Supporting Information for

Fabricating Carbon-Based Electrode Materials via Uptake of Amino Nano-Polystyrene into Pistia Stratiotes Root for Enhancing Supercapacitance

Liru Su, Jinling Li, Fen Ran*

State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Engineering, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, P. R. China *Corresponding author: ranfen@lut.edu.cn, or ranfen@163.com

Figure S1 SEM images and particle size distribution of PS, PS-NH₂ and PS-COOH.

Figure S2 FT-IR spectrum of PS NPs.

Figure S3 FT-IR spectrum of PS-NH₂ and PS-COOH NPs

Figure S4 a) *PS NPs of different concentration, b) the purchased PS emulsion (left: PS-NH₂, right: PS-COOH).*

Figure S5. Digital photos of Pistia stratiotes before and after experiment.

Figure S6 TG/DTG curve of PS-NH₂ NPs.

Figure S7 SEM photos of different parts of Pistia stratiotes: *a*), *c*) roots of control group, *b*), *d*) shoots of control group, *e*), *f*) are the photos of roots/shoots of experimental group, respectively.

Figure S8 SEM image of $PC_{II_{100}}$. Scale bar: 100 nm.

Figure S9 TEM image of $PC_{II_{100}}$.

Figure S10 XPS spectra of $PC_{II_{100}}$ and PC_0 .

Figure S11 High-resolution XPS spectra of Ca 2p.

Figure S12 SEM image of $PC_0'(a)$ and $PC_{II_1}'(b)$; c) Raman spectra; d) XRD patterns; e) pore size distribution curves; f) nitrogen adsorption-desorption isotherms.

Samples	S _{BET} (m²/g)	S _{mic} (m²/g)	V _{total} (cm ³ /g)	V _{mic} (cm ³ /g)	d (nm)	Micropore (%)	Mesopore& Macropore (%)
PC ₀ '	2078.182	1645.638	1.192	0.737	2.294	61.83	38.17
PC _{II1} '	2020.279	1612.080	1.188	0.731	2.352	61.53	38.47

Table S1. Pore structure parameters and specific surface area information of shoot samples

Figure S13 Electrochemical properties of symmetric devices based on $PC_{II_{100}}$: a) CV; b) GCD; c) EIS, d) rate performance.

Figure S14 Electrochemical properties of shoots: a) CV curves at 50 mV/s; b) GCD curves at 0.5 A/g; c) EIS spectra (inset: EIS spectra of high-frequency region); d) mass specific capacitance at 0.5 A/g and e) rate performance.