficiency (%) |                               | Conversion      | Efficiency (%) |
|           |        | Ratio (%)                |                |                               | Ratio (%)       |                |
| BPANN     | 0.9595 | 0.9243                   | 0.9840         | 0.9455                        | 0.9155          | 0.9752         |
| GA-BPANN  | 0.9713 | 0.9507                   | 0.9870         | 0.9622                        | 0.9401          | 0.9838         |
| PSO-      | 0.9711 | 0.9468                   | 0.9899         | 0.9562                        | 0.9307          | 0.9818         |
| BPANN     |        |                          |                |                               |                 |                |
| Bayesian- | 0.9674 | 0.9436                   | 0.9843         | 0.9577                        | 0.9335          | 0.9805         |
| BPANN     |        |                          |                |                               |                 |                |

## Table S4: Result of neural network model trained for 200 times

|--|

| Average R <sup>2</sup> of BPANN Model          | 0.9560 | 0.9467 |
|------------------------------------------------|--------|--------|
| Average R <sup>2</sup> of GA-BPANN Model       | 0.9692 | 0.9632 |
| Average R <sup>2</sup> of PSO-BPANN Model      | 0.9675 | 0.9624 |
| Average R <sup>2</sup> of Bayesian-BPANN Model | 0.9648 | 0.9579 |

Table S5: 10 sets of experimental and predicted results

| Discharge    | 27    | 17    | 26     | 25       | 57        | 31    | 40    | 28    | 23    | 15    |
|--------------|-------|-------|--------|----------|-----------|-------|-------|-------|-------|-------|
| Power (W)    |       |       |        |          |           |       |       |       |       |       |
| Gas Flow     | 58    | 43    | 41     | 28       | 62        | 29    | 48    | 50    | 58    | 39    |
| (sccm)       |       |       |        |          |           |       |       |       |       |       |
| Catalyst     | 10    | 10    | 8      | 6        | 14        | 8     | 12    | 10    | 8     | 7     |
| Dose (mg)    |       |       |        |          |           |       |       |       |       |       |
|              |       |       | $CO_2$ | Convers  | ion Ratio | o (%) |       |       |       |       |
| Experimental | 17.70 | 19.68 | 20.02  | 15.04    | 13.48     | 16.82 | 14.22 | 16.61 | 14.44 | 16.22 |
| BPANN        | 14.88 | 20.48 | 16.00  | 14.40    | 11.35     | 16.92 | 14.23 | 17.74 | 13.95 | 16.50 |
| Predicted    |       |       |        |          |           |       |       |       |       |       |
| GA-BPANN     | 16.28 | 19.44 | 17.53  | 16.12    | 11.20     | 17.11 | 14.11 | 17.49 | 15.07 | 16.70 |
| Predicted    |       |       |        |          |           |       |       |       |       |       |
|              |       |       | En     | ergy Eff | iciency ( | (%)   |       |       |       |       |
| Experimental | 5.82  | 7.58  | 4.81   | 2.56     | 2.24      | 2.37  | 2.50  | 4.48  | 5.98  | 6.51  |
| BPANN        | 4.15  | 5.44  | 2.95   | 1.07     | 1.85      | 2.10  | 2.73  | 4.76  | 5.54  | 5.32  |
| Predicted    |       |       |        |          |           |       |       |       |       |       |
| GA-BPANN     | 5.28  | 6.52  | 4.02   | 2.30     | 1.84      | 2.18  | 2.49  | 4.66  | 5.59  | 5.47  |
| Predicted    |       |       |        |          |           |       |       |       |       |       |

| Table S6: ML dataset contains 595 plasma samples generated by G. | A- |
|------------------------------------------------------------------|----|
|------------------------------------------------------------------|----|

# **BPANN model**

| Discharge Power | Gas Flow | Catalyst Dose | CO <sub>2</sub> Conversion | Energy         |
|-----------------|----------|---------------|----------------------------|----------------|
| (W)             | (sccm)   | (mg)          | Ratio (%)                  | Efficiency (%) |
| 11              | 63       | 10            | 11.08962                   | 8.727693       |
| 11              | 47       | 12            | 14.51679                   | 7.504844       |
| 11              | 66       | 8             | 10.7641                    | 8.380277       |
| 11              | 61       | 5             | 9.211145                   | 6.884028       |
| 11              | 41       | 5             | 12.53273                   | 5.71089        |

| 11 | 49 | 7  | 13.59316 | 7.321038 |
|----|----|----|----------|----------|
| 11 | 69 | 14 | 5.91753  | 7.22632  |
| 11 | 25 | 13 | 23.48035 | 5.394102 |
| 11 | 57 | 14 | 8.565131 | 6.82981  |
| 11 | 56 | 11 | 12.58168 | 8.468121 |
| 11 | 33 | 7  | 16.9665  | 5.460984 |
| 12 | 62 | 5  | 9.293478 | 6.704324 |
| 12 | 47 | 12 | 14.7949  | 7.320605 |
| 12 | 33 | 12 | 20.32548 | 6.145131 |
| 12 | 52 | 12 | 13.14116 | 7.60471  |
| 12 | 58 | 13 | 9.83826  | 7.255231 |
| 12 | 43 | 12 | 16.0119  | 7.027293 |
| 12 | 46 | 5  | 11.69506 | 5.879284 |
| 12 | 20 | 13 | 26.20108 | 4.827599 |
| 13 | 21 | 15 | 25.17683 | 4.457213 |
| 13 | 25 | 5  | 16.38814 | 3.664635 |
| 13 | 58 | 10 | 13.35891 | 8.36973  |
| 13 | 36 | 11 | 19.6768  | 6.471836 |
| 13 | 24 | 8  | 21.51569 | 4.360319 |
| 13 | 36 | 10 | 19.39605 | 6.303774 |
| 13 | 24 | 5  | 16.61071 | 3.537825 |
| 13 | 53 | 5  | 10.74701 | 6.093959 |
| 14 | 36 | 13 | 18.15974 | 5.67698  |
| 14 | 70 | 6  | 9.445785 | 6.927539 |
| 14 | 26 | 12 | 24.11347 | 5.112057 |
| 14 | 28 | 15 | 21.06063 | 4.638962 |
| 14 | 35 | 9  | 19.59607 | 5.802177 |
| 14 | 24 | 7  | 19.96858 | 3.904953 |
| 14 | 39 | 9  | 18.92759 | 6.367052 |
| 14 | 70 | 11 | 10.58284 | 7.993219 |
| 14 | 42 | 9  | 18.52092 | 6.761586 |
| 14 | 53 | 14 | 10.69869 | 6.10711  |
| 14 | 44 | 13 | 14.75247 | 6.280944 |
| 15 | 24 | 7  | 20.11551 | 3.730576 |
| 15 | 38 | 12 | 18.55146 | 6.020099 |
| 15 | 58 | 11 | 13.58609 | 7.769984 |
| 15 | 46 | 9  | 17.83466 | 7.076919 |
| 15 | 33 | 14 | 19.16201 | 4.978737 |
| 15 | 27 | 8  | 20.60895 | 4.327022 |
| 15 | 22 | 5  | 17.46679 | 2.959761 |
| 15 | 58 | 9  | 14.17174 | 7.78701  |
| 15 | 39 | 5  | 13.9607  | 4.762423 |
| 15 | 31 | 6  | 16.89672 | 4.299603 |

