Supporting information

Pt/C electrocatalyst derived from recycled Pt/Re mixed solution: synthesis, characterization, and electrochemical behavior in fuel cell

Jian Cui ^a, Fengshan Yu ^a, Maolin Tian ^a, Chengcheng Yan ^a, Tongjun Shen ^a, Xueli

Wang^a, Umme Hani Prova^a, Chunxia Wang^{a,*}, Guoyong Huang^{a,*}, Shengming Xu^b

^a State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials,

China University of Petroleum (Beijing), Beijing 102249, China.

^b Beijing Key Lab of Fine Ceramics, Institute of Nuclear and New Energy Technology,

Tsinghua University, Beijing, 100084, China.

^{*} Corresponding authors: E-mail: cxwang@iccas.ac.cn; huanggy@cup.edu.cn.

1. Materials

The spent catalyst was obtained by China National Petroleum Corporation (CNPC). Carbon black Vulcan XC-72R was purchased from Cabot, China. Chloroplatinic acid hexahydrate (H₂PtCl₆·6H₂O, 99.9%, Pt:37.5%+) was obtained from Adamas, China. Ethylene glycol (EG, 99%) were purchased from Innochem, China. Sodium hydroxide (NaOH, 96%), Sodium carbonate (Na₂CO₃) and perchloric acid (HClO₄, 70%) were purchased from Aladdin, China. Isopropyl alcohol (IPA, \geq 99.7%), Hydrochloric acid (HCl, 36-38%), Hydrogen peroxide (H₂O₂, \geq 30%) and Sulfuric acid (H₂SO₄, 95-98%)were purchased from Greagent, China. The D520 Nafion solution (5 wt%) and D2020 Nafion solution (20 wt%) was obtained from Dupont. The 20 wt% commercial Pt/C and 60 wt% commercial Pt/C were obtained from (TANAKA, Japan.) and Wuhan Himalaya Technology Co., China. Deionized water was obtained through an ultra-pure purification system. All reagents were of analytical grade and were used with no further purification.

2. Characterization

UV-vis spectrophotometry (UV-2600, Japan) was applied to trace the coordination process. X-ray diffraction (XRD) measurements were performed, using a diffractometer (DX2700BH, China) with Cu K α radiation. ICP-OES inductively coupled plasma optical emission spectroscopy (Avio 200) was used to determine the loadings of Pt in the catalysts; the mass activity was further obtained according to Pt loading. The surface morphologies of the MW-Pt/C and TANAKA 20 wt% commercial Pt/C catalysts were observed by field emission transmission electron microscope (Tecnai G2 F20 S-Twin, American). The X-ray photoelectron spectroscopy spectra (XPS) were collected by XPS (Thermo Fisher ESCALAB 250Xi).

Calculation of Pt nanoparticle size based on XRD can be calculated by the Scherrer formula^{1, 2}:

$\overline{D} = K\lambda/(FWHM\cos\theta)$

where λ is the wavelength, \overline{D} is the volume averaged particle size, K = 0.89 is the Scherrer constant, FWHM is the full width at half-maximum of the peak, and θ , the Bragg angle of the [hkl] reflection.

3. Electrode preparation

2.5 mg of catalyst was ultrasonically dispersed in 1 mL of solution containing 800 μ L of IPA, 180 μ L of water and 20 μ L of Nafion solution for 30 min. The glassy carbon electrode surface was wiped by a polishing kit with 0.05 μ m alumina particles which were later washed with deionized water. After a uniform mixture formed 10 μ L of the above solution was coated to a precleaned glassy carbon electrode (area=0.19625 cm²). The Pt loading is about 25.48 μ g_{Pt}/cm². TANAKA 20 wt% commercial Pt/C ink was also prepared and coated as per similar Pt loading achieved.

4. Electrochemical tests

Electrochemical measurements were performed on a CHI 760 electrochemical workstation combined with a RDE (ALS, Japan). The working electrode is a glassy carbon electrode with a diameter of 5 mm. The counter electrode is a carbon electrode, and the reference electrode is a Hg/Hg₂SO₄ electrode, the potentials measured using the Hg/Hg₂SO₄ electrode can be converted to RHE by the following equation^{3, 4}:

E (vs. RHE) = E (vs. Hg/Hg₂SO₄) +0.652+0.0592pH

Cyclic voltammogram (CV) were measured in reference to the RHE in N_2 saturated 0.1 mol/L HClO₄ from 0.05 V to 1.1 V at a scan rate of 50 mV/s. Linear sweep voltammetry (LSV) curves were measured in reference to RHE in O₂-saturated 0.1 M HClO₄ electrolyte from 0.05 V to 1.1 V at a scan rate of 10 mV/s and a rotating speed of 1600 rpm. To further evaluate the electrochemical durability of the Pt-NPC, an accelerated degradation test (ADT) was carried out in reference to RHE in O₂ saturated 0.1 mol/L HClO₄ at scan rate of 100 mV/s for 5000 cycles at 0.6–1.1 V. The electrochemically active surface area (ECSA) was calculated based on the hydrogen underpotential deposition (HUPD) method with the following equation^{5, 6}:

$$ECSA = \frac{Q_{\rm H}}{2.1 \times M_{\rm Pt} \times \nu} (m^2 / g_{\rm Pt})$$
(1)

where Q_H is the charge from the hydrogen adsorption/desorption (HAD) region of CVs; M_{Pt} represents Pt loading on the glassy carbon electrode (g); v represents the scan rate (V/s).

