Table S1	Chemically defined medium (CDM) by Otto <i>et al</i> 1	
Substance			Concentration
Glucose		$C_6H_{12}O_6$	10 or 40 g·L ⁻¹
Dipotassium ph	osphate	K ₂ HPO ₄	2.5 g·L⁻¹
Monopotassiun	n phosphate	KH ₂ PO ₄	3 g·L⁻¹
Triammonium o	citrate	$C_6H_{17}N_3O_7$	0.6 g·L⁻¹
Sodium acetate	:	$C_2H_3NaO_2$	1 g·L ⁻¹
Cysteine hydrod	chloride	C ₃ H ₈ CINO ₂ S	0.25 g·L ⁻¹
Salt-free, vitam	in-free casein hydrolysate		5 g·L⁻¹
100x Vitamin so	olution		10 mL·L ⁻¹
100x Metal solu	ition		10 mL·L ⁻¹
100x Nucleic ac	id bases solution		10 mL·L ⁻¹

Vitamin solution for the CDM by Otto et al.

Substance		[mg·L ⁻¹]
Pyridoxine hydrochloride	C ₈ H ₁₂ CINO ₃	200
Nicotinic acid	$C_6H_5NO_2$	100
Thiamin hydrochloride	$C_{12}H_{18}CI_2N_4OS$	100
Riboflavin	$C_{17}H_{20}N_4O_6$	100
Calcium D-pantothenate	$C_{18}H_{32}CaN_2O_{10}$	100
Sodium p-aminobenzoate	$C_7H_6NNaO_2$	1000
D-biotin	$C_{10}H_{16}N_2O_3S$	1000
Folic acid	$C_{19}H_{19}N_7O_6$	100
Vitamin B12	$C_{63}H_{88}CoN_{14}O_{14}P$	100
Orotic acid	$C_5H_4N_2O_4$	500
2-deoxythymidine	$C_{10}H_{14}N_2O_5$	500
Inosine	$C_{10}H_{12}N_4O_5$	500
DL-6,8-thioctic acid	$C_8H_{14}O_2S_2$	250
Pyridoxamine hydrochloride	$C_8H_{13}CIN_2O_2$	500

Metal solution for the CDM by Otto et al.

Substance		[mg·L⁻¹]
Magnesium chloride hexahydrate	MgCl ₂ 6H ₂ O	20
Calcium chloride dihydrate	CaCl2 2H ₂ O	5
Iron chloride tetrahydrate	FeCl2 4H ₂ O	0.5
Zinc sulfate heptahydrate	ZnSO4 7H ₂ O	0.5
Cobalt chloride hexahydrate	CoCl 6H ₂ O	0.25

Nucleic acid solution for the CDM by Otto et al.

Substance		per 10 mL 0.1 M NaOH [g]
Adenine	$C_5H_5N_5$	10
Uracil	$C_4H_4N_2O_2$	10
Xanthine	$C_5H_4N_4O_2$	10
Guanine	$C_5H_5N_5O$	10

Substance	(Concentration [mg·L ⁻¹]
L-Alanine	$C_3H_7NO_2$	240
L-Arginine	$C_6H_{14}N_4O_2$	125
L-Asparagine	$C_4H_8N_2O_3$	350
L-Glutamine	$C_5H_{10}N_2O_3$	390
Glycine	$C_2H_5NO_2$	175
L-Histidine	$C_6H_9N_3O_2$	150
L-Isoleucine	$C_6H_{13}NO_2$	210
L-Leucine	C_6H13NO_2	475
L-Lysine	$C_6H_{14}N_2O_2$	440
L-Methionine	$C_{5}H_{11}NO_{2}S$	125
L-Phenylalanine	$C_9H_{11}NO_2$	275
L-Proline	$C_5H_9NO_2$	675
L-Serine	$C_3H_7NO_3$	340
L-Threonine	$C_4H_9NO_3$	225
L-Tryptophan	$C_{11}H_{12}N_2O_2$	50
L-Tyrosine	$C_9H_{11}NO_3$	200
L-Valine	$C_{5}H_{11}NO_{2}$	325

Table S2CDMPC medium2

Price *et al.* developed a chemically defined medium for prolonged cultivation (CDMPC) of *L. lactis*. The amino acid, metal, vitamin, and alkaline solutions were prepared as stock solutions. After the addition of all components and stock solutions, the medium was sterilized via filtration. Detailed instructions for the preparation are provided by the authors.