| 15 | 68 | 14 | 7.696613 | 6.398836 |
|----|----|----|----------|----------|
| 15 | 56 | 12 | 12.82588 | 7.147816 |
| 15 | 39 | 7  | 16.70276 | 5.470662 |
| 15 | 23 | 6  | 18.86697 | 3.355195 |
| 15 | 67 | 5  | 9.418178 | 6.240154 |
| 15 | 69 | 14 | 7.530724 | 6.43334  |
| 15 | 50 | 9  | 16.58018 | 7.47183  |
| 15 | 40 | 15 | 14.12076 | 5.016027 |
| 15 | 41 | 14 | 14.63023 | 5.441539 |
| 15 | 49 | 15 | 10.69343 | 5.31613  |
| 15 | 54 | 6  | 12.29301 | 6.254633 |
| 15 | 49 | 7  | 14.51829 | 6.473489 |
| 15 | 61 | 6  | 11.08687 | 6.512172 |
| 16 | 46 | 8  | 16.86485 | 6.521532 |
| 16 | 54 | 9  | 15.56267 | 7.465362 |
| 16 | 33 | 13 | 20.40984 | 5.13206  |
| 16 | 45 | 11 | 18.04729 | 6.867429 |
| 16 | 23 | 14 | 25.50272 | 4.270436 |
| 16 | 30 | 8  | 19.81623 | 4.502924 |
| 16 | 27 | 8  | 20.76002 | 4.154542 |
| 17 | 43 | 10 | 19.44441 | 6.521779 |
| 17 | 69 | 14 | 8.101161 | 6.051281 |
| 17 | 28 | 7  | 19.14552 | 3.853732 |
| 17 | 63 | 15 | 7.980407 | 5.326646 |
| 17 | 29 | 9  | 21.82694 | 4.480996 |
| 17 | 26 | 12 | 24.88014 | 4.574901 |
| 17 | 65 | 6  | 10.91154 | 6.187686 |
| 17 | 36 | 12 | 19.96095 | 5.501576 |
| 17 | 27 | 15 | 22.38137 | 4.140559 |
| 17 | 54 | 15 | 9.831151 | 5.085502 |
| 17 | 34 | 11 | 21.32631 | 5.439965 |
| 17 | 52 | 5  | 11.75613 | 5.24297  |
| 17 | 61 | 11 | 13.44472 | 7.375985 |
| 17 | 25 | 10 | 24.68291 | 4.320916 |
| 17 | 40 | 7  | 17.00672 | 5.231766 |
| 17 | 62 | 8  | 12.97164 | 6.990417 |
| 18 | 31 | 5  | 15.68065 | 3.453273 |
| 18 | 37 | 15 | 16.20651 | 4.414122 |
| 18 | 28 | 12 | 24.23809 | 4.589477 |
| 18 | 40 | 10 | 20.45573 | 5.987919 |
| 18 | 56 | 6  | 12.56141 | 5.678719 |
| 18 | 25 | 15 | 23.74751 | 3.903612 |
| 18 | 21 | 13 | 27.38891 | 3.9206   |

