Synthesis of Fused *N*-Bridged [3.3.1]nonadiquinoline Multicyclic Skeleton *via* Metal-Free Formal [4+2] Cycloaddition/ Mannich/ Dearomatization Domino Reaction

Kamran Amiri,^a Behrouz Nayebzadeh,^a Mohammad Kamangar,^a Mohammad Babazadeh,^a Alireza Ariafard,^{b,c} Farshad Shiri,^b Frank Rominger^d and Saeed Balalaie^{*a}

^aPeptide Chemistry Research Institute, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran, Balalaie@kntu.ac.ir

^bDepartment of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran 1469669191, Iran

^cResearch School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia

^dOrganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 271, D-69120 Heidelberg, Germany

Table of Contents

1 General information 2 General Procedure for the synthesis of fused azabicyclo[3.3.1]nonadiquinoline skeletons	S3 S3
3 Procedure for the scale-up reaction for the synthesis of compound 3a	S3
4 Procedure for the synthesis of the asymmetric structural product compound	S4
5 Characterization spectra of products	S5
6 ¹ H NMR, ¹³ C NMR, and HRMS- ESI spectra of products	S17
7 Crystallographic data for compound 3e	S87
8 Computational details	S95
9 References	S114

General Information

All reagents were purchased from commercials including TCI, Alfa Aesar, and Sigma-Aldrich (Merck), and were used without further purification. Melting points (m.p.) were determined in capillary tubes with an Electrothermal 9100 digital melting point apparatus and are uncorrected. All experiments were monitored by thin layer chromatography (TLC Silica Gel 60 F₂₅₄) plate was visualized under UV light at 254 nm for UV active materials. All ¹H NMR and ¹³C NMR spectra were recorded using 400, 300, and 250 MHz Bruker spectrometers. The chemical shifts (δ) were reported in parts per million (ppm) and also coupling constants (*J*) are reported in Hertz (Hz). Multiplicities are indicated as s = singlet, br s = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High-resolution ESI-MS (HRMS-ESI) data were obtained using a Waters LCT Premier XETM TOF (Time of Flight) mass spectrometer in positive ionization mode. Merck silica gel 60[®] (230-400 mesh) was used for column chromatography. Single-crystal X-ray diffraction data were collected on a Bruker APEX-II Quazar area detector at room temperature. The ratio of the products was determined by the analytical HPLC (Rigol L3400 Column Aven).

General procedure for the synthesis of fused azabicyclo[3.3.1]nonadiquinoline skeletons (3a-ag)

To a round bottom flask, a solution of enolized-*o*-alkenylquinoline carbaldehyde¹ **1** (0.2 mmol) and amine **2** (0.1 mmol) in EtOH (2.0 mL) was added formic acid (10 mol%) at 25 °C overnight. After the completion of the reactions (monitored by TLC), the solution was then concentrated under reduced pressure and the resulting residue was purified by column chromatography on silica gel (*n*-hexane/ethyl acetate) to obtain the desired product **3a-ag**.

Procedure for the scale-up reaction for the synthesis of compound 3a:

To a round bottom flask, a solution of (Z)-2-(2-hydroxy-2-phenylvinyl)quinoline-3carbaldehyde **1a** (4 mmol, 2 equiv.) and aniline **2a** (2 mmol, 1 equiv.) in EtOH (20.0 mL) was added formic acid (10 mol%) at 25 °C overnight. After the completion of the reactions (monitored by TLC), the solution was then concentrated under reduced pressure, and the resulting residue was purified by column chromatography on silica gel (*n*-hexane/ethyl acetate= 3/1) to obtain the desired product **3a** (80%).

Procedure for the synthesis of the asymmetric structural product compound

(Z)-2-(2-hydroxy-2-phenylvinyl)-6-То а round bottom flask. а solution of isopropylquinoline-3-carbaldehyde (0.1 mmol), (Z)-2-(2-hydroxy-2-phenylvinyl)quinoline-3-carbaldehyde (0.1 mmol) and 4-fluoroaniline (0.1 mmol) in EtOH (2.0 mL) was added formic acid (10 mol%) at 25 °C overnight. After the completion of the reactions (monitored by TLC), the solution was then concentrated under reduced pressure, but the products were not separated by column chromatography, because of their similar polarity. Therefore, the type, and ratio of the products were determined by the analytical HPLC chromatogram and Mass spectrometry. At first, the crud of the reaction was characterized by Mass and analytical HPLC techniques. Subsequently, analytical HPLC yielded three fractions, and the chemical structure of the purified compounds was determined by mass spectrometry. Based on the obtained results, the yield of the desired product **3ah** was 37%.

((7R,15S)-17-Phenyl-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14diyl)bis(phenylmethanone) (3a)

Yellow solid (56 mg, Yield 92%, m.p. 195-198 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.61 (m, 7H), 7.56 – 7.45 (m, 7H), 7.40 (d, *J* = 8.2 Hz, 2H), 7.31 (t, *J* = 8.2 Hz, 2H), 7.23 (t, *J* = 7.5 Hz, 2H), 7.19 – 7.13 (m, 4H), 6.92 (t, *J* = 7.8 Hz, 1H), 6.15 (s, 2H), 6.01 (s, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 187.6, 150.1, 148.5, 141.8, 136.1, 130.6, 130.5, 130.4, 129.4, 129.1, 129.0, 127.3, 127.2, 124.0, 122.9, 120.9, 118.1, 117.9, 99.3, 56.1; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₂H₂₉N₃O₂ 608.2330; found: 608.2334.

((7S)-17-Tosyl-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-

diyl)bis(phenylmethanone) (3b)

Yellow solid (50 mg, Yield 73%, m.p. 227-231 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹H NMR (250 MHz, CDCl₃) δ 7.68 – 7.51 (m, 9H), 7.51 – 7.43 (m, 5H), 7.42 (s, 1H), 7.38 (s, 1H), 7.15 (d, *J* = 2.8 Hz, 1H), 7.12 (d, *J* = 2.7 Hz, 1H), 7.09 – 6.97 (m, 3H), 6.96 (s, 1H), 6.55 (d, *J* = 2.7 Hz, 2H), 6.09 (s, 2H), 6.00 (s, 2H), 1.25 (s, 3H).¹³C{¹H} NMR (63 MHz, CDCl₃) δ 182.0, 156.4, 149.5, 145.2, 141.0, 132.4, 131.0, 130.4, 129.0, 127.5, 124.4, 122.3, 120.8, 120.1, 120.0, 116.1, 115.7, 107.5, 99.6, 56.9, 29.7.; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for

C₄₃H₃₁N₃O₄S 686.2114; found: 686.2122.

((7R,15S)-17B-5,7,13,15-Tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14diyl)bis(phenylmethanone) (3c)

Yellow solid (49 mg, Yield 79%, m.p. 314-317 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹H NMR (250 MHz, CDCl₃) δ 7.49 – 7.36 (m, 18H), 7.24 – 7.10 (m, 7H), 5.94 (s, 2H), 5.26 (s, 2H), 3.92 – 3.70 (m, 2H).¹³C{¹H} NMR (63 MHz, CDCl₃) δ 187.7, 150.0, 141.5, 138.0, 137.6, 136.3, 130.8, 130.4, 130.0, 129.3, 128.9, 128.6, 127.7, 127.4, 127.2, 123.9, 123.1, 118.0, 98.8, 56.4, 29.7.; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₃H₃₁N₃O₂ 622.2495; found: 622.2507.

((7R,15S)-17-Cyclohexyl-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3d)

Yellow solid (49 mg, Yield 81%, m.p. 212-215 °C), (*n*-hexane/EtOAc = 4:1, R $_{\rm f}$ = 0.3); ¹**H** NMR (300 MHz, CDCl₃) δ 7.75-7.55 (m, 7H), 7.54-7.35 (m, 9H), 7.23 (t, *J* = 7.4 Hz, 2H), 7.16 (d, *J* = 7.5 Hz, 2H), 5.93 (br s, 2H), 5.58 (br s, 2H), 2.48-2.37 (m, 1H), 2.34-2.24 (m, 1H), 2.03 – 1.90 (m, 2H), 1.87 – 1.78 (m, 1H), 1.72-1.61 (m, 1H), 1.48 – 1.34 (m, 2H), 1.28-1.16 (m, 1H), 0.96 – 0.86 (m, 2H).; ¹³C{¹H} NMR (76 MHz, CDCl₃) δ 188.3, 150.3, 142.1, 136.1, 130.8, 130.3, 130.2, 129.0, 128.9, 127.3, 127.2, 123.8, 123.0, 117.8, 99.0, 56.4, 53.5, 31.5, 30.6, 25.9, 25.2, 25.1; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for

 $C_{42}H_{36}N_3O_2\ 614.2805;\ found:\ 614.2808.$

((7R,15S)-17-(2-(phenylethynyl)phenyl)-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3e)

Yellow solid (53 mg, Yield 75%, m.p. 269-271 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹HNMR (300 MHz, CDCl₃) δ 7.56 (d, *J* = 7.6 Hz, 1H), 7.49 – 7.41 (m, 7H), 7.40 – 7.31 (m, 8H), 7.23 – 7.02 (m, 9H), 6.99 – 6.94 (m, 3H), 6.89 (d, *J* = 8.2 Hz, 1H), 6.28 (s, 2H), 5.77 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 187.4, 151.1, 150.2, 141.7, 136.2, 134.5, 131.6, 131.4, 131.0, 130.4, 130.1, 129.6, 128.9, 128.8, 128.2, 128.1, 127.4, 127.3, 123.9, 123.2, 122.9, 122.2, 119.1, 118.0, 116.8, 99.8, 95.9, 88.1, 56.7; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₅₀H₃₃N₃O₂ 708.2645; found: 708.2646.

((7R,15S)-17-(4-Chlorophenyl)-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3f)

Yellow solid (58 mg, Yield 91%, m.p. 216-219 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹HNMR (300 MHz, CDCl₃) δ 7.77 – 7.60 (m, 7H), 7.57 – 7.45 (m, 7H), 7.41 (d, *J* = 8.2 Hz, 2H), 7.31 – 7.22 (m, 4H), 7.18 (d, *J* = 7.8 Hz, 2H), 7.08 (d, *J* = 8.2 Hz, 2H), 6.08 (s, 2H), 6.01 (s, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 187.7, 149.9, 147.3, 141.8, 136.1, 130.7, 130.5, 130.1, 129.4, 129.2, 129.1, 127.4, 127.2, 125.8, 124.1, 122.8, 119.4, 118.0, 99.1, 56.3; HRMS-ESI (*m/z*): [M + H]⁺ calcd for C₄₂H₂₈³⁵ClN₃O₂ 642.1947; found: 642.1947.

((7R,15S)-17-(2-Bromophenyl)-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3g)

Yellow solid (52 mg, Yield 77%, m.p. 318-320 °C), (*n*-hexane/EtOAc = 3:1, R_f = 0.3); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.0 Hz, 1H), 7.64-7.54 (m, 7H), 7.53 – 7.40 (m, 9H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.23 (t, *J* = 8.1 Hz, 2H), 7.18 (t, *J* = 8.1 Hz, 1H), 7.12 (d, *J* = 8.4 Hz, 2H), 6.95 (t, *J* = 7.6 Hz, 1H), 5.92 (s, 2H), 5.84 (s, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 187.3, 162.7, 150.3, 147.9, 141.6, 136.1, 134.1, 130.5, 130.0, 129.0, 128.9, 128.5, 127.4, 127.3, 124.9, 124.0, 122.9, 122.5, 120.1, 118.0, 99.6, 57.2; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₂H₂₉⁷⁹BrN₃O₂ 686.1563; found: 686.1563.

((7R,15S)-17-(2-Methoxyphenyl)-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3h)

Yellow solid (53 mg, Yield 84%, m.p. 307-309 °C), (n-hexane/EtOAc = 3:1, R f= 0.3); ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.56 (m, 7H), 7.55 – 7.43 (m, 7H), 7.40 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 7.9 Hz, 1H), 7.20 (t, *J* = 7.5 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 7.04 (t, *J* = 7.8 Hz, 1H), 6.97 (d, *J* = 8.1 Hz, 1H), 6.87 (t, *J* = 7.6 Hz, 1H), 6.13 (s, 2H), 5.88 (s, 2H), 4.06 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 187.5, 152.0, 150.0, 141.9, 138.0, 136.1, 131.0, 130.3, 130.1, 129.0, 128.7, 127.4, 127.3, 123.8, 123.4, 123.0, 121.1, 119.8, 117.8, 111.1, 99.8, 55.9, 55.5; HRMS-ESI (*m/z*): [M + H]⁺ calcd for C₄₃H₃₂N₃O₃ 638.2440;

found: 638.2441.

((7R,15S)-17-(4-Methoxyphenyl)-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3i)

Yellow solid (55 mg, Yield 87%, m.p. 302-306 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹H NMR (250 MHz, CDCl₃) δ 7.66 – 7.55 (m, 7H), 7.54 – 7.37 (m, 8H), 7.22 – 7.05 (m, 7H), 6.84 (s, 1H), 6.81 (s, 1H), 5.96 (s, 4H), 3.73 (s, 3H).; ¹³C{¹H} NMR (63 MHz, CDCl₃) δ 187.5, 150.1, 148.5, 142.5, 141.8, 136.2, 130.7, 130.4, 130.2, 129.0, 127.8, 127.2, 123.9, 122.9, 120.0, 118.0, 115.9, 114.6, 99.4, 56.9, 55.5.; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₃H₃₁N₃O₃ 638.2444; found: 638.2435.