Composition of the CDMPC		
Substance		Concentration
Glucose	$C_6H_{12}O_6$	10 or 40 g·L ⁻¹
Potassium phosphate	KH ₂ PO ₄	2.75 g·L⁻¹
Sodium Chloride	NaCl	2.90 g·L⁻¹
Sodium phosphate	NaH ₂ PO ₄	2.85 g·L⁻¹
10x amino acid solution		100 mL·L ⁻¹
100x metal solution		10 mL·L ⁻¹
100x vitamin solution		10 mL·L ⁻¹
100x alkaline solution		10 mL·L ⁻¹

10x amino acid solution for the CDMPC			
Substance		Concen	tration [g·L ⁻¹]
L-Alanine	$C_3H_7NO_2$		1.3
L-Arginine	$C_{6}H_{14}N_{4}O_{2}$		2.44
L-Asparagine	$C_4H_8N_2O_3$		0.8
L-Aspartic acid	$C_4H_7NO_4$		1.37
L-Cysteine hydrochloride monohydrate	C ₃ H ₇ NO ₂ S HCl	H_2O	0.61
L-Glutamic acid	$C_5H_9NO_4$		0.97

L-Glutamine	$C_5H_{10}N_2O_3$	0.96
Glycine	$C_2H_5NO_2$	0.29
L-Histidine	$C_6H_9N_3O_2$	0.24
L-Isoleucine	$C_6H_{13}NO_2$	0.82
L-Leucine	$C_6H_{13}NO_2$	1.17
L-Lysine monohydrochloride	$C_6H_{14}N_2O_2$ HCl	1.87
L-Methionine	$C_5H_{11}NO_2S$	0.38
L-Phenylalanine	$C_9H_{11}NO_2$	0.64
L-Proline	$C_5H_9NO_2$	4.12
L-Serine	$C_3H_7NO_3$	1.72
L-Threonine	$C_4H_9NO_3$	0.68
L-Tryptophan	$C_{11}H_{12}N_2O_2$	0.36
L-Valine	$C_5H_{11}NO_2$	0.86

100x metal solution for the CDMPC

Substance Molecular formula Concentration		[mg·L⁻¹]
Ammonium molybdate tetrahydrate	(NH ₄)6Mo ₇ O ₂₄ 4H ₂ O	30
Calcium chloride dihydrate	CaCl ₂ 2H ₂ O	300
Cobalt sulfate heptahydrate	CoSO ₄ 7H ₂ O	30
Copper sulfate pentahydrate	CuSO ₄ 5H ₂ O	30
Iron chloride tetrahydrate	FeCl ₂ 4H ₂ O	400
Magnesium chloride hexahydrate	MgCl ₂ 6H ₂ O	20,000
Manganese chloride tetrahydrate	MnCl ₂ 4H ₂ O	400
Zinc sulfate heptahydrate	ZnSO ₄ 7H ₂ O	30
100x vitamin solution for the CDMPC		

solution for the CL /ita

Substance		[mg·L ⁻¹]
α -Lipoic acid	$C_8H_{14}O_2S_2$	200
D-Pantothenic acid hemicalcium salt	C ₉ H ₁₆ NO ₅ 1/2 Ca	50
Nicotinic acid	$C_6H_5NO_2$	100
Pyridoxal hydrochloride	C ₈ H ₉ NO ₃ HCl	100
Pyridoxine hydrochloride	C ₈ H ₁₁ NO ₃ HCl	100
Thiamine hydrochloride	C ₁₂ H ₁₇ CIN ₄ OS HCI	100

100x alkaline solution for the CDMPC

Substance		[mg·L ⁻¹]
Biotin	$C_{10}H_{16}N_2O_3S$	10
L-Tyrosine	$C_9H_{11}NO_3$	5000

Table S3 Resting cell buffer

Resting cell experiments were conducted in a buffer solution. The phosphate buffer, trace elements, and magnesium solution were prepared as individual stock solutions in 100x concentration. The glucose solution was prepared as a 500 g·L⁻¹ stock solution. All stock solutions were autoclaved except for the trace element solution which was sterile filtered. For the preparation of the washing buffer, used for the washing step during resting cell experiments, glucose was omitted.