| 18 | 70 | 7  | 11.15047 | 6.408945 |
|----|----|----|----------|----------|
| 19 | 28 | 10 | 24.0387  | 4.332688 |
| 19 | 67 | 13 | 10.2468  | 6.099285 |
| 19 | 22 | 8  | 22.92039 | 3.20038  |
| 19 | 65 | 8  | 12.92541 | 6.556983 |
| 19 | 35 | 13 | 19.78438 | 4.767112 |
| 19 | 28 | 11 | 24.35369 | 4.387989 |
| 19 | 29 | 10 | 23.60548 | 4.433077 |
| 19 | 40 | 7  | 17.53112 | 4.856397 |
| 19 | 52 | 5  | 12.2214  | 4.857736 |
| 19 | 61 | 12 | 12.74559 | 6.442876 |
| 19 | 22 | 10 | 26.73426 | 3.831242 |
| 19 | 60 | 14 | 10.35331 | 5.334304 |
| 19 | 39 | 14 | 16.29375 | 4.669325 |
| 19 | 63 | 14 | 9.712073 | 5.439133 |
| 19 | 48 | 8  | 17.02373 | 6.037627 |
| 20 | 62 | 6  | 12.12792 | 5.46715  |
| 20 | 56 | 5  | 11.93523 | 4.815077 |
| 20 | 50 | 13 | 14.3028  | 5.41246  |
| 20 | 58 | 8  | 14.62027 | 6.260089 |
| 20 | 26 | 7  | 19.18499 | 3.09471  |
| 20 | 28 | 12 | 24.6219  | 4.231218 |
| 20 | 51 | 13 | 14.02072 | 5.433655 |
| 20 | 41 | 15 | 14.17119 | 4.220363 |
| 20 | 58 | 5  | 11.72349 | 4.878998 |
| 20 | 49 | 9  | 18.07395 | 6.332285 |
| 20 | 30 | 8  | 20.34681 | 3.819043 |
| 21 | 45 | 7  | 16.75935 | 4.929273 |
| 21 | 48 | 14 | 13.52516 | 4.704934 |
| 21 | 26 | 14 | 24.52805 | 3.694697 |
| 21 | 62 | 8  | 13.94409 | 6.091654 |
| 21 | 43 | 12 | 18.22994 | 5.369711 |
| 21 | 46 | 10 | 19.89744 | 6.116918 |
| 21 | 39 | 13 | 18.08271 | 4.706716 |
| 21 | 31 | 13 | 22.45349 | 4.157824 |
| 21 | 23 | 6  | 17.68606 | 2.332567 |
| 21 | 58 | 7  | 13.98788 | 5.592605 |
| 21 | 69 | 13 | 10.51858 | 5.772344 |
| 21 | 50 | 13 | 14.46223 | 5.216143 |
| 21 | 33 | 10 | 22.94369 | 4.606539 |
| 22 | 43 | 8  | 18.82792 | 4.906343 |
| 22 | 60 | 7  | 13.74334 | 5.409896 |
| 22 | 37 | 7  | 17.70378 | 4.004391 |

| 22 | 68 | 5  | 10.89852 | 4.703768 |
|----|----|----|----------|----------|
| 22 | 65 | 9  | 14.29421 | 6.280464 |
| 22 | 48 | 13 | 15.23814 | 4.978055 |
| 22 | 31 | 14 | 21.37392 | 3.812536 |
| 23 | 65 | 10 | 15.34774 | 6.416917 |
| 23 | 46 | 10 | 19.98401 | 5.677044 |
| 23 | 24 | 15 | 24.80756 | 3.164578 |
| 23 | 65 | 15 | 9.460085 | 4.423627 |
| 23 | 58 | 8  | 15.06986 | 5.593693 |
| 23 | 25 | 9  | 22.96153 | 3.211702 |
| 23 | 69 | 9  | 13.92628 | 6.068845 |
| 23 | 34 | 13 | 20.7325  | 4.035899 |
| 23 | 44 | 5  | 13.05182 | 3.601831 |
| 23 | 35 | 15 | 17.82841 | 3.629618 |
| 23 | 67 | 13 | 11.3809  | 5.329434 |
| 23 | 59 | 11 | 15.49937 | 6.069946 |
| 23 | 31 | 14 | 21.46124 | 3.674351 |
| 23 | 56 | 9  | 16.36185 | 5.958801 |
| 23 | 34 | 7  | 17.70274 | 3.512781 |
| 23 | 22 | 11 | 26.57242 | 3.241127 |
| 23 | 34 | 15 | 18.44664 | 3.604153 |
| 23 | 49 | 9  | 18.45322 | 5.63685  |
| 23 | 42 | 15 | 14.33533 | 3.788594 |
| 24 | 25 | 11 | 25.05363 | 3.327952 |
| 24 | 65 | 7  | 12.86764 | 5.016679 |
| 24 | 54 | 14 | 12.723   | 4.28349  |
| 24 | 47 | 6  | 14.1866  | 4.026405 |
| 24 | 38 | 11 | 21.44033 | 4.610277 |
| 24 | 31 | 13 | 22.61358 | 3.717051 |
| 24 | 67 | 7  | 12.55272 | 5.031109 |
| 24 | 43 | 5  | 13.01052 | 3.356442 |
| 24 | 23 | 15 | 25.43535 | 2.992155 |
| 24 | 67 | 8  | 13.37795 | 5.45421  |
| 24 | 69 | 8  | 13.13986 | 5.458515 |
| 24 | 69 | 12 | 12.66383 | 5.584717 |
| 24 | 64 | 9  | 14.70069 | 5.82545  |
| 24 | 33 | 7  | 17.52955 | 3.238803 |
| 24 | 25 | 6  | 16.72385 | 2.142872 |
| 25 | 68 | 8  | 13.37518 | 5.234437 |
| 25 | 49 | 12 | 17.07974 | 4.877682 |
| 25 | 61 | 15 | 10.64698 | 3.901382 |
| 25 | 40 | 8  | 18.00059 | 4.085098 |
| 25 | 28 | 6  | 16.12424 | 2.308063 |