((7R,15S)-17-(4-Fluorophenyl)-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3j)

Yellow solid (50 mg, Yield 81%, m.p. 219-221 °C), (*n*-hexane/EtOAc = 3:1, R _f= 0.3); ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.83-7.61 (m, 9H), 7.59-7.51 (m, 4H), 7.50-7.37 (m, 5H), 7.33-7.25 (m, 2H), 7.24-7.08 (m, 4H), 5.96 (s, 2H), 5.76 (s, 2H); ¹³C {¹H} NMR (76 MHz, DMSO-*d*₆) δ 186.9, 158.6, 155.5 (¹*J*_{C-F} = 240.0 Hz), 149.6, 145.2, 141.4, 136.3, 131.3, 130.2, 129.8, 129.7, 127.6, 127.4, 124.8, 122.4, 120.0, 119.9, 118.7, 116.6, 116.3 (²*J*_{C-F} = 21.8 Hz), 99.0, 56.2; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₂H₂₉FN₃O₂ 626.5152; found: 626.5156.

((7R,15S)-1,3,9,11-Tetramethyl-17-phenyl-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3k)

Yellow solid (61 mg, Yield 93%, m.p. 286-288 °C), (*n*-hexane/EtOAc = 3:1, R_f= 0.3); ¹**H** NMR (400 MHz, CDCl₃) δ 7.70 – 7.52 (m, 11H), 7.33 (t, *J* = 8.7 Hz, 2H), 7.14 (d, *J* = 8.2 Hz, 2H), 7.07 (br s, 2H), 6.94 (d, *J* = 7.4 Hz, 1H), 6.91 (br s, 2H), 6.69 (s, 2H), 6.24 (s, 2H), 2.39 (s, 6H), 2.24 (s, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 185.8, 149.9, 148.9, 142.0, 141.0, 136.6, 134.5, 130.1, 129.3, 129.1, 129.0, 127.4, 127.2, 127.1, 120.8, 120.3, 118.4, 116.0, 99.8, 56.3, 21.7, 18.3; **HRMS-ESI** (*m*/*z*): [M + H]⁺ calcd for C₄₆H₃₈N₃O₂ 664.3248; found: 664.3248.

((7R,15S)-1,3,9,11-Tetramethyl-17-(pyridin-2-yl)-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3l)

Yellow solid (45 mg, Yield 68%, m.p. 229-231 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹HNMR (300 MHz, CDCl₃) δ 8.43 (d, *J* = 6.0 Hz, 1H), 7.96-7.77 (m, 5H), 7.74-7.65 (m, 5H), 7.63-7.54 (m, 3H), 7.07 (br s, 2H), 7.01 (s, 2H), 6.90 (br s, 2H), 6.81 (d, *J* = 8.5 Hz, 1H), 6.74 (d, *J* = 8.4 Hz, 1H), 6.72 (s, 2H), 2.39 (s, 6H), 2.23 (s, 6H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 186.1, 162.9, 157.4, 150.1, 148.5, 142.0, 141.0, 137.9, 136.6, 134.6, 129.9, 129.1, 127.7, 127.5, 127.1, 120.2, 116.0, 114.4, 108.3, 100.1, 52.3, 21.7, 18.3; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₅H₃₇N₄O₂ 665.2905; found: 665.2906.

((7R,15S)-17-(3,5-Dimethylphenyl)-1,3,9,11-tetramethyl-5,7,13,15-tetrahydro-7,15epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3m)

Yellow solid (65 mg, Yield 95%, m.p. 273-275 °C), (*n*-hexane/EtOAc = 4:1, R f= 0.3); ¹H NMR (300 MHz, CDCl₃) δ 7.92-7.39 (m 12H), 7.08 (s, 2H), 6.92 (s, 2H), 6.79 (s, 2H), 6.73 (s, 2H), 6.61 (s, 1H), 6.24 (s, 2H), 2.41 (s, 6H), 2.34 (s, 6H), 2.27 (s, 6H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 185.66, 150.05, 148.9, 142.1, 140.8, 138.8, 136.7, 134.5, 130.4, 129.0 (2C), 127.3 (2C), 127.0, 122.6, 120.3, 116.2, 116.0, 100.1, 56.2, 21.8, 21.7, 18.3; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₈H₄₂N₃O₂ 692.2114; found: 692.2117.

((7R,15S)-17-(4-Methoxyphenyl)-1,3,9,11-tetramethyl-5,7,13,15-

tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3n)

Yellow solid (62 mg, Yield 90%, m.p. 199-201 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹HNMR (300 MHz, CDCl₃) δ 7.99 – 7.33 (m, 12H), 7.13 (d, *J* = 8.6 Hz, 2H), 7.08 (br s, 2H), 6.91 (br s, 2H), 6.89 (d, *J* = 8.4 Hz, 2H), 6.67 (s, 2H), 6.10 (s, 2H), 3.79 (s, 3H), 2.40 (s, 6H), 2.24 (s, 6H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 185.7, 154.3, 149.9, 142.9, 142.0, 140.8, 136.7, 134.5, 130.3, 129.0, 128.9, 127.3, 127.2, 127.0, 120.4, 120.3, 116.0, 114.5, 99.8, 57.1, 55.5, 21.7, 18.3; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₇H₄₀N₃O₃ 694.3060; found: 694.3062.

((7R,15S)-17-(2-Methoxyphenyl)-1,3,9,11-tetramethyl-5,7,13,15-tetrahydro-7,15epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (30)

Yellow solid (57 mg, Yield 83%, m.p. 308-310 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹HNMR (400 MHz, CDCl₃) δ 7.65 – 7.47 (m, 12H), 7.31 (d, *J* = 7.9 Hz, 1H), 7.07 (br s, 2H), 7.03 (d, *J* = 7.9 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 6.87 (br s, 2H), 6.84 (d, *J* = 8.0 Hz, 1H), 6.51 (s, 2H), 6.19 (s, 2H), 4.05 (s, 3H), 2.38 (s, 6H), 2.16 (s, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 185.7, 152.2, 149.8, 142.2, 140.6, 138.5, 136.6, 134.5, 130.5, 128.9, 128.8, 127.3, 127.0, 126.9, 123.3, 121.0, 120.3, 120.1, 115.9, 110.9, 100.2, 56.1, 55.5, 21.7, 18.2; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₇H₄₀N₃O₃ 694.3063;

found: 694.3058.

((7R,15S)-17-(4-Fluorophenyl)-1,3,9,11-tetramethyl-5,7,13,15-tetrahydro-7,15-epimino cycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3p)

Yellow solid (53 mg, Yield 79%, m.p. 220-223 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹H NMR (300 MHz, CDCl₃) δ 7.72-7.51 (m, 10H), 7.19-6.97 (m, 6H), 6.92 (br s, 2H), 6.69 (br s, 2H), 6.12 (br s, 2H), 2.41 (br s, 6H), 2.25 (br s, 6H); ¹³C {¹H} NMR (75 MHz, CDCl₃) δ 185.7, 1586, 155.9 (¹J_{C-F}= 244.0 Hz), 149.8, 145.5, 141.9, 141.0, 136.7, 134.6, 130.0, 129.1, 129.0, 127.4, 127.2, 127.1, 120.3, 120.2, 120.1, 116.1, 116.0, 115.7 (²J_{C-F}= 22.0 Hz), 99.6, 57.0, 21.7, 18.3; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₆H₃₇FN₃O₂ 682.2701; found: 682.2704.

((7R,15S)-17-(2-Bromophenyl)-1,3,9,11-tetramethyl-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3q)

Yellow solid (62 mg, Yield 84%, m.p. 313-316 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, *J* = 7.9 Hz, 1H), 7.65 – 7.48 (m, 12H), 7.35 (d, *J* = 7.9 Hz, 1H), 7.19 (t, *J* = 7.6 Hz, 1H), 7.11 (br s, 2H), 6.98 (t, *J* = 7.6 Hz, 1H), 6.91 (br s, 2H), 6.52 (s, 2H), 6.04 (s, 2H), 2.41 (s, 6H), 2.19 (s, 6H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 185.7, 150.1, 148.3, 141.9, 140.8, 136.7, 134.7, 134.1, 130.1, 128.9, 128.8, 128.5, 127.3, 127.0, 126.8, 124.8, 122.8, 120.4, 120.3, 116.0, 100.0, 57.4, 21.7, 18.3; HRMS-ESI (*m*/z): [M + H]⁺ calcd for C₄₆H₃₇⁷⁹BrN₃O₂ 742.2055; found: 742.2054.

((7R,15S)-1,3,9,11-Tetramethyl-17-(2-(phenylethynyl)phenyl)-5,7,13,15-tetrahydro-7,15epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3r)

Yellow solid (53 mg, Yield 70%, m.p. 314-318 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹HNMR (300 MHz, CDCl₃); δ 7.70 (d, *J* = 7.6 Hz, 1H), 7.65 – 7.52 (m, 9H), 7.52 – 7.43 (m, 3H), 7.23 – 7.14 (m, 5H), 7.12-7.09 (m, 3H), 7.03 (t, *J* = 7.4 Hz, 1H), 6.95 (d, *J* = 8.1 Hz, 1H), 6.90 (s, 2H), 6.63 (s, 2H), 6.55 (s, 2H), 2.41 (s, 6H), 2.10 (s, 6H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 185.6, 151.4, 150.0, 141.8, 140.8, 136.8, 134.6, 134.4, 131.4, 130.9, 129.6, 128.9, 128.8, 128.1, 128.0, 127.5, 127.1, 127.0, 123.2, 121.9, 120.3, 119.1, 116.7, 116.1, 100.3, 95.9, 88.1, 56.7, 21.8, 18.2; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for

 $C_{54}H_{41}N_{3}O_{2}\,764.3271;\,found:\,764.3273.$

((7R,15S)-17-(4-Chlorophenyl)-1,3,9,11-tetramethyl-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3s)

Yellow solid (62 mg, Yield 89%, m.p. 221-224 °C), (*n*-hexane/EtOAc = 4:1, R f= 0.3); ¹HNMR (300 MHz, CDCl₃) 7.79 – 7.50 (m, 12H), 7.30 (s, 1H), 7.08 (br s, 4H), 6.92 (s, 2H), 6.69 (s, 2H), 6.18 (s, 2H), 2.41 (s, 6H), 2.26 (s, 6H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 185.9, 149.7, 147.6, 141.9, 141.1, 136.7, 134.6, 129.8, 129.3, 129.2, 129.1, 127.5, 127.2, 127.1, 125.7, 120.2, 119.7, 116.0, 99.5, 56.5, 21.7, 18.3; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₆H₃₇³⁵ClN₃O₂ 698.2566; found: 698.2568.

((7R,15S)-17-(4-methoxy-2-nitrophenyl)-1,3,9,11-tetramethyl-5,7,13,15-tetrahydro-7,15epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3t)

Yellow solid (46 mg, Yield 63%, m.p. 282-285 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹H NMR (300 MHz, CDCl₃) δ 7.72 – 7.41 (m, 13H), 7.40 (d, *J* = 3.1 Hz, 1H), 7.10 (s, 2H), 6.98 (dd, *J* = 8.9, 3.1 Hz, 1H), 6.90 (s, 2H), 6.43 (s, 2H), 5.78 (s, 2H), 3.84 (s, 3H), 2.41 (s, 6H), 2.17 (s, 6H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 186.0, 155.7, 149.8, 146.4, 141.9, 140.9, 137.3, 136.6, 134.7, 129.7, 129.0, 128.9, 127.1, 127.0, 126.7, 125.2, 120.2, 119.5, 116.0, 110.1, 99.9, 58.9, 55.9, 21.7, 18.2; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₇H₃₉N₄O₅ 739.1302; found: 739.1304.

((7R,15S)-1,4,9,12-Tetramethyl-17-(pyridin-2-yl)-5,7,13,15-tetrahydro-7,15epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3u)

Yellow solid (46 mg, Yield 70%, m.p. 194-197 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹H NMR (300 MHz, CDCl₃) δ 8.32 (d, *J* = 6.9 Hz, 1H), 7.81-7.66 (m, 5H), 7.65 – 7.55 (m, 5H), 7.52 (d, *J* = 7.0 Hz, 2H), 7.45 (t, *J* = 6.9 Hz, 1H), 7.11 (d, *J* = 7.3 Hz, 2H), 6.98 (br s, 2H), 6.86 (d, *J* = 7.3 Hz, 2H), 6.73 (d, *J* = 8.6 Hz, 1H), 6.70 (br s, 2H), 6.62 (dd, *J* = 7.2, 4.9 Hz, 1H), 2.42 (s, 6H), 2.13 (s, 6H); ¹³C{¹H} NMR (75 MHz, CDCl₃) 186.1, 157.4, 149.7, 148.4, 141.9, 138.0, 135.6, 132.4, 130.7, 130.5, 129.2, 129.1, 127.8, 127.5, 124.7, 123.9, 122.1, 114.4, 108.3, 100.3, 52.3, 18.2, 17.0; HRMS-ESI (*m*/z): [M + H]⁺ calcd for C₄₅H₃₇N₄O₂

665.2906; found: 665.2908.

((7R,15S)-3,11-Dimethoxy-17-(2-methoxyphenyl)-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3v)

Yellow solid (59 mg, Yield 86%, m.p. 310-311 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹HNMR (300 MHz, CDCl₃) δ 7.51 – 7.41 (m, 7H), 7.40 – 7.35 (m, 4H), 7.14 (d, *J*= 8.4 Hz, 1H), 6.97 – 6.75 (m, 5H), 6.73 – 6.66 (m, 5H), 5.96 (s, 2H), 5.76 (s, 2H), 3.91 (s, 3H), 3.71 (s, 6H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 185.8, 161.5, 152.0, 150.4, 141.9, 138.3, 137.9, 130.4, 128.9, 128.8, 128.7, 128.5, 127.5, 123.3, 121.1, 119.8, 117.7, 114.8, 111.0, 100.3, 99.3, 55.8, 55.6, 55.5; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₅H₃₆N₃O₅ 698.2650; found: 698.2651.