The mass activity (MA) and specific activity (SA) were calculated by the following formula^{5, 7}:

$$\frac{1}{j} = \frac{1}{j_k} + \frac{1}{j_L}$$
(2)

$$MA = \frac{j_k \times S}{M_{Pt}} (A / mg_{Pt})$$
(3)

$$SA = \frac{100 \times j_k \times S}{M_{Pt} \times ECSA} (mA / cm^2)$$
(4)

where j represents the current density measured by the experiment (mA/cm²); j_k represents the dynamic current density (mA/cm²); j_L is the limiting current diffusion density measured by the experiment (mA/cm²). S is the electrode area (cm²). M_{Pt} is the loading of Pt (g).

5. MEA measurement

Membrane electrode assemblies (MEAs) were prepared with M-50 (20 wt%) and TANAKA 20 wt% commercial Pt/C as the cathode, respectively. Commercial Pt/C (60 wt%, Wuhan Himalaya Optoelectronics Technology Co., Ltd.) was used as the anode. The Nafion ionomer (D2020, Dupont). 37 mg catalysts, 6.4 g water, 60 mg ionomer and 6.5 g IPA are mixed uniformly under ultrasonic treatment to obtain catalyst slurry. The prepared catalyst inks were directly coated on a M820.15 membrane (Gore, 15 µm). The cathode catalyst loadings were both 0.1 mg_{Pt}/cm² for M-50 and TANAKA 20 wt% commercial Pt/C, with corresponding anode catalyst loading of 0.1mg_{Pt}/cm². The prepared MEAs (5 cm² active electrode area) were hot-pressed with the gas diffusion layer (GDL, Sigracet 29BC, 0.235±0.025 nm) at 130 °C and pressure of 1.4 MPa for 2 minutes. Performance of the single cells was all measured at 85 °C with a back-pressure of 0.15 MPa using a fuel cell test station (HS330). To measure I-V polarization curves, 80 °C and 100% humidified hydrogen (800 sccm) and oxygen (1500 sccm) were supplied into the anode and cathode, respectively.

Fig. S1 (a) TEM image of TANAKA 20 wt% commercial Pt/C; (b) Pt nanoparticles size distribution.

Fig. S2 High-resolution TEM image of M-50.

Fig. S3 LSV curves at various rotation rates and the Koutecky-Levich plots that was obtained at 0.3 V, 0.5 V and 0.7 V versus RHE of TANAKA 20 wt% commercial Pt/C (a,b) and M-50 (c,d).

Fig.S4 The X-ray diffraction patterns of M (Re) electrocatalysts.

Fig.S5 The electrochemical tests of M (Re) electrocatalysts (a) CV; (b) LSV.

Fig. S6 TEM image of electrocatalysts and Pt size distribution: (a, b) M-50; (c, d) TANAKA 20 wt% commercial Pt/C.

Samples	Pt (wt%)	Re (wt%)
M(1%Re)	19.75	_
M(5%Re)	19.54	_
M(10%Re)	19.28	—

Table S1. The contents of Pt and Re in the M(Re) electrocatalysts were determined by

 ICP-OES.

Samples	Pt (wt%)	
M-110	20.67	
M-80	21.18	
M-50	19.41	
M-20	19.93	
TANAKA 20 wt% commercial Pt/C	19.98	

Table S2. The contents of Pt in the electrocatalysts were determined by ICP-OES.

		Crystallite size	Particle size	
Samples	FWHM	according to XRD	according to TEM	
		pattern (nm)	image (nm)	
M-110	1.70265	5.18	2.94	
M-80	5.13973	1.71	2.21	
M-50	6.27061	1.41	2.04	
M-20	8.03012	1.10	1.83	
TANAKA 20 wt%	2 22002	2.72	2.21	
commercial Pt/C	3.22893	2.73	2.31	

Table S3. The FWHM (full width at half maxima) and Pt particle size according toXRD and TEM information of electrocatalysts.

Catalysts	E _{1/2}	ECSA	MA	SA
	(V vs.RHE)	(m^2/g_{Pt})	(A/mg_{Pt})	(mA/cm ²)
M-110	0.8372	41.38	0.0428	0.1035
M-80	0.8522	58.61	0.0653	0.1114
M-50	0.8622	109.81	0.0890	0.0810
M-20	0.8542	62.04	0.0657	0.1060
TANAKA 20 wt%	0.0470	44.01	0.0592	0.1345
commercial Pt/C	0.8472			

_

 Table S4. Electrochemical performance of electrocatalysts.

References

- I. N. Leontyev, S. V. Belenov, V. E. Guterman, P. Haghi-Ashtiani, A. P. Shaganov and B. Dkhil, J. Phys. Chem. C, 2011, 115, 5429-5434.
- I. N. Leontyev, V. E. Guterman, E. B. Pakhomova, P. E. Timoshenko, A.V.Guterman, I. N. Zakharchenko, G. P. Petin and B. Dkhil, *J. Alloy. Compd.*, 2010, 500, 241-246.
- C. Wei, R. R. Rao, J. Peng, B. Huang, I. E. L. Stephens, M. Risch, Z. J. Xu and Y. Shao-Horn, *Adv. Mater.*, 2019, **31**, 1806296.
- K. J. J. Mayrhofer, S. J. Ashton, J. Kreuzer and M. Arenz, *Int. J. Electrochem. Sci.*, 2009, 4, 1-8.
- Y.-F. Xia, P. Guo, J.-Z. Li, L. Zhao, X.-L. Sui, Y. Wang and Z.-B. Wang, *iScience*, 2021, 24, 103024.
- C. Wei, S. Sun, D. Mandler, X. Wang, S. Z. Qiao and Z. J. Xu, *Chem. Soc. Rev.*, 2019, 48, 2518-2534.
- 7. Z. Zhu, Q. Liu, X. Liu and J. Shui, J. Phys. Chem. C, 2020, 124, 3069-3079.