| 25 | 36 | 10 | 21.19018 | 4.195212 |
|----|----|----|----------|----------|
| 25 | 64 | 12 | 13.65247 | 5.27952  |
| 25 | 27 | 11 | 23.92762 | 3.343608 |
| 25 | 29 | 14 | 22.70079 | 3.325438 |
| 25 | 21 | 10 | 25.40835 | 2.891603 |
| 25 | 41 | 10 | 20.44989 | 4.70336  |
| 26 | 22 | 9  | 22.84677 | 2.575128 |
| 26 | 68 | 8  | 13.3434  | 4.997399 |
| 26 | 41 | 8  | 17.5354  | 4.021783 |
| 26 | 38 | 15 | 16.39053 | 3.258986 |
| 26 | 58 | 11 | 16.45882 | 5.422261 |
| 26 | 60 | 5  | 11.08722 | 3.83213  |
| 26 | 33 | 5  | 13.87455 | 2.290464 |
| 26 | 42 | 11 | 19.85661 | 4.62326  |
| 26 | 57 | 10 | 16.76048 | 5.522358 |
| 26 | 62 | 7  | 12.93724 | 4.514208 |
| 26 | 62 | 10 | 15.89214 | 5.61693  |
| 26 | 60 | 7  | 13.21246 | 4.483977 |
| 26 | 21 | 15 | 26.13914 | 2.645205 |
| 27 | 58 | 10 | 16.2814  | 5.2832   |
| 27 | 50 | 13 | 15.61971 | 4.144471 |
| 27 | 57 | 15 | 11.72154 | 3.531475 |
| 27 | 38 | 5  | 13.02794 | 2.52326  |
| 27 | 42 | 9  | 18.53276 | 4.220071 |
| 27 | 55 | 9  | 16.02148 | 5.015481 |
| 27 | 49 | 15 | 13.29809 | 3.45582  |
| 27 | 63 | 10 | 15.65506 | 5.362063 |
| 27 | 56 | 12 | 15.79083 | 4.640472 |
| 27 | 45 | 11 | 18.94722 | 4.657075 |
| 27 | 21 | 13 | 26.23902 | 2.666117 |
| 27 | 54 | 11 | 17.34911 | 5.066533 |
| 27 | 34 | 12 | 20.95778 | 3.641251 |
| 27 | 65 | 13 | 12.93561 | 4.577883 |
| 27 | 41 | 12 | 19.0822  | 4.221678 |
| 28 | 50 | 10 | 17.49453 | 4.661825 |
| 28 | 68 | 8  | 12.96512 | 4.540458 |
| 28 | 44 | 6  | 13.29325 | 3.102538 |
| 28 | 69 | 7  | 11.6681  | 4.132036 |
| 28 | 49 | 12 | 17.00924 | 4.341906 |
| 28 | 59 | 8  | 13.80658 | 4.448765 |
| 28 | 39 | 10 | 19.52874 | 3.943745 |
| 28 | 46 | 13 | 16.50224 | 3.945359 |
| 29 | 51 | 14 | 14.38921 | 3.530554 |

| 29 | 27 | 5  | 13.52196 | 1.487867 |
|----|----|----|----------|----------|
| 29 | 62 | 13 | 13.87461 | 4.106646 |
| 29 | 42 | 10 | 18.61791 | 3.971395 |
| 29 | 21 | 10 | 23.35833 | 2.227544 |
| 29 | 68 | 9  | 14.00885 | 4.715419 |
| 29 | 60 | 15 | 12.08795 | 3.427198 |
| 29 | 63 | 14 | 12.79793 | 3.845676 |
| 29 | 42 | 6  | 13.26901 | 2.798381 |
| 30 | 48 | 14 | 14.6989  | 3.348353 |
| 30 | 60 | 14 | 13.37788 | 3.560235 |
| 30 | 32 | 7  | 15.43501 | 2.279055 |
| 30 | 37 | 7  | 14.88868 | 2.683011 |
| 30 | 20 | 6  | 15.83459 | 0.889022 |
| 30 | 37 | 9  | 18.0296  | 3.358786 |
| 30 | 27 | 10 | 20.54772 | 2.51594  |
| 30 | 64 | 7  | 11.36029 | 3.665163 |
| 30 | 68 | 5  | 10.12707 | 3.42948  |
| 31 | 48 | 14 | 14.52572 | 3.205523 |
| 31 | 30 | 12 | 20.95118 | 2.782107 |
| 31 | 45 | 6  | 12.22379 | 2.633223 |
| 31 | 36 | 12 | 19.2859  | 3.201769 |
| 31 | 29 | 8  | 17.10892 | 2.182399 |
| 31 | 48 | 7  | 13.44922 | 3.1755   |
| 31 | 32 | 14 | 19.006   | 2.657412 |
| 31 | 28 | 15 | 20.42928 | 2.334156 |
| 31 | 49 | 8  | 14.88024 | 3.613152 |
| 31 | 31 | 11 | 20.21759 | 2.818117 |
| 32 | 56 | 5  | 10.17105 | 2.841523 |
| 32 | 67 | 13 | 13.71455 | 4.042106 |
| 32 | 24 | 13 | 23.25572 | 2.308838 |
| 32 | 43 | 5  | 11.00929 | 2.156864 |
| 32 | 50 | 11 | 16.14775 | 3.83484  |
| 32 | 32 | 15 | 17.98124 | 2.329635 |
| 32 | 20 | 14 | 24.89249 | 1.975337 |
| 32 | 36 | 11 | 19.07448 | 3.098649 |
| 32 | 67 | 15 | 12.29166 | 3.510038 |
| 32 | 53 | 14 | 13.71858 | 3.146339 |
| 32 | 20 | 9  | 20.93652 | 1.583067 |
| 32 | 70 | 14 | 12.8351  | 3.973117 |
| 32 | 53 | 9  | 14.7365  | 3.772594 |
| 33 | 66 | 13 | 13.64792 | 3.868895 |
| 33 | 67 | 14 | 13.01745 | 3.688657 |
| 33 | 46 | 11 | 16.59703 | 3.478192 |