((7R,15S)-17-(3,5-Dimethylphenyl)-2,10-dimethoxy-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3w)

Yellow solid (62 mg, Yield 90%, m.p. 206-207 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹H NMR (250 MHz, CDCl₃) δ 7.68 – 7.48 (m, 12H), 7.39 (d, *J* = 9.2 Hz, 2H), 7.12 (d, *J* = 9.4 Hz, 2H), 6.71 (s, 2H), 6.61 – 6.50 (m, 3H), 6.19 (s, 2H), 6.12 (s, 2H), 3.84 (s, 6H), 2.28 (s, 6H).¹³C{¹H} NMR (63 MHz, CDCl₃) δ 181.5, 156.4, 149.8, 148.7, 141.1, 138.8, 132.5, 131.5, 130.3, 129.0, 128.9, 127.7, 124.5, 122.7, 120.9, 120.7, 116.1, 107.4, 100.2, 56.1, 55.6, 21.8.; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₆H₃₈₇N₃O₄ 696.2863; found: 696.2867.

((7R,15S)-17-(4-Fluorophenyl)-2,10-diisopropyl-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3x)

Yellow solid (51 mg, Yield 73%, m.p. 212-215 °C), (*n*-hexane/EtOAc = 3:1, R _f= 0.3); ¹H NMR (300 MHz, CDCl₃) δ 7.83 – 7.62 (m, 7H), 7.55 – 7.47 (m, 4H), 7.44 – 7.34 (m, 4H), 7.20 – 6.85 (m, 7H), 6.06 (br s, 2H), 6.03 (br s, 2H), 3.16-2.83 (m, 2H), 1.33 (s, 6H), 1.31 (s, 6H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 186.3, 159.5, 156.3 (¹*J*_{C-F} = 242.2 Hz), 149.8, 145.0, 141.8, 139.2, 134.7, 130.6, 130.4, 129.8, 129.1, 129.0, 127.3, 124.2, 123.0, 120.0, 119.9, 118.2, 116.0, 115.7 (²*J*_{C-F} = 22.5 Hz), 99.1, 56.9, 33.7, 23.9; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₈H₄₁FN₃O₂ 710.3178; found: 710.3179.

((7R,15S)-17-(3,4-Dimethylphenyl)-2,10-diisopropyl-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3y)

Yellow solid (63 mg, Yield 89%, m.p. 277-280 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹H NMR (300 MHz, CDCl₃) δ 7.70 – 7.47 (m, 8H), 7.46 – 7.36 (m, 4H), 7.32 – 7.20 (m, 4H), 6.91 (d, *J* = 8.4 Hz, 1H), 6.90 – 6.83 (br s, 3H), 6.73 (d, *J* = 8.2 Hz, 1H), 5.98 (br s, 2H), 5.97 (br s, 2H), 2.98-2.80 (m, 2H), 2.17 (s, 3H), 2.07 (s, 3H), 1.20 (s, 6H), 1.18 (s, 6H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 186.1, 150.0, 146.7, 144.8, 141.9, 137.3, 134.7, 130.8, 130.5, 130.3, 129.6, 129.1, 129.0, 128.9, 127.4, 124.1, 123.1, 120.1, 118.1, 115.5, 99.5, 56.3, 33.7, 23.9, 20.4, 18.8; HRMS-ESI (*m/z*): [M + H]⁺ calcd for C₅₀H₄₆N₃O₂ 720.3580; found: 720.3582.

((7R,15S)-2,10-Dichloro-17-phenyl-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3z)

Yellow solid (62 mg, Yield 92%, m.p. 206-209 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹H NMR (300 MHz, CDCl₃) δ 7.99 – 7.92 (m, 3H), 7.89 – 7.78 (m, 8H), 7.74 – 7.74 (m, 2H), 7.45 (s, 5H), 7.32 (s, 2H), 7.08 (s, 3H), 6.09 (s, 2H), 5.87 (s, 2H).¹³C{¹H} NMR (75 MHz, CDCl₃) δ 186.7, 150.1, 148.4, 141.2, 135.1, 131.5, 130.9, 129.6, 129.5, 129.4, 129.2, 129.1, 127.3, 126.2, 125.8, 123.8, 119.8, 118.2, 99.8, 77.5, 77.1, 76.7, 56.0.; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₂H₂₇³⁷Cl₂N₃O₂ 676.1559; found: 676.1558.

((7R,15S)-17-(3,5-Dimethylphenyl)-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis((4-methoxyphenyl)methanone) (3aa)

Yellow solid (56 mg, Yield 82%, m.p. 291-293 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.4); ¹H NMR (300 MHz, CDCl₃) δ 7.80 – 7.46 (m, 7H), 7.44 – 7.32 (m, 3H), 7.31 – 7.05 (m, 8H), 6.77 (br s, 2H), 6.60 (br s, 1H), 6.28 (br s, 2H), 6.19 (br s, 2H), 4.03 (br s, 6H), 2.34 (br s, 6H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 186.8, 160.3, 150.1, 148.7, 138.9, 136.4, 134.4, 131.2, 130.4, 130.0, 128.9, 127.2, 123.8, 123.0, 122.8, 118.0, 116.1, 114.1, 100.2, 56.2, 55.5, 21.8; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₆H₃₈N₃O₄ 696.2808; found: 696.2809.

((7R,15S)-17-(4-Fluorophenyl)-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis((4-methoxyphenyl)methanone) (3ab)

Yellow solid (51 mg, Yield 75%, m.p. 269-271 °C), (*n*-hexane/EtOAc = 3:1, R f = 0.3); ¹H NMR (300 MHz, DMSO-*d*₆) (mixture of two rotamers (66:34)) δ 8.72 (s, 1H, minor rotamer), 8.72 (s, 1H, major rotamer), 8.41-8.22 (m, 1H, mixture of two rotamers), 8.21 – 8.04 (m, 2H, major rotamer), 8.02 – 7.92 (m, 2H, minor rotamer), 7.86 – 7.60 (m, 4H, mixture of two rotamers), 7.58 – 7.38 (m, 4H, mixture of two rotamers), 7.34 – 6.96 (m, 9H, mixture of two rotamers), 6.84 – 6.57 (m, 1H, mixture of two rotamers), 6.32-6.18 (m, 2H, minor rotamer), 6.05 (d, *J* = 11.0 Hz, 2H, major rotamer), 5.59 (s, 1H, major rotamer), 5.47 (s, 1H, minor rotamer), 3.97 (s, 4H, major rotamer), 3.92 (s, 2H, minor rotamer); ¹³C{¹H</sup> NMR (75 MHz, DMSO-*d*₆) (mixture of two rotamers (66:34)) δ 185.9,

185.8, 163.9, 163.8, 160.6, 160.5 (${}^{1}J_{C-F}$ = 247.2 Hz), 149.7, 147.2, 146.8, 136.7, 133.7, 131.9, 131.7, 131.5, 131.3, 131.2, 130.3, 130.2, 129.7, 129.1, 128.7, 128.5, 128.3, 127.6, 127.0, 124.8, 122.6, 121.4, 120.2, 120.1, 119.0, 117.2, 116.6, 116.4, 116.1, 114.8 (${}^{2}J_{C-F}$ = 23.2 Hz), 101.6, 99.7, 99.2, 56.4, 56.1, 55.9, 55.8; **HRMS-ESI** (*m/z*): [M + H]⁺ calcd for C₄₄H₃₃FN₃O₄ 686.2446; found: 686.2449.

((7R,15S)-17-(Naphthalen-1-yl)-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis((4-bromophenyl)methanone) (3ac)

Yellow solid (71 mg, Yield 88%, m.p. 229-231 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹H NMR (300 MHz, CDCl₃) δ 8.26 (d, *J* = 8.4, 2.8 Hz, 1H), 8.04 – 7.82 (m, 2H), 7.79 – 7.36 (m, 14H), 7.36 -7.22 (M, 5H), 7.22 – 6.92 (m, 3H), 6.17 (s, 1H), 6.09 (s, 1H), 6.01 (s, 1H), 5.89 (s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 187.8, 185.8, 146.2, 140.3, 136.3, 134.8, 133.1, 132.0, 130.7, 129.0, 128.9, 128.8, 127.4, 126.3, 126.0, 125.9, 124.4, 124.2, 123.5, 123.2, 123.1, 118.2, 116.5, 102.1, 98.1, 58.7, 58.0; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₆H₃₀⁷⁹Br₂N₃O₂ 814.0692; found: 814.0693.

((7R,15S)-17-(3,5-Dimethylphenyl)-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis((4-bromophenyl)methanone) (3ad)

Yellow solid (71 mg, Yield 90%, m.p. 203-206 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹H NMR (300 MHz, CDCl₃) δ 7.90 – 7.70 (m, 5H), 7.58 – 7.47 (m, 3H), 7.46-7.37 (m, 6H), 7.36 – 7.23 (m, 4H), 6.71 (s, 2H), 6.62 (s, 1H), 6.29 (s, 2H), 6.07 (s, 2H), 2.33 (s, 6H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 185.6, 150.2, 148.5, 140.6, 139.0, 136.1, 132.1, 130.9, 130.7, 130.4, 129.1, 127.4, 124.4, 123.3, 123.1, 123.0, 118.1, 116.1, 99.8, 56.2, 21.8; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₄H₃₂⁷⁹Br₂N₃O₂ 792.0587; found: 792.0586. ((7R,15S)-17-(4-Fluorophenyl)-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis((4-bromophenyl)methanone) (3ae)

Yellow solid (57 mg, Yield 74%, m.p. 238-240 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹H NMR (300 MHz, CDCl₃) δ 7.82 – 7.69 (m, 5H), 7.50 – 7.29 (m, 10H), 7.25 – 7.20 (m, 3H), 7.02 (s, 4H), 6.16 (s, 2H), 5.90 (s, 2H).; ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 185.8, 159.5, 156.3 (¹*J*_{C-F}= 241.8 Hz), 149.9, 145.0, 140.5, 136.1, 132.2, 130.8, 130.4, 129.0, 127.4, 124.4, 123.3, 122.9, 120.6, 112.0, 118.1, 116.2, 115.9 (²*J*_{C-F}= 21.3 Hz), 99.3, 57.0.; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₄₂H₂₆⁷⁹Br₂FN₃O₂ 782.0455; found: 782.0442.

((7R,15S)-17-Phenyl-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14diyl)bis((4-bromophenyl)methanone) (3af)

Yellow solid (70 mg, Yield 93%, m.p. 278-281 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹H NMR (300 MHz, CDCl₃) δ 7.75 (s, 5H), 7.58 – 7.34 (m, 10H), 7.26 – 6.89 (m, 8H), 6.17 (s, 2H), 6.02 (s, 2H).; ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 186.0, 150.1, 148.5, 140.6, 136.1, 132.2, 130.9, 130.6, 130.5, 129.6, 129.1, 127.4, 124.5, 123.3, 122.9, 121.3, 118.2, 118.1, 99.5, 77.5, 77.1, 76.7, 56.3.; HRMS-ESI (*m/z*): [M + H]⁺ calcd for C₄₂H₂₇⁷⁹Br₂N₃O₂ 764.0549; found: 764.0540.

((7R,7'R,15S,15'S)-1,4-Phenylenebis(5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-

b']diquinoline-17,6,14-triyl))tetrakis(phenylmethanone) (3ag)

Yellow solid (60 mg, Yield 53%, m.p. 235-237 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹H NMR (300 MHz, CDCl₃) δ 7.85-7.58 (m, 15H), 7.56 – 7.34 (m, 11H), 7.21-6.93 (m, 18H), 6.18-5.88 (m, 8H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 187.1, 149.8, 142.8, 141.8, 141.7, 135.8, 130.6, 130.4, 130.3, 129.2, 129.0, 127.2, 127.1, 124.0, 123.9, 122.6, 119.5, 117.6, 99.4, 56.3; HRMS-ESI (*m*/*z*): [M + H]⁺ calcd for C₇₈H₅₃N₆O₄ 1137.4115; found: 1137.4119. ((7S,15R)-17-(4-fluorophenyl)-2-isopropyl-5,7,13,15-tetrahydro-7,15-epiminocycloocta[1,2-b:5,6-b']diquinoline-6,14-diyl)bis(phenylmethanone) (3ah)

Yellow solid (Yield 37%, m.p. 229-231 °C), (*n*-hexane/EtOAc = 3:1, R f= 0.3); ¹H **NMR** (300 MHz, CDCl₃) δ 8.20-7.99 (m, 1H), 7.82-7.70 (m, 1H), 7.69-7.56 (m, 6H), 7.51 – 7.41 (m, 5H), 7.39 – 7.32 (m, 2H), 7.24-7.12 (m, 4H), 7.11-7.03 (m, 1H), 7.02 – 6.94 (m, 3H), 6.92 – 6.73 (m, 2H), 5.99 (br s, 2H), 3.10-2.95 (m, 1H), 1.22 (d, *J* = 6.7 Hz, 6H); ¹³C{¹H} **NMR** (75 MHz, CDCl₃) δ 196.8, 159.0, 155.8 (¹*J*_C-_F= 241.0 Hz), 149.5, 145.0, 141.2, 135.6, 134.1, 132.1, 131.3, 130.3, 129.6, 129.3, 128.5, 128.3, 127.7, 127.3, 127.1, 126.7, 123.6, 122.9, 120.5, 119.4, 119.3, 118.1, 117.6, 115.6, 115.5, 115.3 (²*J*_{C-F} = 21.1 Hz), 115.2, 56.4, 33.2,

23.4.; **HRMS-ESI** (*m*/*z*): [M + H]⁺ calcd for C₄₅H₃₅FN₃O₂ 668.7071; found: 668.7078.