Composition of the resting cell buffer		
Phosphate buffer		
Dipotassium phosphate	K ₂ HPO ₄	3.88 g·L⁻¹
Monosodium phosphate	NaH ₂ PO ₄	1.63 g·L⁻¹
Magnesium sulfate	MgSO ₄	0.25 g·L⁻¹
Trace elements		
EDTA	$C_{10}H_{16}N_2O_8$	10 mg·L ⁻¹
Magnesium chloride hexahydrate	MgCl ₂ 6H ₂ O	0.10 g·L ⁻¹
Zinc sulfate heptahydrate	ZnSO ₄ 7H ₂ O	2 mg·L⁻¹
Calcium chloride dihydrate	CaCl ₂ 2H ₂ O	1 mg·L ⁻¹
Iron sulfate heptahydrate	FeSO ₄ 7H ₂ O	5 mg·L⁻¹
Sodium molybdate dihydrate	Na ₂ MoO ₄ 2H ₂ O	0.2 mg·L ⁻¹
Copper sulfate pentahydrate	CuSO ₄ 5H ₂ O	0.2 mg·L ⁻¹
Cobalt chloride hexahydrate	CoCl ₂ 6H ₂ O	0.4 mg·L ⁻¹
Manganese chloride dihydrate	MnCl ₂ 2H ₂ O	1 mg·L⁻¹
Carbon source glucose	$C_{6}H_{12}O_{6}$	40 g·L⁻¹

Table S4Variation of filling volume in 500 mL shake flasks to vary the oxygen transfer for
cultivations of *L. lactis* VJ017 and the corresponding process parameters. ^aThe oxygen transfer rate
was calculated according to Meier *et al*³.

Filling volume [mL]	Glucose concentration [g·L ⁻¹]	OTR [mmol·L ⁻¹ ·h ⁻¹] ^ª	Acetoin titer [g·L ⁻¹]	Acetoin yield [g _{acetoin} ⁻¹ ·g _{glucose} ⁻¹]	Specific acetoin yield [g _{acetoin} ⁻¹ ·g _{CDW} ⁻¹]
50	40	28.62	$\textbf{13.8} \pm \textbf{0.1}$	0.35 ± 0.0	2.26 ± 0.03
25	40	47.80	16.5 ± 0.3	0.41 ± 0.01	2.97 ± 0.16
25	10	47.80	4.8 ± 0.1	0.48 ± 0.00	1.85 ± 0.13

Table S5Acetoin concentration in the respective media and applied current densities for
electrochemical conversion of acetoin to 2-butanone.

Medium	Concentration [g·L ⁻¹]	Current Density [mA·cm ⁻²]
M17	6	10
HS	7	10
LB	8	10
YEP	14	25
M17	16	25
Resting cell buffer	19	25

- 1. R. Otto, B. ten Brink, H. Veldkamp and W. N. Konings, *FEMS Microbiology Letters*, 1983, **16**, 69-74.
- C. E. Price, F. Branco dos Santos, A. Hesseling, J. J. Uusitalo, H. Bachmann, V. Benavente, A. Goel, J. Berkhout, F. J. Bruggeman, S.-J. Marrink, M. Montalban-Lopez, A. de Jong, J. Kok, D. Molenaar, B. Poolman, B. Teusink and O. P. Kuipers, *BMC Evolutionary Biology*, 2019, **19**, 15.
- 3. K. Meier, W. Klöckner, B. Bonhage, E. Antonov, L. Regestein and J. Büchs, *Biochemical Engineering Journal*, 2016, **109**, 228-235.