| 33 | 49 | 9  | 15.32535 | 3.412864 |
|----|----|----|----------|----------|
| 33 | 64 | 5  | 9.902043 | 2.982144 |
| 33 | 51 | 11 | 15.58214 | 3.67373  |
| 33 | 22 | 9  | 19.69612 | 1.582652 |
| 33 | 60 | 11 | 14.38641 | 3.94047  |
| 33 | 29 | 14 | 19.94572 | 2.274754 |
| 33 | 62 | 14 | 13.3212  | 3.379616 |
| 33 | 51 | 8  | 13.83039 | 3.254842 |
| 34 | 54 | 15 | 12.82078 | 2.757335 |
| 34 | 36 | 8  | 15.22202 | 2.40081  |
| 34 | 68 | 5  | 9.576    | 2.938368 |
| 34 | 49 | 7  | 12.40705 | 2.643887 |
| 34 | 31 | 14 | 18.62812 | 2.203251 |
| 34 | 31 | 15 | 17.90699 | 2.023098 |
| 34 | 43 | 5  | 10.5561  | 1.890403 |
| 34 | 36 | 11 | 18.31984 | 2.779162 |
| 34 | 53 | 12 | 15.17035 | 3.517326 |
| 34 | 52 | 14 | 13.56096 | 2.874363 |
| 35 | 67 | 10 | 12.98525 | 3.679    |
| 35 | 64 | 11 | 13.52303 | 3.724268 |
| 35 | 26 | 15 | 20.23878 | 1.736627 |
| 35 | 34 | 12 | 18.76337 | 2.548424 |
| 35 | 43 | 8  | 14.33077 | 2.681711 |
| 35 | 61 | 14 | 13.19083 | 3.198681 |
| 35 | 40 | 9  | 15.78097 | 2.751458 |
| 35 | 45 | 5  | 10.18981 | 1.8658   |
| 35 | 70 | 8  | 11.07455 | 3.218803 |
| 35 | 48 | 14 | 13.8938  | 2.669724 |
| 35 | 65 | 8  | 11.0543  | 3.09656  |
| 35 | 27 | 8  | 16.28206 | 1.588561 |
| 36 | 55 | 9  | 12.62337 | 2.948577 |
| 36 | 64 | 8  | 10.84119 | 2.954794 |
| 36 | 44 | 5  | 10.12835 | 1.710733 |
| 36 | 31 | 8  | 15.37584 | 1.776967 |
| 36 | 50 | 11 | 14.65173 | 3.092583 |
| 36 | 23 | 15 | 21.60301 | 1.517518 |
| 36 | 47 | 6  | 10.88065 | 2.027353 |
| 36 | 63 | 7  | 10.1155  | 2.742193 |
| 36 | 67 | 8  | 10.72835 | 2.953532 |
| 36 | 24 | 15 | 21.03858 | 1.546927 |
| 37 | 23 | 10 | 18.88526 | 1.32839  |
| 37 | 42 | 11 | 15.93221 | 2.605122 |
| 37 | 51 | 10 | 13.70636 | 2.794096 |

| 37 | 48 | 5  | 9.804909 | 1.822447 |
|----|----|----|----------|----------|
| 37 | 42 | 14 | 14.46679 | 2.279934 |
| 37 | 43 | 8  | 13.68478 | 2.3756   |
| 37 | 52 | 8  | 12.38698 | 2.540784 |
| 37 | 70 | 11 | 13.16514 | 3.683932 |
| 37 | 69 | 9  | 11.67579 | 3.209382 |
| 37 | 51 | 15 | 12.85256 | 2.383146 |
| 37 | 41 | 9  | 14.97837 | 2.467601 |
| 38 | 64 | 11 | 12.68293 | 3.292441 |
| 38 | 37 | 11 | 16.62893 | 2.243084 |
| 38 | 56 | 10 | 12.30582 | 2.706957 |
| 38 | 31 | 13 | 18.36324 | 1.960974 |
| 38 | 61 | 14 | 13.01305 | 3.024737 |
| 38 | 68 | 10 | 12.1758  | 3.233778 |
| 38 | 68 | 15 | 12.28629 | 3.128426 |
| 38 | 64 | 8  | 10.33963 | 2.669356 |
| 38 | 55 | 6  | 10.27183 | 2.199357 |
| 38 | 44 | 9  | 14.35795 | 2.471029 |
| 38 | 41 | 6  | 11.1113  | 1.690824 |
| 39 | 54 | 9  | 11.72734 | 2.369176 |
| 39 | 58 | 15 | 12.44501 | 2.604418 |
| 39 | 55 | 14 | 13.14019 | 2.640201 |
| 39 | 25 | 5  | 12.09002 | 0.826778 |
| 39 | 63 | 9  | 10.80112 | 2.604315 |
| 39 | 47 | 8  | 12.71935 | 2.219856 |
| 39 | 65 | 8  | 10.31614 | 2.626633 |
| 39 | 50 | 13 | 13.98708 | 2.577893 |
| 39 | 41 | 8  | 13.43314 | 2.090209 |
| 39 | 43 | 9  | 14.1865  | 2.30809  |
| 39 | 20 | 9  | 18.00765 | 0.835327 |
| 39 | 46 | 6  | 10.64331 | 1.71802  |
| 40 | 37 | 13 | 16.3834  | 2.057376 |
| 40 | 23 | 9  | 16.57658 | 0.942551 |
| 40 | 29 | 15 | 17.57484 | 1.340314 |
| 40 | 52 | 5  | 9.62901  | 1.821132 |
| 40 | 45 | 9  | 13.52928 | 2.230876 |
| 40 | 54 | 15 | 12.59873 | 2.340049 |
| 40 | 66 | 8  | 10.34047 | 2.603368 |
| 40 | 48 | 12 | 14.10656 | 2.48573  |
| 40 | 57 | 14 | 13.02296 | 2.69641  |
| 40 | 46 | 8  | 12.61604 | 2.116856 |
| 40 | 54 | 9  | 11.38884 | 2.206794 |
| 40 | 41 | 15 | 13.46412 | 1.707211 |