Figure S3: HRMS (ESI) of 3a

Figure **S5**: ¹³C{¹H}NMR Compound **3b** (63 MHz, CDCl₃)

Figure S6: HRMS (ESI) of 3b

Figure **S9**: HRMS (ESI) of **3c**

Figure **S11**: ¹³C{¹H}NMR Compound **3d** (75 MHz, CDCl₃)

Figure S12: HRMS (ESI) of 3d

Figure S14: ¹³C{¹H}NMR Compound 3e (75 MHz, CDCl₃)

Figure S15: HRMS (ESI) of 3e

Figure S18: HRMS (ESI) of 3f

Figure S21: HRMS (ESI) of 3g

110 100 f1 (ppm)

Figure **S23**: ¹³C{¹H}NMR Compound **3h** (101 MHz, CDCl₃)

Figure S24: HRMS (ESI) of 3h

Figure **S26**: ¹³C{¹H}NMR Compound **3i** (63 MHz, CDCl₃)

Figure S27: HRMS (ESI) of 3i

Figure S30: HRMS (ESI) of 3j

Figure S33: HRMS (ESI) of 3k

Figure **S35**: ¹³C{¹H}NMR Compound **3**I (75 MHz, CDCl₃)

Figure S36: HRMS (ESI) of 31

Figure S39: HRMS (ESI) of 3m

Figure S42: HRMS (ESI) of 3n

Figure S45: HRMS (ESI) of 30

Figure **S47**: ¹³C{¹H}NMR Compound **3p** (75 MHz, CDCl₃)

Figure **S48**: HRMS (ESI) of **3p**

Figure **S50**: ¹³C{¹H}NMR Compound **3**q (75 MHz, CDCl₃)

Figure S51: HRMS (ESI) of 3q

Figure S54: HRMS (ESI) of 3r

Figure S57: HRMS (ESI) of 3s

Figure S60: HRMS (ESI) of 3t

Figure **S62**: ¹³C{¹H}NMR Compound **3u** (75 MHz, CDCl₃)

Figure S63: HRMS (ESI) of 3u

Figure S65: ¹³C{¹H}NMR Compound 3v (75 MHz, CDCl₃)

Figure S66: HRMS (ESI) of 3v

Figure **S68**: ¹³C{¹H}NMR Compound **3**w (63 MHz, CDCl₃)

Figure S69: HRMS (ESI) of 3w

Figure S72: HRMS (ESI) of 3x

Figure S75: HRMS (ESI) of 3y

Figure S78: HRMS (ESI) of 3z

Figure **S80**: ¹³C{¹H}NMR Compound **3aa** (75 MHz, CDCl₃)

Figure S81: HRMS (ESI) of 3aa

Figure S84: HRMS (ESI) of 3ab

Figure **S86**: ¹³C{¹H}NMR Compound **3ac** (75 MHz, CDCl₃)

Figure S87: HRMS (ESI) of 3ac

Figure S89: ¹³C{¹H}NMR Compound 3ad (75 MHz, CDCl₃)

Figure S90: HRMS (ESI) of 3ad

Figure **S92**: ¹³C{¹H}NMR Compound **3ae** (75 MHz, CDCl₃)

Figure S93: HRMS (ESI) of 3ae

Figure **S95**: ¹³C{¹H}NMR Compound **3af** (75 MHz, CDCl₃)

Figure S96: HRMS (ESI) of 3af

Figure **S99**: HRMS (ESI) of **3ag**

	Reten. I ime	Area	Height	Area	Height	W 05	Compound Name
	[min]	[mAU.s]	[mAU]	[%]	[%]	[min]	
1	42.677	9191.350	323.847	27.5	44.5	0.39	
2	51.307	17010.090	324.535	50.9	44.6	0.76	
3	67.563	7217.435	79.399	21.6	10.9	1.43	
	Total	33418.876	727.781	100.0	100.0		

Figure S102: Analytical HPLC of crude compound (3ah)

Chemie	: Saeed Balalaie
Probe	: KA4000
Dateinamen	: 3e
Operateur	: F. Rominger
Gerät	: Bruker APEX-II Quazar area detector

Table S1: Crystal data and structure refinement for **3e**.

3e C₅₀H₃₃N₃O₂ 707.79 200(2) K 0.71073 Å trigonal R 3	
18	
a = 39.4459(15) Å	α = 90 deg.
b = 39.4459(15) Å	$\beta = 90 \text{ deg.}$
c = 12.5093(8) Å	γ = 120 deg.
$10000.0(17) \text{ A}^{2}$ 1.25 g/cm ³	
0.08 mm^{-1}	
hexagonal	
0.157 x 0.082 x 0.066	5 mm ³
vellow	
2.0 to 24.1 deg.	
-45≤h≤39, -38≤k≤45,	-14≤l≤14
34031	
5968 (R(int) = 0.0717	7)
3507 (l > 2σ(l))	
Semi-empirical from	equivalents
0.96 and 0.93	
Full-matrix least-squa	ares on F^2
5968 / 0 / 502	
1.04 $P_1 = 0.052 \text{ wP}_2 = 0.052 \text{ wP}_2$	110
$R_1 = 0.053, WR2 = 0$ 0.22 and -0.20 eÅ ⁻³	.113
	3e $C_{50}H_{33}N_3O_2$ 707.79 200(2) K 0.71073 Å trigonal R $\overline{3}$ 18 a = 39.4459(15) Å b = 39.4459(15) Å c = 12.5093(8) Å 16856.5(17) Å^3 1.25 g/cm^3 0.08 mm ⁻¹ hexagonal 0.157 x 0.082 x 0.066 yellow 2.0 to 24.1 deg. -45≤h≤39, -38≤k≤45, 34031 5968 (R(int) = 0.0717 3507 (I > 2 σ (I)) Semi-empirical from 6 0.96 and 0.93 Full-matrix least-squa 5968 / 0 / 502 1.04 R1 = 0.053, wR2 = 0. 0.22 and -0.20 eÅ ⁻³

Table S2: Atomic coordinates and equivalent isotropic displacement parameters (Å²) for 3e. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atom	x	у	Z	U _{eq}
N1	0.5637(1)	0.7394(1)	0.6842(2)	0.0323(6)
C11	0.5707(1)	0.7745(1)	0.7427(2)	0.0332(7)
H11	0.5766	0.7717	0.8189`́	0.040
C12	0.5360(1)	0.7817(1)	0.7404(2)	0.0331(7)
C13	0.5096(1)	0.7654(1)	0.6554(2)	0.0333(7)
N14	0.4776(1)	0.7699(1)	0.6496(2)	0.0365(6)
H14	0.4780(8)	0.7868(8)	0.706(2)	0.044
C15	0.4493(1)	0.7534(1)	0.5720(2)	0.0384(7)
C16	0.4178(1)	0.7603(1)	0.5719(3)	0.0520(9)
H16	0.4157	0.7761	0.6260	0.062
C17	0.3901(1)	0.7442(1)	0.4935(3)	0.0668(11)
H17	0.3688	0.7491 ິ	0.4930	0.080

C18	0.3928(1)	0.7209(1)	0.4144(3)	0.0676(11)
H18	0.3734	0.7100	0.3602	0.081
C19	0.4234(1)	0.7136(1)	0.4142(3)	0.0523(9)
H19	0.4250	0.6976	0.3600	0.063
C20	0.4523(1)	0.7297(1)	0.4941(2)	0.0390(8)
C21	0.4854(1)	0.7240(1)	0.4986(2)	0.0347(7)
H21	0.4876	0.7073	0.4480	0.042
C22	0.5137(1)	0.7420(1)	0.5731(2)	0.0315(7)
C23	0.5513(1)	0.7403(1)	0.5733(2)	0.0331(7)
H23	0.5465	0.7158	0.5360	0.040
C24	0.5843(1)	0.7755(1)	0.5154(2)	0.0324(7)
C25	0.6110(1)	0.8073(1)	0.5797(2)	0.0325(7)
N26	0.6420(1)	0.8390(1)	0.5341(2)	0.0382(6)
H26	0.6425(8)	0.8369(8)	0.464(2)	0.046
C27	0.6688(1)	0.8716(1)	0.5902(2)	0.0370(7)
C28	0.6991(1)	0.9035(1)	0.5366(3)	0.0465(8)
H28	0.7014	0.9031	0.4611	0.056
C29	0.7253(1)	0.9354(1)	0.5945(3)	0.0539(9)
H29	0 7458	0.9573	0.5586	0.065
C30	0.7224(1)	0.9363(1)	0 7048(3)	0.0497(9)
H30	0 7408	0.9587	0 7437	0.060
C31	0.6932(1)	0.9052(1)	0 7578(3)	0.0426(8)
H31	0.6916	0.9059	0.8335	0.051
C32	0.6655(1)	0.8720(1)	0 7011(2)	0.0367(7)
C33	0.0000(1) 0.6338(1)	0.8388(1)	0.7611(2) 0.7512(2)	0.0364(7)
H33	0.6316	0.8381	0.8269	0.000+(7)
C34	0.6067(1)	0.8080(1)	0.6932(2)	0.0321(7)
C40	0.0007(1) 0.5315(1)	0.0000(1)	0.0002(2) 0.8172(2)	0.0389(7)
040	0.0010(1) 0.5044(1)	0.8000(1) 0.8137(1)	0.8140(2)	0.0533(6)
C41	0.5595(1)	0.8724(1)	0.0140(2) 0.9087(2)	0.0393(8)
C42	0.5629(1)	0.7993(1)	0.9862(2)	0.0482(8)
H42	0.5474	0.7716	0.9815	0.058
C43	0.5474 0.5887(1)	0.8162(1)	1 0706(3)	0.0665(11)
H43	0.5906	0.8001	1 1238	0.080
C44	0.6000	0.8559(2)	1.0777(3)	0.0839(13)
H44	0.6293	0.8674	1 1351	0 101
C45	0.6082(1)	0.8795(1)	1.0018(4)	0.0805(12)
H45	0.6238	0.9071	1.0072	0.097
C46	0.5822(1)	0.8628(1)	0.9174(3)	0.0583(10)
H46	0.5800	0.8791	0.8653	0.070
C50	0.5866(1)	0.7780(1)	0 4035(2)	0.0398(8)
050	0.6139(1)	0.8072(1)	0.3529(2)	0.0547(6)
C51	0.5554(1)	0.7475(1)	0.3329(2)	0.0441(8)
C52	0.5484(1)	0.7097(1)	0.3253(2)	0.0501(9)
H52	0.5634	0 7017	0.3664	0.060
C53	0.5191(1)	0.6830(1)	0 2570(3)	0.0653(11)
H53	0.5145	0.6570	0.2517	0.078
C54	0.4969(1)	0.6940(1)	0 1976(3)	0.0726(12)
H54	0 4768	0.6756	0 1521	0.087
C55	0.5039(1)	0.7318(1)	0.2045(3)	0.0740(11)
H55	0.4887	0 7397	0 1634	0.089
C56	0.5331(1)	0.7584(1)	0.2716(3)	0.0568(9)
H56	0.5380	0 7845	0 2756	0.068
C61	0.5453(1)	0.7029(1)	0.7384(2)	0.0333(7)
C62	0.5557(1)	0.6750(1)	0.7078(2)	0.0365(7)
C63	0.5396(1)	0.6396(1)	0.7634(3)	0.0476(8)
H63	0.5458	0.6203	0 7417	0.057
C64	0.5148(1)	0.6320(1)	0.8489(3)	0.0518(9)
H64	0.5042	0.6078	0.8861	0.062
C65	0.5056(1)	0.6600(1)	0.8798(2)	0.0484(8)
H65	0.4891	0.6552	0.9397	0.058
C66	0.5203(1)	0.6949(1)	0.8245(2)	0.0392(7)
H66	0.5132	0.7136	0.8459	0.047

C67	0.5842(1)	0.6839(1)	0.6259(3)	0.0431(8)
C68	0.6083(1)	0.6914(1)	0.5583(3)	0.0479(8)
C71	0.6374(1)	0.7009(1)	0.4769(3)	0.0513(9)
C72	0.6496(1)	0.6747(1)	0.4503(3)	0.0841(13)
H72	0.6383	0.6498	0.4843	0.101
C73	0.6787(2)	0.6847(2)	0.3736(4)	0.1064(17)
H73	0.6876	0.6670	0.3572	0.128
C74	0.6943(1)	0.7196(2)	0.3219(4)	0.0918(14)
H74	0.7139	0.7261	0.2691	0.110
C75	0.6820(1)	0.7454(1)	0.3459(3)	0.0697(11)
H74 C75	0.7139	0.7261	0.2691	0.110
H75	0.6932	0.7699	0.3103	0.084
C76	0.6532(1)	0.7359(1)	0.4223(3)	0.0583(10)
H76	0.6441	0.7537	0.4372	0.070

Table S3: Hydrogen coordinates and isotropic displacement parameters (\mathring{A}^2) for 3e.