| 40 | 53 | 5  | 9.595031 | 1.86474  |
|----|----|----|----------|----------|
| 40 | 64 | 5  | 9.172981 | 2.319874 |
| 41 | 61 | 11 | 11.94117 | 2.770968 |
| 41 | 52 | 13 | 13.73675 | 2.543111 |
| 41 | 32 | 15 | 15.93811 | 1.328622 |
| 41 | 47 | 5  | 9.859554 | 1.552874 |
| 41 | 31 | 7  | 13.26755 | 1.363879 |
| 41 | 24 | 13 | 20.81234 | 1.655919 |
| 41 | 66 | 6  | 9.286868 | 2.31209  |
| 41 | 41 | 10 | 14.58408 | 2.099091 |
| 41 | 24 | 14 | 20.82669 | 1.55013  |
| 41 | 22 | 14 | 21.71937 | 1.529508 |
| 42 | 40 | 5  | 10.14338 | 1.307851 |
| 42 | 22 | 6  | 13.44487 | 0.704951 |
| 42 | 38 | 13 | 15.83246 | 1.991109 |
| 42 | 20 | 13 | 22.0745  | 1.437124 |
| 42 | 22 | 14 | 21.5743  | 1.513471 |
| 42 | 20 | 11 | 19.46456 | 1.011848 |
| 42 | 53 | 12 | 13.08816 | 2.496554 |
| 42 | 27 | 13 | 19.43335 | 1.671765 |
| 42 | 37 | 15 | 14.06556 | 1.389482 |
| 42 | 60 | 6  | 9.63008  | 2.041526 |
| 42 | 46 | 10 | 13.20849 | 2.110594 |
| 43 | 56 | 10 | 10.8258  | 2.002659 |
| 43 | 39 | 5  | 10.12618 | 1.256132 |
| 43 | 29 | 14 | 18.05367 | 1.540887 |
| 43 | 53 | 14 | 13.08342 | 2.292719 |
| 43 | 39 | 11 | 14.90194 | 1.884904 |
| 43 | 20 | 6  | 13.68637 | 0.545173 |
| 43 | 32 | 7  | 12.85631 | 1.366407 |
| 43 | 43 | 9  | 13.09279 | 1.888329 |
| 43 | 40 | 14 | 14.30479 | 1.646677 |
| 43 | 57 | 8  | 10.14406 | 1.854166 |
| 43 | 65 | 14 | 12.67808 | 2.880069 |
| 44 | 57 | 12 | 12.44643 | 2.466698 |
| 44 | 56 | 15 | 12.36591 | 2.222494 |
| 44 | 52 | 12 | 12.78393 | 2.255992 |
| 44 | 62 | 13 | 12.65315 | 2.730075 |
| 44 | 69 | 12 | 11.68247 | 2.870883 |
| 44 | 57 | 6  | 10.00194 | 1.877301 |
| 44 | 30 | 10 | 15.18153 | 1.307831 |
| 44 | 20 | 5  | 12.39164 | 0.441073 |
| 44 | 55 | 8  | 10.37779 | 1.768849 |

| 44 | 53 | 9  | 10.4962  | 1.70806  |
|----|----|----|----------|----------|
| 44 | 63 | 12 | 11.9419  | 2.688448 |
| 44 | 41 | 9  | 13.0984  | 1.728892 |
| 44 | 58 | 8  | 9.974875 | 1.813991 |
| 44 | 43 | 5  | 10.13632 | 1.334555 |
| 44 | 63 | 15 | 12.07351 | 2.575238 |
| 44 | 42 | 7  | 11.49645 | 1.684192 |
| 44 | 60 | 14 | 12.75242 | 2.627198 |
| 45 | 45 | 14 | 13.69115 | 1.809592 |
| 45 | 20 | 5  | 12.26814 | 0.419799 |
| 45 | 42 | 12 | 14.04156 | 1.858421 |
| 45 | 54 | 6  | 10.32553 | 1.745458 |
| 45 | 53 | 14 | 13.03322 | 2.185054 |
| 45 | 50 | 7  | 11.25765 | 1.752776 |
| 45 | 64 | 6  | 9.446463 | 2.038527 |
| 45 | 21 | 8  | 14.91974 | 0.582438 |
| 45 | 40 | 14 | 14.34111 | 1.606472 |
| 46 | 68 | 14 | 12.2476  | 2.746291 |
| 46 | 40 | 9  | 12.79264 | 1.567156 |
| 46 | 27 | 9  | 14.21232 | 0.908269 |
| 46 | 27 | 6  | 12.09237 | 0.906789 |
| 46 | 68 | 6  | 9.559118 | 2.254244 |
| 46 | 22 | 9  | 15.02856 | 0.547696 |
| 46 | 42 | 9  | 12.55244 | 1.638446 |
| 46 | 37 | 11 | 14.65738 | 1.597676 |
| 46 | 44 | 10 | 12.67548 | 1.727026 |
| 46 | 34 | 9  | 13.42552 | 1.318911 |
| 46 | 67 | 5  | 9.23751  | 2.130092 |
| 46 | 26 | 15 | 18.5354  | 1.22278  |
| 46 | 20 | 15 | 21.62668 | 1.18512  |
| 46 | 35 | 7  | 12.09154 | 1.438043 |
| 46 | 31 | 14 | 16.84958 | 1.518621 |
| 47 | 30 | 14 | 17.16504 | 1.488556 |
| 47 | 62 | 7  | 10.13553 | 2.027695 |
| 47 | 61 | 13 | 12.02681 | 2.382888 |
| 47 | 63 | 15 | 11.95026 | 2.413104 |
| 47 | 25 | 8  | 13.88331 | 0.869616 |
| 47 | 36 | 5  | 10.10661 | 1.076436 |
| 47 | 37 | 9  | 12.97657 | 1.41528  |
| 48 | 38 | 8  | 12.04364 | 1.423881 |
| 48 | 54 | 10 | 10.25119 | 1.685915 |
| 48 | 51 | 15 | 12.81683 | 1.874286 |
| 48 | 34 | 9  | 13.13942 | 1.260478 |