Atom	х	у	z	U _{eq}
H11	0.5766	0.7717	0.8189	0.040
H14	0.4780(8)	0.7868(8)	0.706(2)	0.044
H16	0.4157	0.7761	0.6260	0.062
H17	0.3688	0.7491	0.4930	0.080
H18	0.3734	0.7100	0.3602	0.081
H19	0.4250	0.6976	0.3600	0.063
H21	0.4876	0.7073	0.4480	0.042
H23	0.5465	0.7158	0.5360	0.040
H26	0.6425(8)	0.8369(8)	0.464(2)	0.046
H28	0.7014	0.9031	0.4611	0.056
H29	0.7458	0.9573	0.5586	0.065
H30	0.7408	0.9587	0.7437	0.060
H31	0.6916	0.9059	0.8335	0.051
H33	0.6316	0.8381	0.8269	0.044
H42	0.5474	0.7716	0.9815	0.058
H43	0.5906	0.8001	1.1238	0.080
H44	0.6293	0.8674	1.1351	0.101
H45	0.6238	0.9071	1.0072	0.097
H46	0.5800	0.8791	0.8653	0.070
H52	0.5634	0.7017	0.3664	0.060
H53	0.5145	0.6570	0.2517	0.078
H54	0.4768	0.6756	0.1521	0.087
H55	0.4887	0.7397	0.1634	0.089
H56	0.5380	0.7845	0.2756	0.068
H63	0.5458	0.6203	0.7417	0.057
H64	0.5042	0.6078	0.8861	0.062
H65	0.4891	0.6552	0.9397	0.058
H66	0.5132	0.7136	0.8459	0.047
H72	0.6383	0.6498	0.4843	0.101
H73	0.6876	0.6670	0.3572	0.128
H74	0.7139	0.7261	0.2691	0.110
H75	0.6932	0.7699	0.3103	0.084
H76	0.6441	0.7537	0.4372	0.070

Table S4: Anisotropic displacement parameters (Å²) for 3e. The anisotropic displacement factor exponent takes the form: -2 pi² (h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
N1	0.0347(14)	0.0294(14)	0.0350(14)	-0.0001(11)	0.0003(11)	0.0176(12)
C11	0.0374(18)	0.0325(18)	0.0328(16)	-0.0021(13)	-0.0025(13)	0.0198(15)
C12	0.0335(18)	0.0318(17)	0.0375(17)	0.0009(13)	0.0030(14)	0.0190(15)
C13	0.0297(17)	0.0286(17)	0.0420(18)	0.0056(13)	0.0031(14)	0.0149(15)
N14	0.0332(15)	0.0341(15)	0.0448(16)	-0.0044(12)	-0.0034(12)	0.0188(13)
C15	0.0295(18)	0.0299(18)	0.052(2)	0.0021(15)	0.0011(15)	0.0123(15)
C16	0.036(2)	0.050(2)	0.073(2)	-0.0114(18)	-0.0094(17)	0.0240(18)
C17	0.046(2)	0.066(3)	0.097(3)	-0.022(2)	-0.020(2)	0.035(2)
C18	0.046(2)	0.074(3)	0.084(3)	-0.021(2)	-0.026(2)	0.032(2)
C19	0.039(2)	0.050(2)	0.063(2)	-0.0113(17)	-0.0113(17)	0.0183(18)
C20	0.0334(19)	0.0333(18)	0.0473(19)	0.0019(14)	-0.0004(14)	0.0144(15)
C21	0.0346(18)	0.0299(17)	0.0370(17)	0.0012(13)	0.0038(14)	0.0144(15)
C22	0.0302(17)	0.0267(16)	0.0372(17)	0.0025(13)	0.0018(13)	0.0140(14)
C23	0.0323(17)	0.0310(17)	0.0356(16)	-0.0012(13)	-0.0024(13)	0.0155(14)
C24	0.0320(17)	0.0345(18)	0.0327(17)	0.0019(13)	0.0014(13)	0.0182(15)
C25	0.0292(17)	0.0337(18)	0.0392(17)	0.0047(14)	0.0033(14)	0.0191(15)
N26	0.0354(15)	0.0395(16)	0.0358(14)	0.0003(13)	0.0010(13)	0.0158(14)
C27	0.0322(18)	0.0338(19)	0.0463(19)	-0.0018(15)	-0.0064(15)	0.0174(16)
C28	0.039(2)	0.042(2)	0.049(2)	0.0048(16)	0.0020(16)	0.0132(17)
C29	0.038(2)	0.041(2)	0.069(3)	0.0047(18)	-0.0036(18)	0.0092(17)
C30	0.041(2)	0.039(2)	0.062(2)	-0.0010(17)	-0.0123(17)	0.0145(18)
C31	0.0374(19)	0.041(2)	0.0486(19)	0.0000(16)	-0.0085(15)	0.0193(17)
C32	0.0299(18)	0.0338(18)	0.0471(19)	0.0016(15)	-0.0054(14)	0.0164(16)
C33	0.0384(19)	0.0410(19)	0.0369(17)	-0.0004(15)	-0.0035(14)	0.0251(17)
C34	0.0306(17)	0.0313(17)	0.0410(17)	-0.0003(14)	-0.0020(14)	0.0204(15)
C40	0.0368(19)	0.0399(19)	0.0429(18)	0.0000(15)	-0.0007(14)	0.0214(16)
040	0.0540(15)	0.0640(16)	0.0605(15)	-0.0172(12)	-0.0116(11)	0.0435(13)
C41	0.0406(19)	0.043(2)	0.0405(16)	-0.0053(15)	-0.0001(14)	0.0260(17)
C42	0.030(2)	0.034(2)	0.043(2)	0.0002(17)	0.0029(17)	0.0347(19)
C43	0.000(3)	0.093(3)	0.040(2)	-0.004(2)	-0.000(2)	0.000(3)
C45	0.000(3)	0.033(+)	0.070(3)	-0.030(3)	-0.030(2)	0.000(0)
C46	0.073(3)	0.000(3) 0.048(2)	0.000(0)	-0.001(2)	-0.0111(19)	0.023(2)
C50	0.0778(19)	0.0348(19)	0.000(2)	0.0000(10) 0.0027(15)	0.0114(15)	0.000(2)
050	0.0544(15)	0.0499(14)	0.0429(13)	0.0021(10) 0.0035(11)	0.0042(11)	0.0133(12)
C51	0.042(2)	0.048(2)	0.0354(18)	0.0015(15)	0.0045(15)	0.0168(17)
C52	0.053(2)	0.044(2)	0.046(2)	-0.0044(16)	0.0029(16)	0.0182(18)
C53	0.068(3)	0.054(2)	0.052(2)	-0.0066(19)	0.009(2)	0.015(2)
C54	0.063(3)	0.074(3)	0.053(2)	-0.005(2)	-0.009(2)	0.014(2)
C55	0.068(3)	0.083(3)	0.055(2)	0.005(2)	-0.009(2)	0.026(2)
C56	0.056(2)	0.059(2)	0.045(2)	0.0047(17)	-0.0030(18)	0.021(2)
C61	0.0279(17)	0.0281(17)	0.0405(17)	-0.0006(14)	-0.0057(13)	0.0113(14)
C62	0.0403(19)	0.0334(18)	0.0373(17)	-0.0049(14)	-0.0077(14)	0.0196(16)
C63	0.058(2)	0.0307(19)	0.052(2)	-0.0021(16)	-0.0086(17)	0.0202(17)
C64	0.052(2)	0.036(2)	0.053(2)	0.0073(16)	-0.0092(18)	0.0118(18)
C65	0.043(2)	0.042(2)	0.048(2)	0.0074(16)	0.0026(15)	0.0122(18)
C66	0.0347(18)	0.0346(19)	0.0451(19)	0.0011(15)	0.0009(15)	0.0151(15)
C67	0.051(2)	0.039(2)	0.048(2)	-0.0057(15)	-0.0045(17)	0.0292(18)
C68	0.048(2)	0.047(2)	0.053(2)	-0.0089(17)	-0.0051(18)	0.0271(18)
C71	0.055(2)	0.063(2)	0.048(2)	-0.0062(18)	-0.0044(17)	0.038(2)
C/2	0.114(4)	0.096(3)	0.078(3)	0.013(2)	0.027(3)	0.080(3)
073	0.144(5)	0.153(5)	0.087(3)	0.019(3)	0.040(3)	0.124(4)
C75	0.092(3)	0.138(4)	0.070(3)	0.018(3)	0.020(3)	0.081(4)
C76	0.003(2)	0.090(3)	0.072(3)	0.007(2)	0.003(2)	0.040(2)
0/0	0.042(2)	0.009(3)	0.070(2)	-0.004(2)	-0.0010(18)	0.055(2)

Table S5: Bond lengths (Å) and angles (deg) for 3e.

N1-C61	1.419(3)	C51-C56	1.387(4)
N1-C11	1.465(3)	C52-C53	1.398(4)
N1-C23	1.478(3)	C52-H52	0.9500
C11-C34	1.508(4)	C53-C54	1.372(5)
C11-C12	1.531(4)	C53-H53	0.9500
C11-H11	1.0000	C54-C55	1.378(5)
C12-C13	1.400(4)	C54-H54	0.9500
C12-C40	1.402(4)	C55-C56	1.388(5)
C13-N14	1.362(3)	C55-H55	0.9500
C13-C22	1.444(4)	C56-H56	0.9500
N14-C15	1.373(4)	C61-C66	1.386(4)
N14-H14	0.97(3)	C61-C62	1.406(4)
C15-C20	1.396(4)	C62-C63	1.397(4)
C15-C16	1.398(4)	C62-C67	1.430(4)
C16-C17	1.367(4)	C63-C64	1.377(4)
C16-H16	0.9500	C63-H63	0.9500
C17-C18	1.390(5)	C64-C65	1.377(4)
C17-H17	0.9500	C64-H64	0.9500
C18-C19	1.373(4)	C65-C66	1.383(4)
C18-H18	0.9500	C65-H65	0.9500
C19-C20	1.408(4)	C66-H66	0.9500
C19-H19	0.9500	C67-C68	1.192(4)
C20-C21	1.432(4)	C68-C71	1.439(5)
C21-C22	1.350(4)	C71-C76	1.377(4)
C21-H21	0.9500	C71-C72	1.384(5)
C22-C23	1.520(4)	C72-C73	1.390(5)
C23-C24	1.530(4)	C72-H72	0.9500
C23-H23	1.0000	C73-C74	1.358(6)
024-050	1.403(4)	C73-H73	0.9500
C24-C25	1.418(4)	074-075	1.361(5)
C25-N26	1.360(3)	C74-H74	0.9500
C25-C34	1.432(4)		1.386(5)
	1.360(4)		0.9500
	0.00(3)		0.9500
C_{27} C_{28}	1.395(4)	C61 N1 C22	110.0(2)
C_{27} C_{20}	1.400(4)	C01-IN1-C23	117.7(2)
C28-H28	0.9500	N1-C11-C34	10.0(2)
C_{20}	1 386(4)	N1-C11-C12	113.8(2)
C29-U30	0.9500	$C_{3/1}$ C_{11} C_{12}	113.0(2)
C30-C31	1 362(4)	N1-C11-H11	108 5
C30-H30	0.9500	C34-C11-H11	108.5
C31-C32	1 407(4)	C12-C11-H11	108.5
C31-H31	0.9500	C13-C12-C40	120.9(3)
C32-C33	1.427(4)	C13-C12-C11	117.2(2)
C33-C34	1.357(4)	C40-C12-C11	121.9(3)
C33-H33	0.9500	N14-C13-C12	120.3(3)
C40-O40	1.274(3)	N14-C13-C22	116.9(3)
C40-C41	1.499(4)	C12-C13-C22	122.8(3)
C41-C42	1.383(4)	C13-N14-C15	124.3(3)
C41-C46	1.386(4)	C13-N14-H14	111.0(16)
C42-C43	1.384(4)	C15-N14-H14	124.8(16)
C42-H42	0.9500	N14-C15-C20	119.3(3)
C43-C44	1.365(5)	N14-C15-C16	120.0(3)
C43-H43	0.9500	C20-C15-C16	120.7(3)
C44-C45	1.375(5)	C17-C16-C15	119.5(3)
C44-H44	0.950Ò	C17-C16-H16	120.2 ໌
C45-C46	1.387(5)	C15-C16-H16	120.2
C45-H45	0.9500	C16-C17-C18	120.7(3)
C46-H46	0.9500	C16-C17-H17	119.7 ົ
C50-O50	1.283(3)	C18-C17-H17	119.7
C50-C51	1.504(4)	C19-C18-C17	120.3(3)
C51-C52	1.377(4)	C19-C18-H18	119.8 ໌

C17-C18-H18	119.8	C42-C43-H43	119.9
C18-C19-C20	120.3(3)	C43-C44-C45	120.2(4)
C18-C19-H19	119.9	C43-C44-H44	119.9
C20-C19-H19	119.9	C45-C44-H44	119.9
C15-C20-C19	118.5(3)	C44-C45-C46	119.9(4)
C15-C20-C21	117.8(3)	C44-C45-H45	120.1
C19-C20-C21	123 7(3)	C46-C45-H45	120.1
$C_{22}C_{21}C_{20}$	121 6(3)	C_{41} - C_{46} - C_{45}	120.1
C22-C21-H21	110.2		110.4(0)
	110.2		119.0
	119.2		119.0
021-022-013	120.1(3)	050-050-024	123.4(3)
021-022-023	123.1(3)	050-050-051	114.4(3)
013-022-023	116.8(2)	024-050-051	122.1(3)
N1-C23-C22	110.2(2)	052-051-056	118.9(3)
N1-C23-C24	108.9(2)	C52-C51-C50	123.3(3)
C22-C23-C24	111.4(2)	C56-C51-C50	117.8(3)
N1-C23-H23	108.8	C51-C52-C53	120.0(3)
C22-C23-H23	108.8	C51-C52-H52	120.0
C24-C23-H23	108.8	C53-C52-H52	120.0
C50-C24-C25	120.7(3)	C54-C53-C52	120.8(4)
C50-C24-C23	122.1(3)	C54-C53-H53	119.6
C25-C24-C23	117.0(2)	C52-C53-H53	119.6
N26-C25-C24	120.2(2)	C53-C54-C55	119.5(4)
N26-C25-C34	117 3(3)	C53-C54-H54	120.2
C24-C25-C34	122 5(3)	C55-C54-H54	120.2
C25-N26-C27	124.0(3)	C54-C55-C56	110.2
C25-N26-H26	112 6(10)	C54-C55-H55	120.1
	122.0(19)		120.1
	123.4(19)		120.1
N20-027-032	119.0(3)	051-050-055	121.0(4)
N26-C27-C28	120.4(3)	C51-C56-H56	119.5
032-027-028	120.5(3)	C55-C56-H56	119.5
C29-C28-C27	119.1(3)	C66-C61-C62	119.0(3)
C29-C28-H28	120.5	C66-C61-N1	123.2(3)
C27-C28-H28	120.5	C62-C61-N1	117.6(2)
C28-C29-C30	121.0(3)	C63-C62-C61	118.9(3)
C28-C29-H29	119.5	C63-C62-C67	120.7(3)
C30-C29-H29	119.5	C61-C62-C67	120.3(3)
C31-C30-C29	120.3(3)	C64-C63-C62	121.5(3)
C31-C30-H30	119.8	C64-C63-H63	119.3
C29-C30-H30	119.8	C62-C63-H63	119.3
C30-C31-C32	120.4(3)	C63-C64-C65	119.1(3)
C30-C31-H31	119.8	C63-C64-H64	120.5
C32-C31-H31	119.8	C65-C64-H64	120.5
C27-C32-C31	118.6(3)	C64-C65-C66	120.8(3)
C27-C32-C33	118.0(3)	C64-C65-H65	119.6
C31-C32-C33	123 3(3)	C66-C65-H65	119.6
C34-C33-C32	121 5(3)	C65-C66-C61	120 7(3)
C34-C33-H33	119.2	C65-C66-H66	119.6
C32-C33-H33	110.2	C61-C66-H66	110.6
C32 C34 C25	120.0(2)		170.2(2)
C_{22} C_{24} C_{14}	120.0(3)	C00-C07-C02	179.3(3)
005 004 011	122.7(3)		179.4(3)
025-034-011	117.3(2)	070-071-072	118.6(3)
040-040-012	123.6(3)		120.9(3)
	115.3(3)		120.5(3)
C12-C40-C41	121.1(3)	0/1-0/2-0/3	119.9(4)
C42-C41-C46	118.9(3)	C/1-C72-H72	120.1
C42-C41-C40	121.7(3)	C73-C72-H72	120.1
C46-C41-C40	119.4(3)	C74-C73-C72	120.7(4)
C41-C42-C43	120.4(3)	C74-C73-H73	119.7
C41-C42-H42	119.8	C72-C73-H73	119.7
C43-C42-H42	119.8	C73-C74-C75	120.0(4)
C44-C43-C42	120.3(4)	C73-C74-H74	120.0
C44-C43-H43	119.9	C75-C74-H74	120.0

074-075-076	120 1(4)
	110.0
074-075-1175	119.9
C/6-C/5-H/5	119.9
C71-C76-C75	120.7(3)
C71-C76-H76	119.7
C75-C76-H76	119.7

Suggestion for a short experimental part:

3e: yellow crystal (hexagonal), dimensions 0.157 x 0.082 x 0.066 mm³, crystal system trigonal, space group R $\overline{3}$, Z=18, a=39.4459(15) Å, b=39.4459(15) Å, c=12.5093(8) Å, alpha=90 deg, beta=90 deg, gamma=120 deg, V=16856.5(17) Å³, rho=1.255 g/cm³, T=200(2) K, Theta_{max}= 24.108 deg, radiation MoK α , lambda=0.71073 Å, 0.5 deg omega-scans with CCD area detector, covering the asymmetric unit in reciprocal space with a mean redundancy of 5.7 and a completeness of 99.9% to a resolution of 0.89 Å, 34031 reflections measured, 5968 unique (R(int)=0.0717), 3507 observed (I > 2 σ (I)), intensities were corrected for Lorentz and polarization effects, an empirical scaling and absorption correction was applied using SADABS^[1] based on the Laue symmetry of the reciprocal space, mu=0.08mm⁻¹, T_{min}=0.93, T_{max}=0.96, structure solved with SHELXT-2018/2 (Sheldrick 2015)^[2] and refined against F² with a Full-matrix least-squares algorithm using the SHELXL-2018/3 (Sheldrick, 2018) software^[3], 502 parameters refined, hydrogen atoms were treated using appropriate riding models, goodness of fit 1.04 for observed reflections, final residual values R1(F)=0.053, wR(F²)=0.113 for observed reflections, residual electron density -0.20 to 0.22 eÅ⁻³. CCDC 2249320 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

Lit. 1: (SADABS-2016/2 - Bruker AXS area detector scaling and absorption correction) Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10.

Lit. 2: (SHELXT - Integrated space-group and crystal structure determination) Sheldrick G. M., Acta Cryst. A71 (2015) 3-8.

Lit. 3: (program SHELXL-2018/3 (Sheldrick, 2018) for structure refinement) Sheldrick G. M., Acta Cryst. (2015). C71, 3-8

Lit. APEX, APEX2, SMART, SAINT, SAINT-Plus: Bruker (2007). "Program name(s)". Bruker AXS Inc., Madison, Wisconsin, USA.

Computational details

Gaussian 16¹ was used to fully optimize all the structures reported in this paper at the M06-2X hybrid functional of Truhlar and Zhao² level of theory. For all of the calculations, solvent effects were considered using the SMD solvation model of Truhlar and workers³ with ethanol as the solvent. For geometry optimizations, the 6-31G(d) basis set was employed for all atoms. This basis set combination will be referred to as BS1. Frequency calculations were carried out at the same level of theory as those for structural optimization. Transition structures were located using the Berny algorithm. Intrinsic reaction coordinate (IRC) calculations were used to confirm the connectivity between transition structures and minima.⁴ To further refine the energies obtained from the SMD/M06-2X/6-31G(d) calculations, we carried out single-point energy calculations using the M06-2X functional method for all of the structures with a larger basis set def2-TZVP (BS2). ⁵ Grimme empirical dispersion was added with the GD3 term on all the single-point energy calculations.⁶ A tight convergence criterion and ultrafine integral grid were also employed to increase the accuracy of the calculations. The free energy for each species in the solution was calculated using the equation,

 $G=E(BS2) + G(BS1) - E(BS1) + \Delta G^{1atm \rightarrow 1M}$ (1)

where $\Delta G^{1atm \rightarrow 1M} = 1.89$ kcal/mol is the free-energy change for compression of 1 mol of an ideal gas from 1 atm to the 1 M solution phase standard state.⁷

Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
 Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.
 V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F.
 Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A.
 Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M.
 Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.
 Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J.
 Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K.
 Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene,
 C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and
 D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

(2) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two

new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. **2008**, 120 (1), 215-241.

(3) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. The Journal of Physical Chemistry B 2009, 113 (18), 6378-6396.
(4) Fukui, K. The path of chemical reactions-the IRC approach. Acc. Chem. Res. 1981, 14 (12), 363-368.

(5) Weigend, F.; Furche, F.; Ahlrichs, R. Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr. The Journal of chemical physics **2003**, 119 (24), 12753-12762.

(6) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics **2010**, 132 (15), 154104.

(7) Cramer, C. J. Essentials of computational chemistry: theories and models; John Wiley & Sons, 2013.

Total potential (E), enthalpy (H) and Gibbs free energies (G) of all structures optimized at the SMD/M06/BS1 level of theory along with the total potential energies calculated by SMD/M06-2X/BS2//SMD/M06-2X/BS1 in dichloromethane.

BS1 = 6-31G(d)BS2 = def2-TZVP

1

E (M062x-SMD/BS1) = -898.588794 au H(M062x-SMD/BS1) = -898.304186 auG (M06-SMD/6-31G(d)) = -898.366816 au E (M062x-SMD/BS2//M062x-SMD/BS1) = -898.941994 au C -4.33386200 -2.42999400 -0.09703000 C -2.97526300 -2.22523100 -0.09340600 C -2.45978300 -0.90644300 -0.03611300 C -3.36499800 0.18677300 0.01671300 C -4.76212000 -0.05396000 0.01129700 C -5.23828200 -1.34004700 -0.04439800 H -4.72428600 -3.44224300 -0.14077500 H -2.27611800 -3.05499900 -0.13329500 C -2.80537500 1.48168600 0.07010200 H -5.43861900 0.79537600 0.05155600 H -6.30669500 -1.52968700 -0.04860100 C -1.44302500 1.66019200 0.07077800 C -0.58642200 0.50176800 0.02140300 H -3.45621600 2.35201300 0.10627600 N -1.11274000 -0.72049700 -0.03087100 C 0.85990900 0.60559300 0.03145300 H 1.31732400 1.57849500 0.12945700 C 1.68806700 -0.47616300 -0.04371500 O 1.24415000 -1.73422600 -0.10967700 H 0.23618800 -1.68095200 -0.08083400 C 3.16466600 -0.36667600 -0.03438100 C 3.81724900 0.81166600 -0.41988800

C 3.92931000 -1.47050700 0.36349000 C 5.20539100 0.88759100 -0.38901100 H 3.24419300 1.66505500 -0.76883100 C 5.31816000 -1.39010200 0.39491200 H 3.43019200 -2.38784000 0.65704700 C 5.96019700 -0.21109200 0.02116400 H 5.69965200 1.80426100 -0.69588300 H 5.89938000 -2.25048900 0.71236900 H 7.04404400 -0.14962400 0.04262600 C -0.92785300 3.04779700 0.11118100 H 0.16183400 3.19220200 0.06781400 O -1.65883700 4.01857500 0.18341100

HCOOH

E (M062x-SMD/BS1) = -189.68377 au H (M062x-SMD/BS1) = -189.64528 au G (M06-SMD/6-31G(d)) = -189.67344 au E (M062x-SMD/BS2//M062x-SMD/BS1) = -189.77829 au C 0.00000000 0.42083400 0.00000000 H -0.35251200 1.45925400 0.00000000 O 1.16106400 0.09001500 0.00000000 O -1.03089900 -0.42081700 0.00000000 H -0.68881400 -1.33783600 0.00000000

E (M062x-SMD/BS1) = -1088.28556 au H (M062x-SMD/BS1) = -1087.96044 au G (M06-SMD/6-31G(d)) = -1088.03632 au E (M062x-SMD/BS2//M062x-SMD/BS1) = -1088.72950 au C -4.82808600 -2.66442500 -0.09534300 C -3.45430600 -2.63868600 -0.09644000 C -2.77083000 -1.39911000 -0.03521800 C -3.52681200 -0.19700300 0.02491200 C -4.94369900 -0.25381300 0.02412000 C -5.58324400 -1.46650100 -0.03432300 H -5.34716000 -3.61697100 -0.14184200 H -2.86937900 -3.55217800 -0.14205000 C -2.80532300 1.01431600 0.07541500 H -5.50343100 0.67627900 0.07019000 H -6.66719300 -1.51567100 -0.03480400 C -1.42994800 1.01054600 0.06984900 C -0.73002900 -0.24997900 0.02311200 H -3.33799600 1.96163500 0.11024900 N -1.41081200 -1.39262000 -0.03178900 C 0.71648500 -0.32904700 0.04115100 H 1.29083800 0.57751500 0.15673600 C 1.40348200 -1.50489600 -0.04327800 O 0.80436200 -2.69519000 -0.12942400 H -0.18801700 -2.51720500 -0.09926900 C 2.88194100 -1.58086400 -0.02562500 C 3.67978200 -0.47285900 -0.34152900 C 3.49987700 -2.79182200 0.31091200 C 5.06599800 -0.57309700 -0.30440500 H 3.22270600 0.46607000 -0.63809200 C 4.88765300 -2.88763700 0.34805200 H 2.88817000 - 3.65461900 0.55182600 C 5.67469000 -1.77910200 0.04263900 H 5.67273700 0.29122900 -0.55633500 H 5.35458300 -3.83028000 0.61693400 H 6.75752400 -1.85483300 0.06890900 C -0.72328700 2.29911800 0.08594100 H 0.37058100 2.30256800 0.01569400 O -1.31228300 3.37180200 0.16178500 C 1.60377800 5.12296200 -0.04237500 H 2.29521400 5.97457800 -0.07112700 O 1.96244200 3.96813700 -0.13915200 O 0.35583100 5.52475600 0.10920900 H -0.25503000 4.73557600 0.13075600

1-N
E (M062x-SMD/BS1) = -1088.28296 au
H (M062x-SMD/BS1) = -1087.95713 au
G (M06-SMD/6-31G(d)) = -1088.03177 au
E (M062x-SMD/BS2//M062x-SMD/BS1) = -
1088.72673 au
C -4.42404700 -1.78765700 -0.54675200
C -3.05874900 -1.65091300 -0.46352200
C -2.49422500 -0.37112000 -0.24523000
C -3.35036900 0.75311500 -0.11155600
C -4.75445300 0.58203300 -0.20266200
C -5.28154100 -0.66736200 -0.41657800

H -4.85579400 -2.76964200 -0.71509100 H -2.39096300 -2.50172800 -0.56280700 C -2.73707700 2.00623500 0.10560900 H -5.39486600 1.45364300 -0.10022400 H -6.35569200 -0.80418100 -0.48680200 C -1.36909000 2.11546400 0.17620600 C -0.56471100 0.92912800 0.04935800 H -3.34869000 2.90042600 0.19985200 N -1.13664700 -0.25682300 -0.15044100 C 0.88442000 0.97676900 0.13897300 H 1.34462500 1.84144800 0.59532500 C 1.71562700 0.00363300 -0.32311100 O 1.30385600 -1.14135500 -0.88731500 H 0.31797400 -1.17380600 -0.85438200 C 3.19019200 0.10747400 -0.25352700 C 3.83520000 1.34966400 -0.19596500 C 3.95921800 -1.06313500 -0.25025600 C 5.22185700 1.41641600 -0.11636000 H 3.25652300 2.26727600 -0.23926300 C 5.34646600 -0.99177100 -0.16896000 H 3.46547000 -2.02793300 -0.29985600 C 5.98132600 0.24685400 -0.09981700 H 5.71123800 2.38472600 -0.07864200 H 5.93217300 -1.90585300 -0.15896900 H 7.06405600 0.30189000 -0.03997200 C -0.78506000 3.46818100 0.32992500 H 0.30492200 3.56795300 0.21254100 O -1.46283600 4.45394600 0.55123600 C -0.01229300 -3.39606600 1.06162500 H 0.36649300 -4.17069100 1.74034000 O -0.21015700 -3.57390500 -0.12070000 O -0.22171600 -2.25741800 1.70394000 H -0.55024800 -1.57755900 1.05935900