| 48 | 31 | 12 | 16.01217 | 1.4254   |
|----|----|----|----------|----------|
| 48 | 28 | 5  | 10.77909 | 0.765782 |
| 48 | 70 | 14 | 11.75435 | 2.643663 |
| 48 | 32 | 8  | 12.80993 | 1.22626  |
| 48 | 69 | 12 | 10.82262 | 2.452198 |
| 48 | 62 | 14 | 12.29996 | 2.405064 |
| 48 | 46 | 14 | 13.7661  | 1.827221 |
| 48 | 33 | 14 | 16.04497 | 1.51634  |
| 48 | 54 | 5  | 9.812852 | 1.562862 |
| 48 | 41 | 9  | 12.32981 | 1.516878 |
| 49 | 36 | 9  | 12.76969 | 1.308354 |
| 49 | 54 | 10 | 10.16646 | 1.655066 |
| 49 | 70 | 8  | 10.33965 | 2.318742 |
| 49 | 25 | 5  | 11.15477 | 0.629005 |
| 49 | 62 | 11 | 10.44644 | 2.031831 |
| 49 | 68 | 12 | 10.67323 | 2.343961 |
| 49 | 52 | 12 | 12.26201 | 2.009385 |
| 49 | 45 | 8  | 11.29798 | 1.62088  |
| 49 | 35 | 6  | 10.99029 | 1.213728 |
| 49 | 68 | 8  | 10.23781 | 2.232599 |
| 49 | 34 | 15 | 14.83599 | 1.200811 |
| 49 | 51 | 12 | 12.39478 | 1.987469 |
| 49 | 44 | 12 | 13.02356 | 1.678202 |
| 50 | 57 | 13 | 12.08076 | 2.08245  |
| 50 | 66 | 12 | 10.7141  | 2.230385 |
| 50 | 64 | 15 | 11.81612 | 2.283865 |
| 50 | 41 | 8  | 11.52522 | 1.474642 |
| 50 | 23 | 10 | 14.75583 | 0.590483 |
| 50 | 38 | 15 | 14.3173  | 1.344779 |
| 50 | 35 | 7  | 11.70442 | 1.3149   |
| 50 | 59 | 13 | 11.84652 | 2.125762 |
| 50 | 27 | 5  | 10.83545 | 0.712591 |
| 50 | 54 | 6  | 10.56987 | 1.646147 |
| 50 | 67 | 5  | 9.764009 | 2.158972 |
| 50 | 61 | 12 | 11.10988 | 2.116363 |
| 50 | 64 | 8  | 10.18066 | 2.021324 |
| 50 | 29 | 9  | 13.34983 | 0.962322 |
| 50 | 31 | 15 | 15.61713 | 1.156215 |
| 50 | 50 | 5  | 10.09787 | 1.390735 |
| 50 | 32 | 15 | 15.31462 | 1.168976 |
| 50 | 58 | 9  | 10.11203 | 1.717573 |
| 50 | 35 | 14 | 15.13624 | 1.437148 |
| 50 | 61 | 5  | 9.693022 | 1.818363 |

| 50 | 48 | 9  | 10.62737 | 1.482784 |
|----|----|----|----------|----------|
| 50 | 68 | 15 | 11.49857 | 2.363516 |
| 51 | 50 | 6  | 10.84224 | 1.529909 |
| 51 | 28 | 9  | 13.32865 | 0.905951 |
| 51 | 29 | 6  | 11.53745 | 0.993745 |
| 51 | 21 | 12 | 17.6525  | 0.847142 |
| 51 | 33 | 8  | 12.18648 | 1.159781 |
| 51 | 36 | 12 | 14.25083 | 1.363573 |
| 51 | 46 | 7  | 11.06366 | 1.601091 |
| 51 | 54 | 13 | 12.37412 | 2.039386 |
| 51 | 59 | 10 | 10.18579 | 1.755068 |
| 51 | 47 | 10 | 10.90199 | 1.414416 |
| 51 | 51 | 6  | 10.79881 | 1.561667 |
| 51 | 54 | 7  | 10.75716 | 1.634543 |
| 51 | 64 | 5  | 9.910272 | 1.992944 |
| 51 | 67 | 7  | 10.48959 | 2.266176 |
| 51 | 70 | 9  | 10.30988 | 2.184924 |
| 51 | 40 | 10 | 12.50391 | 1.333201 |
| 51 | 22 | 6  | 12.50448 | 0.684394 |
| 51 | 35 | 9  | 12.57067 | 1.205335 |
| 52 | 43 | 10 | 11.61625 | 1.317851 |
| 52 | 20 | 12 | 17.71526 | 0.762584 |
| 52 | 29 | 13 | 16.22981 | 1.262959 |
| 52 | 67 | 5  | 10.02924 | 2.178392 |
| 52 | 50 | 13 | 12.8754  | 1.945026 |
| 52 | 69 | 10 | 10.31538 | 2.089864 |
| 53 | 28 | 15 | 16.80643 | 1.119842 |
| 53 | 34 | 7  | 11.54982 | 1.214287 |
| 53 | 52 | 15 | 13.16262 | 1.902109 |
| 53 | 26 | 9  | 13.29559 | 0.801045 |
| 53 | 52 | 8  | 10.57957 | 1.553245 |
| 53 | 39 | 13 | 13.88185 | 1.45608  |
| 53 | 55 | 5  | 10.09191 | 1.531324 |
| 53 | 52 | 11 | 10.82895 | 1.61451  |
| 54 | 26 | 12 | 15.53155 | 0.964106 |
| 54 | 55 | 14 | 12.4826  | 1.958997 |
| 54 | 53 | 12 | 11.54894 | 1.785315 |
| 54 | 22 | 11 | 15.12897 | 0.557232 |
| 54 | 28 | 9  | 12.97457 | 0.889282 |
| 54 | 32 | 6  | 11.26882 | 1.128761 |
| 54 | 45 | 5  | 10.39321 | 1.286647 |
| 54 | 33 | 11 | 13.6743  | 1.054426 |
| 55 | 21 | 13 | 17.94781 | 0.873686 |