H_2O

E (M062x-SMD/BS1) = -76.38523 au H (M062x-SMD/BS1) = -76.36021 au G (M06-SMD/6-31G(d)) = -76.38166 au E (M062x-SMD/BS2//M062x-SMD/BS1) = -76.43881 au O 0.00000000 0.00000000 0.12019800 H 0.00000000 0.75987200 -0.48079100 H 0.00000000 -0.75987200 -0.48079100

A

E (M062x-SMD/BS1) = -1109.67773 auH (M062x-SMD/BS1) = -1109.29416 auG (M06-SMD/6-31G(d)) = -1109.36816 auE (M062x-SMD/BS2//M062x-SMD/BS1) = -1110.10443 au C 5.93613900 -0.24485700 -0.07955000 C 4.78916900 0.51209200 -0.05909000 C 3.52334400 -0.12427400 -0.04420300 C 3.46081700 -1.54035500 -0.05143000 C 4.65818300 -2.29714400 -0.07282300

C 5.87505600 -1.66012400 -0.08645300 H 6.90469300 0.24576800 -0.09044600 H 4.82506700 1.59739200 -0.05320500 C 2.17311400 -2.12469200 -0.03768300 H 4.59208200 -3.38177900 -0.07814800 H 6.79441300 -2.23646700 -0.10252300 C 1.03181300 -1.35653400 -0.01764500 C 1.18269600 0.08499700 -0.00573700 H 2.08988300 - 3.20979600 - 0.04685400 N 2.39571600 0.63499200 -0.02047300 C 0.04883900 0.98421800 0.02570300 H -0.93476200 0.54812700 0.08350100 C 0.17078700 2.34325300 -0.00015400 O 1.34818600 2.97505900 -0.02907300 H 2.05163400 2.24893100 -0.01687600 C -0.99647500 3.25357300 0.02110000 C -2.27280400 2.81649300 -0.35844900 C -0.82378600 4.58362100 0.42406800 C -3.35423400 3.68940200 -0.31874300 H -2.42000700 1.79861000 -0.70694900 C -1.90914800 5.45395900 0.46431100 H 0.16256100 4.92937600 0.71466000 C -3.17714400 5.00980500 0.09494200 H -4.33690800 3.34039300 -0.62092000 H -1.76335600 6.48085600 0.78555600 H -4.02328100 5.68975900 0.12298700 C -0.23601300 -2.10164700 -0.01317000 H -0.09686400 -3.19058800 0.00761100 N -1.40657100 -1.59336500 -0.05199800 C -2.51701900 -2.46330500 0.00091200 C -3.63096300 -2.14619100 -0.78545100 C -2.56170600 -3.58603600 0.83737800 C -4.75465400 -2.96518600 -0.77000300 H -3.59345800 -1.26046200 -1.41320300 C -3.69619100 -4.39332400 0.85884600 H -1.72096000 -3.80595500 1.48923100 C -4.79186800 -4.09228200 0.05181200 H -5.60796400 -2.71810700 -1.39456500 H -3.72532300 -5.25690100 1.51678600 H -5.67466600 -4.72379400 0.07230300

AB

E (M062x-SMD/BS1) = -2197.99629 auH (M062x-SMD/BS1) = -2197.28652 auG (M06-SMD/6-31G(d)) = -2197.40917 auE (M062x-SMD/BS2//M062x-SMD/BS1) = -2198.86332 auC 3.32043000 4.14727600 1.47808600C 2.00716500 3.77287600 1.63073200C 1.65838800 2.39966200 1.61990300C 2.68787300 1.42754600 1.48776600C 4.03442700 1.84289800 1.32719700C 4.34442400 3.17988000 1.31645500H 3.58055000 5.20177300 1.47438200H 1.21631300 4.50819000 1.74396900C 2.30281700 0.07108600 1.55049600

H 4.80441800 1.08393700 1.21564800 H 5.37253300 3.50364000 1.19133800 C 0.97711800 -0.27367300 1.68634200 C -0.01895100 0.76978100 1.70116000 H 3.05788800 -0.71135000 1.49852500 N 0.34842000 2.04912100 1.71191000 C -1.43354500 0.47679700 1.61939400 H -1.75804300 -0.55223400 1.55372000 C -2.38126500 1.44037900 1.43316000 O -2.11177000 2.74738100 1.41858700 H -1.11272500 2.83196400 1.53355200 C -3.79859700 1.11207800 1.16539500 C -4.38812200 -0.04887400 1.68051600 C -4.55920900 1.96978300 0.36017100 C -5.71356400 -0.35156400 1.38577300 H -3.81630200 -0.70580200 2.32934200 C -5.88255000 1.65808500 0.06031000 H -4.10529300 2.87161200 -0.03818500 C -6.46261200 0.49716400 0.57109500 H -6.16295200 -1.25113500 1.79545300 H -6.46203600 2.32386400 -0.57213300 H -7.49665700 0.25834300 0.34097600 C 0.63548900 -1.70088100 1.78108000 H -0.42045100 -1.99676200 1.81574800 O 1.50000200 -2.56874000 1.82895300 C -0.58894100 -5.12792100 1.24382900 H -0.96064500 -6.11316600 0.93441400 O -1.30689300 -4.23394500 1.64001800 O 0.72494300 -5.05117700 1.13088000 H 1.02281400 -4.14564500 1.43122800 C -4.77988600 -2.46697200 -1.46551600 C -4.01324200 -1.32991900 -1.54235900 C -2.60007200 -1.42544400 -1.48200400 C -1.99505600 -2.70172100 -1.33630500 C -2.81209800 -3.85900700 -1.26419200 C -4.17840100 -3.74373900 -1.33002000 H -5.86254700 -2.38917300 -1.50500500 H -4.46298600 -0.34487600 -1.63817700 C -0.58430600 -2.74444200 -1.26615200 H -2.33451500 -4.82964800 -1.15934700 H -4.80531000 -4.62793800 -1.27535200 C 0.16447900 -1.59216600 -1.34633100 C -0.52747100 -0.33240400 -1.48260100 H -0.07753500 -3.70000200 -1.15086000 N -1.85651800 -0.29156300 -1.55361500 C 0.17482800 0.93648300 -1.50208000 H 1.25044800 0.95130100 -1.40239700 C -0.46341000 2.14151400 -1.53177000 O -1.79214900 2.26800600 -1.57677100 H -2.16332200 1.32598200 -1.56690200 C 0.26279300 3.43004700 -1.48033000 C 1.57819800 3.54646100 -1.94873500 C -0.37696600 4.55762200 -0.95014900 C 2.24314600 4.76607400 -1.87753200 H 2.07474500 2.69035300 -2.39566000 C 0.29376100 5.77576700 -0.87722800

H -1.39643700 4.47177100 -0.58774000 C 1.60476300 5.88343600 -1.33869500 H 3.26020700 4.84585900 -2.24945300 H -0.20907900 6.64207500 -0.45785400 H 2.12546900 6.83481200 -1.28455600 C 1.63253500 -1.66106000 -1.24555800 H 2.19419500 -0.72803800 -1.33741000 N 2.22742100 -2.76656000 -1.01366700 C 3.63258400 -2.75961700 -0.88832200 C 4.47264600 -1.96272300 -1.67773100 C 4.19396500 -3.61840200 0.06473000 C 5.85142300 -2.00628600 -1.48857500 H 4.04741200 -1.33437700 -2.45518400 C 5.57106400 -3.64546600 0.25783500 H 3.53308000 -4.24970800 0.65185200 C 6.40502100 -2.83853500 -0.51669700 H 6.49597100 -1.39228300 -2.11071400 H 5.99533700 -4.30489900 1.00905000 H 7.48068200 -2.86889300 -0.37326000 TSAB-B E (M062x-SMD/BS1) = -2197.97512 au H (M062x-SMD/BS1) = -2197.26723 au G (M06-SMD/6-31G(d)) = -2197.38766 au E (M062x-SMD/BS2//M062x-SMD/BS1) = -2198.84863 au C -5.78990200 2.77840400 -2.13934000 C -4.41752800 2.72137500 -2.10020700 C -3.76906700 1.52812500 -1.69402600 C -4.55456200 0.40281400 -1.33226500 C -5.96750300 0.48955300 -1.38178800 C -6.57498500 1.65624000 -1.77795900 H -6.28248200 3.69458700 -2.45091800 H -3.80619500 3.57555700 -2.37586400 C -3.86559600 -0.75839000 -0.90204300 H -6.55390900 -0.38012300 -1.09735700 H -7.65748400 1.72468400 -1.81520900 C -2.49942900 -0.77547900 -0.84217200 C -1.76971200 0.38828300 -1.27171300 H -4.42596900 -1.63794800 -0.59429300 N -2.40875000 1.48745700 -1.66742900 C -0.31869400 0.39939300 -1.32442200 H 0.22732400 -0.48133400 -1.02099400 C 0.41187300 1.44197500 -1.81302300 O -0.13750600 2.59749700 -2.20033700 H -1.13278500 2.49239700 -2.07614900 C 1.88281300 1.39107600 -1.97442100 C 2.56957900 0.17069500 -2.04860300 C 2.60477000 2.58664400 -2.08257600 C 3.94883500 0.15124900 -2.22864800

H 2.02757800 -0.77018300 -1.99700200

C 3.98484400 2.56210900 -2.26371900

H 2.08067100 3.53497400 -2.02074100 C 4.66070900 1.34547600 -2.34079300

H 4.46580600 -0.80187700 -2.29333000 H 4.53204300 3.49671900 -2.34530400

H 5.73636200 1.32723400 -2.48836300 C -1.80984600 -1.97589200 -0.25029500 H -0.75814000 -2.06773200 -0.52832900 O -2.48118600 -3.06850600 -0.16279700 C -0.09543100 -4.71827200 -1.52635000 H 0.46286600 -5.61054800 -1.84786100 O 0.13869000 -3.61289900 -1.98738400 O -0.99835100 -5.00137700 -0.62393000 H -1.62019600 -4.15440700 -0.39475400 C 4.84416500 -4.20871600 -0.08433000 C 4.65110900 -2.88041100 0.21205800 C 3.37132200 -2.42410800 0.61429500 C 2.30295800 -3.35525300 0.70214000 C 2.53304000 -4.72073000 0.40490700 C 3.78155600 -5.13988700 0.01449400 H 5.82589700 -4.55324000 -0.39471100 H 5.46096900 -2.15987200 0.14701300 C 1.03675100 -2.86155400 1.10087100 H 1.70756600 -5.42207000 0.49819800 H 3.96060700 -6.18492500 -0.21648700 C 0.88306600 -1.53078100 1.39515600 C 2.01188500 -0.64182000 1.27615400 H 0.19792900 -3.54935800 1.19592200 N 3.19874800 -1.10459000 0.90094600 C 1.85302200 0.77809600 1.49950500 H 0.86493800 1.15235700 1.72954400 C 2.86235300 1.67978500 1.32068300 O 4.09240200 1.31871000 0.95178600 H 4.07962000 0.31993500 0.82464800 C 2.69119800 3.14091000 1.48381800 C 1.57177200 3.68713000 2.12608000 C 3.67118500 4.00363600 0.97505300 C 1.42971500 5.06538200 2.23998000 H 0.81464400 3.04018700 2.55751400 C 3.52470100 5.38273100 1.08971100 H 4.54372800 3.58861100 0.48259200 C 2.40285800 5.91809700 1.71920900 H 0.55914600 5.47486200 2.74297500 H 4.28899400 6.03961600 0.68570200 H 2.28872700 6.99408000 1.80963200 C -0.39391800 -1.02836700 1.91628400 H -0.36931200 -0.42851700 2.83032300 N -1.53449700 -1.29784300 1.40234700 C -2.72895400 -0.83720600 2.03466400 C -2.95151900 0.53122700 2.18641700 C -3.69485800 -1.77394800 2.39762900 C -4.15971900 0.96610200 2.72253300 H -2.19304500 1.23914900 1.86112800 C -4.89922700 -1.32444800 2.93460600 H -3.49894100 -2.83133400 2.25903800 C -5.13420100 0.04020900 3.09415400 H -4.34283500 2.02960500 2.83934400 H -5.65572900 -2.04561300 3.22757700 H -6.07788900 0.38321800 3.50650700

В

E (M062x-SMD/BS1) = -2197.98310 au H (M062x-SMD/BS1) = -2197.27133 au G (M06-SMD/6-31G(d)) = -2197.39155 au E (M062x-SMD/BS2//M062x-SMD/BS1) = -2198.85735 au C 6.28302600 -2.50970500 -2.21830500 C 4.90999500 -2.49885000 -2.26592300 C 4.18801400 -1.43560800 -1.66774800 C 4.90090500 -0.39155600 -1.02270300 C 6.31639400 -0.42758900 -0.98998200 C 6.99574200 -1.46756600 -1.57656600 H 6.83176800 -3.32543400 -2.67918000 H 4.35294900 - 3.29061300 - 2.75787900 C 4.14095400 0.64017600 -0.41391300 H 6.84746200 0.37911500 -0.49195200 H 8.08041500 -1.49579900 -1.55156500 C 2.77661000 0.61395800 -0.46959200 C 2.12612800 -0.45473300 -1.17797700 H 4.64746100 1.44821300 0.10755800 N 2.82834800 -1.43740400 -1.73473700 C 0.68216100 -0.48910900 -1.32106200 H 0.08563700 0.31157700 -0.90876700 C 0.01267200 -1.45930700 -2.00453800 O 0.61243500 -2.52323900 -2.54663100 H 1.59744100 -2.41386900 -2.37114100 C -1.45404500 -1.42630500 -2.18446600 C -2.15076000 -0.20993300 -2.21315100 C -2.16009500 -2.62731200 -2.31366600 C -3.53451600 -0.20135000 -2.35039500 H -1.60988700 0.73116200 -2.14584700 C -3.54567000 -2.61357700 -2.44858000 H -1.62158100 -3.56953200 -2.29261500 C -4.23556000 -1.40258000 -2.46570100 H -4.06609100 0.74561800 -2.37299500 H -4.08745700 -3.55089200 -2.53412300 H -5.31669400 -1.39341600 -2.56932600 C 1.95447100 1.65384900 0.25800900 H 1.08494800 1.93877300 -0.33715600 O 2.67303500 2.75677400 0.63574900 C 0.75289900 4.42259000 -1.45713200 H 0.36394500 5.28494900 -2.04023900 O 0.46051300 3.28061100 -1.85136000 O 1.45414600 4.73760000 -0.44517800 H 2.20219600 3.57224300 0.22607900 C -4.36703200 4.85706100 -0.36726200 C -4.40440000 3.51108700 -0.09089600 C -3.22921900 2.84563300 0.33509600 C -2.02690200 3.58937000 0.47062600 C -2.01784600 4.97801500 0.18723600 C -3.16890300 5.60026600 -0.22823700 H -5.26991700 5.36265700 -0.69601300 H -5.31907000 2.93495300 -0.19254500 C -0.87583900 2.89801500 0.91012400 H -1.08781900 5.52781000 0.30403600 H -3.16786000 6.66235300 -0.45000800