| 55 | 66 | 12 | 10.53712 | 1.964313 |
|----|----|----|----------|----------|
| 55 | 53 | 14 | 12.67194 | 1.937841 |
| 55 | 45 | 11 | 11.47276 | 1.397597 |
| 55 | 23 | 5  | 11.21003 | 0.598971 |
| 55 | 42 | 12 | 12.71479 | 1.452024 |
| 55 | 40 | 15 | 14.4619  | 1.483336 |
| 55 | 40 | 10 | 11.86895 | 1.206926 |
| 55 | 29 | 13 | 15.60374 | 1.123678 |
| 55 | 30 | 12 | 14.74184 | 1.044431 |
| 55 | 44 | 13 | 13.31277 | 1.66387  |
| 55 | 68 | 6  | 10.91071 | 2.397596 |
| 55 | 61 | 13 | 11.02826 | 1.893454 |
| 56 | 61 | 10 | 10.58062 | 1.843989 |
| 56 | 65 | 5  | 10.61031 | 2.112998 |
| 56 | 29 | 7  | 11.78226 | 0.985181 |
| 56 | 60 | 14 | 11.58254 | 1.883997 |
| 56 | 22 | 12 | 15.91672 | 0.664982 |
| 56 | 41 | 9  | 11.41451 | 1.305875 |
| 56 | 53 | 9  | 10.48995 | 1.660786 |
| 56 | 23 | 11 | 14.56892 | 0.587718 |
| 56 | 55 | 6  | 11.19012 | 1.809651 |
| 56 | 44 | 11 | 11.53644 | 1.349588 |
| 56 | 69 | 10 | 10.57253 | 2.123922 |
| 56 | 23 | 6  | 12.07528 | 0.793006 |
| 56 | 53 | 15 | 12.97918 | 1.859324 |
| 56 | 60 | 12 | 10.52512 | 1.83435  |
| 56 | 41 | 15 | 14.30229 | 1.511017 |
| 56 | 35 | 10 | 12.54059 | 1.111386 |
| 56 | 51 | 12 | 11.57315 | 1.670523 |
| 56 | 59 | 12 | 10.60899 | 1.808162 |
| 56 | 51 | 5  | 10.46515 | 1.415702 |
| 57 | 56 | 14 | 12.07828 | 1.903246 |
| 57 | 36 | 5  | 10.38269 | 1.103766 |
| 57 | 62 | 14 | 11.20835 | 1.847951 |
| 57 | 67 | 12 | 10.56747 | 1.937684 |
| 57 | 59 | 15 | 12.23731 | 1.974071 |
| 57 | 59 | 14 | 11.63705 | 1.863897 |
| 57 | 55 | 9  | 10.60885 | 1.735444 |
| 57 | 67 | 10 | 10.61248 | 2.072672 |
| 57 | 51 | 8  | 10.80837 | 1.60785  |
| 57 | 26 | 5  | 10.90097 | 0.756399 |
| 57 | 57 | 14 | 11.9312  | 1.89013  |
| 57 | 62 | 15 | 11.82274 | 1.993774 |

| 57 | 46 | 15 | 13.68021 | 1.691731 |
|----|----|----|----------|----------|
| 58 | 66 | 8  | 10.93586 | 2.178859 |
| 58 | 36 | 5  | 10.43379 | 1.123785 |
| 58 | 69 | 11 | 10.69384 | 2.06794  |
| 58 | 22 | 15 | 18.80034 | 0.943205 |
| 58 | 33 | 6  | 11.07822 | 1.162181 |
| 58 | 32 | 8  | 11.71206 | 1.02243  |
| 58 | 69 | 5  | 10.95723 | 2.399625 |
| 58 | 46 | 10 | 11.06315 | 1.454635 |
| 58 | 21 | 5  | 11.4494  | 0.598745 |
| 58 | 56 | 10 | 10.58552 | 1.752119 |
| 58 | 59 | 15 | 12.14029 | 1.933982 |
| 58 | 51 | 10 | 10.66724 | 1.618564 |
| 58 | 22 | 13 | 16.7844  | 0.787742 |
| 59 | 65 | 14 | 10.60177 | 1.771126 |
| 59 | 69 | 9  | 10.90258 | 2.215243 |
| 59 | 61 | 6  | 11.4334  | 2.128598 |
| 59 | 62 | 6  | 11.41677 | 2.179655 |
| 59 | 69 | 10 | 10.80385 | 2.152456 |
| 59 | 46 | 7  | 10.74209 | 1.490365 |
| 59 | 38 | 11 | 12.22747 | 1.128548 |
| 59 | 50 | 10 | 10.8055  | 1.616182 |
| 60 | 24 | 8  | 12.35919 | 0.766224 |
| 60 | 53 | 5  | 10.84282 | 1.592054 |
| 60 | 40 | 13 | 13.33841 | 1.401425 |
| 60 | 28 | 15 | 15.84343 | 1.009958 |
| 60 | 39 | 10 | 11.73919 | 1.194761 |
| 60 | 48 | 15 | 13.35411 | 1.727616 |
| 60 | 34 | 13 | 13.88575 | 1.115152 |
| 60 | 32 | 7  | 11.29364 | 1.070554 |
| 60 | 46 | 12 | 11.92469 | 1.535724 |

# Table S7: 4 sets of conditions with attractive results in the predicted

## dataset

| Discharge Power | Gas Flow | Catalyst Dose | CO <sub>2</sub> Conversion | Energy         |
|-----------------|----------|---------------|----------------------------|----------------|
| (W)             | (sccm)   | (mg)          | Ratio (%)                  | Efficiency (%) |
| 16              | 45       | 11            | 18.04729                   | 6.867429       |
| 17              | 43       | 10            | 19.44441                   | 6.521779       |
| 18              | 40       | 10            | 20.45573                   | 5.987919       |
| 21              | 46       | 10            | 19.89744                   | 6.116918       |

#### Reference

- [1] A. Niazi and R. Leardi, J. Chemometr., 2012, 26, 345-351.
- [2] C.D. Lin, C.M. Anderson-Cook, M.S. Hamada, L.M. Moore and R.R. Sitter, Qual. Reliab. Eng. Int., 2015, 31, 155-167.
- [3] G. Venter and J. Sobieszczanski-Sobieski, AIAA J., 2003, 41, 1583-1589.
- [4] D. Wang, D. Tan and L. Liu, Soft Comput., 2018, 22, 387-408.
- [5] B. Hickish, D.I. Fletcher and R.F. Harrison, Int. J. Rail Transp., 2020, 8, 307-323.
- [6] S. Greenhill, S. Rana, S. Gupta, P. Vellanki and S. Venkatesh, IEEE Access,2020, 8, 13937-13948.