C -0.94934900 1.55203300 1.18746100 C -2.20199300 0.85435400 1.00280200 H 0.04615700 3.45362500 1.06637800 N -3.28197800 1.51099600 0.59838700 C -2.28923400 -0.57528500 1.19806000 H -1.37629500 -1.12901800 1.37505300 C -3.45587200 -1.27600400 1.07094600 O -4.61634700 -0.69531400 0.76470600 H -4.42054600 0.27772100 0.59745600 C -3.54549500 -2.74317900 1.23888700 C -2.54376600 -3.47206900 1.89309500 C -4.65582700 -3.42284600 0.72122500 C -2.64286800 -4.85427900 2.00787600 H -1.69375000 -2.96151300 2.33476800 C -4.75101500 -4.80600500 0.83739600 H -5.43671500 -2.86399800 0.21645500 C -3.74392300 -5.52605500 1.47751200 H -1.86187100 -5.40727800 2.52048800 H -5.61289800 -5.32191500 0.42532600 H -3.81893900 -6.60537300 1.56896200 C 0.16219300 0.85411700 1.81631400 H -0.06377500 0.20458500 2.66246300 N 1.41336300 0.95160500 1.50900100 C 2.39033600 0.24848300 2.31386500 C 2.38790200 -1.14338700 2.30306100 C 3.33077100 0.98138500 3.02986200 C 3.35441000 -1.81999200 3.04119700 H 1.64843700 -1.67857100 1.71236700 C 4.29282300 0.28849200 3.76160300 H 3.30550200 2.06482900 3.01107000 C 4.30653500 -1.10519100 3.76669000 H 3.36621900 -2.90508700 3.04122800 H 5.03145400 0.84355600 4.33082500 H 5.06192600 -1.63633000 4.33711600

TS_{B-C}

E (M062x-SMD/BS1) = -2197.96183 au H (M062x-SMD/BS1) = -2197.25220 au G (M06-SMD/6-31G(d)) = -2197.36610 au E (M062x-SMD/BS2//M062x-SMD/BS1) = -2198.83439 au C -5.54193700 -2.45583500 1.92506900 C -4.17155900 -2.51915200 2.01880600 C -3.37732400 -1.47907100 1.47661200 C -4.01458600 -0.38380600 0.83999600 C -5.42754700 -0.34031500 0.76051600 C -6.17887100 -1.35964700 1.29436800 H -6.14707800 -3.25658000 2.33932000 H -3.67368300 -3.35557500 2.50009600 C -3.17996200 0.58300000 0.22981000 H -5.89811700 0.50291400 0.26170500 H -7.26198000 -1.33210100 1.23187400 C -1.81419900 0.47808800 0.30226600 C -1.24090200 -0.63982800 1.01260900 H -3.63259600 1.40216200 -0.32565000

N -2.02096800 -1.56927800 1.55470100 C 0.19409700 -0.83457300 1.08524800 H 0.84706200 -0.07266300 0.68719800 C 0.77575400 -1.97179300 1.56197000 O 0.08029600 -3.01321700 2.02743800 C 2.24180500 -2.17169400 1.57986000 C 3.11773800 -1.08538500 1.70563800 C 2.76565400 -3.46696500 1.49160600 C 4.49273600 -1.29152600 1.73990200 H 2.72003600 -0.08097900 1.81774900 C 4.14304100 -3.66873600 1.51427300 H 2.09086800 -4.31210900 1.40034300 C 5.00899600 -2.58376000 1.64150100 H 5.16157500 -0.44292100 1.84941600 H 4.53991200 -4.67638900 1.43638700 H 6.08302400 -2.74374900 1.66419400 C -1.02406900 1.38933500 -0.55488200 H -1.61729600 1.87288700 -1.32602500 C 5.51699000 -1.81765400 -1.68108000 C 4.15186900 -1.88022400 -1.81174800 C 3.38435500 -0.69262000 -1.72644300 C 4.03006800 0.55141900 -1.49404700 C 5.44098300 0.58094400 -1.35440600 C 6.16823800 -0.57975900 -1.44972000 H 6.10793300 -2.72614400 -1.74737400 H 3.63679200 -2.82043200 -1.98517000 C 3.21403000 1.70238800 -1.34925000 H 5.92834600 1.53465000 -1.17158600 H 7.24826800 -0.55607200 -1.34485100 C 1.85592600 1.61208700 -1.51096400 C 1.30216900 0.33834300 -1.84388600 H 3.67382400 2.65065200 -1.07627600 N 2.03389200 -0.76267100 -1.88255900 C -0.14918400 0.22874500 -2.05815500 H -0.54864400 0.95432500 -2.75535400 C -0.76239900 -1.05227700 -2.07646900 O -0.09123400 -2.12733300 -1.79419200 C -2.19996900 -1.23547700 -2.28547100 C -2.99008500 -0.24002400 -2.88034100 C -2.80435700 -2.40051500 -1.78621700 C -4.36596300 -0.41430900 -2.97459500 H -2.53722500 0.66124800 -3.28284000 C -4.18141200 -2.55959400 -1.87016900 H -2.19286200 -3.15925900 -1.30867800 C -4.96272100 -1.56761900 -2.46427100 H -4.97370800 0.35298800 -3.44311500 H -4.64775500 -3.45134300 -1.46309700 H -6.03964500 -1.69225400 -2.52684600 C 0.90919500 2.73068100 -1.12668300 H 1.45047600 3.54234000 -0.63026000 N 0.00721400 2.14187900 -0.08682900 H -1.78651300 2.70328400 1.77314200 C 0.28377200 2.35112100 1.29231700 C 1.59503600 2.35269000 1.77424200 C 1.83889500 2.61158500 3.12145700 C 0.78421000 2.86085800 3.99533000

C -0.52239300 2.87660600 3.50785100 C -0.77507200 2.63989300 2.16157100 H 2.42434300 2.13836400 1.10855700 H 2.86181600 2.60615800 3.48533600 H 0.97819300 3.05389500 5.04560800 H -1.35120500 3.09739700 4.17337100 C -1.33020000 5.09847800 -0.13739300 O -1.79836500 4.43767700 -1.11453200 O -0.13647600 5.34964900 0.09746000 H -2.09367100 5.49290100 0.57107000 H -0.89018200 -2.75318100 1.97593800 O 0.17515800 3.16809700 -2.21381800 H -0.55430200 3.78093600 -1.85236200 H 0.91292400 -1.86844700 -1.77761400 TS'B-C E (M062x-SMD/BS1) = -2197.94919au H (M062x-SMD/BS1) = -2197.23796 au G (M06-SMD/6-31G(d)) = -2197.34945 au E (M062x-SMD/BS2//M062x-SMD/BS1) = -2198.82009 au C -2.52316800 -4.21680600 3.50575200 C -1.25968900 -3.68063700 3.43487700 C -1.07187400 -2.39174000 2.88344800 C -2.19935200 -1.66432800 2.41808700 C -3.49431100 -2.23561400 2.51447700 C -3.65033900 -3.49088100 3.04552900 H -2.66482200 -5.21016000 3.92041500 H -0.38852400 -4.22422200 3.78663200 C -1.96759200 -0.40638400 1.82492400 H -4.34518000 -1.67061500 2.14351200 H -4.63692100 -3.93814900 3.11028100 C -0.67311000 0.02606600 1.62526300 C 0.37963800 -0.72643900 2.23136500 H -2.81148900 0.20099500 1.51542600 N 0.18590600 -1.86536500 2.83772100 C 1.79720500 -0.19812100 2.24568300 C 2.38533900 -0.31477400 0.81538300 O 2.30990200 -1.65851500 0.42990600 C 3.87068600 0.05029700 0.83742800 C 4.33689900 1.14264400 1.57755000 C 4.78919700 -0.69641900 0.09567200 C 5.68543000 1.49136900 1.55930300 H 3.65262800 1.73320700 2.18049700 C 6.13915300 -0.34768600 0.07781300 H 4.44901200 -1.56271000 -0.46047200 C 6.59268700 0.74854900 0.80617900 H 6.02621700 2.34173900 2.14241000 H 6.83707800 -0.94136500 -0.50528100 H 7.64426800 1.01855200 0.79369700 C -0.42873800 1.30294800 0.96776600 H -1.12318900 2.09851900 1.21469600 C 0.02916900 -3.53882800 -4.85315300 C -0.75994900 -2.66080900 -4.15274200 C -0.16657900 -1.72970600 -3.26015500

C 1.23925400 -1.73525000 -3.08787300 C 2.03529400 -2.63842900 -3.83846000 C 1.43987800 -3.52323700 -4.70252600 H -0.42532100 -4.25309900 -5.53314000 H -1.84076300 -2.65300700 -4.25758900 C 1.76915800 -0.85484100 -2.11789400 H 3.11348900 -2.62754200 -3.70164500 H 2.04546300 -4.22247800 -5.27066300 C 0.94604400 -0.05457600 -1.36232000 C -0.44566300 -0.02481400 -1.71664500 H 2.84224600 -0.85392500 -1.94592400 N -0.96109200 -0.83382000 -2.62082300 C -1.38900500 0.98548400 -1.18635800 H -1.11006000 2.02169100 -1.33623200 C -2.71670100 0.72745200 -0.94371200 O -3.24256600 -0.46548500 -0.77512700 C -3.68607100 1.83227000 -0.72129400 C -3.49390100 3.10425700 -1.27907400 C -4.82825700 1.59749700 0.05599700 C -4.40993000 4.12350300 -1.03973600 H -2.64225400 3.29622700 -1.92511400 C -5.74104500 2.62007400 0.29598900 H -4.99531900 0.60990400 0.47389300 C -5.53288100 3.88634800 -0.24747600 H -4.25199200 5.10170500 -1.48348300 H -6.61721000 2.42606900 0.90704800 H -6.24689500 4.68317100 -0.06291800 C 1.62799200 0.67775600 -0.20883100 H 2.41390900 1.27275800 -0.66568600 N 0.73611600 1.67504100 0.45203300 H -1.13564100 3.64580600 0.04043200 C 0.96312600 3.07459800 0.15833100 C 2.27503900 3.55044600 0.08020300 C 2.51467800 4.89531300 -0.18164600 C 1.45726900 5.78116400 -0.36932800 C 0.15208800 5.30756000 -0.28210800 C -0.10172900 3.96476600 -0.01690900 H 3.11949900 2.89087800 0.24318500 H 3.54042600 5.24598600 -0.23201200 H 1.64847100 6.82869600 -0.57799900 H -0.68801500 5.97984800 -0.42510700 C -1.16742100 -3.19757600 -0.55289700 O -2.32304300 -2.77092800 -0.84036600 O -0.22611000 -2.54860600 -0.06535400 H -1.00104600 -4.27590300 -0.76062100 H -2.63536800 -1.32022000 -0.83264200 H 1.78760500 0.84755700 2.56996300 O 2.58872200 -0.92557000 3.14466000 H 2.17101800 -1.80550200 3.22005100 H 1.37945000 -1.93736700 0.26682400

C E (M062x-SMD/BS1) = -2198.00270 au H (M062x-SMD/BS1) = -2197.28878 au

G (M06-SMD/6-31G(d)) = -2197.40442 au E (M062x-SMD/BS2//M062x-SMD/BS1) = -2198.87452 au C 4.99109900 -3.44490900 -2.10945100 C 3.62967600 -3.29769700 -2.22161600 C 2.98484000 -2.19169800 -1.61243000 C 3.76098400 -1.24757100 -0.89495700 C 5.16241900 -1.42460800 -0.79140300 C 5.76720700 -2.50375500 -1.38900200 H 5.48177000 -4.29360000 -2.57630600 H 3.02435000 -4.01332700 -2.77004000 C 3.06490100 -0.19939100 -0.24253500 H 5.74076800 -0.69840400 -0.22603200 H 6.84064600 -2.64295300 -1.30959800 C 1.70245300 -0.09064100 -0.32602800 C 0.99949500 -1.05007000 -1.13891200 H 3.62970000 0.49158800 0.38171600 N 1.63521500 -2.06142500 -1.72464500 C -0.44212200 -0.98578600 -1.28825600 H -0.94341700 -0.08573000 -0.96743000 C -1.19498500 -2.01304000 -1.76781600 O -0.67351200 -3.16738800 -2.19962800 C -2.67291300 -1.96842000 -1.80220700 C -3.36359000 -0.75107000 -1.86679000 C -3.39811100 -3.16550800 -1.75688600 C -4.75437900 -0.73422400 -1.87658100 H -2.81521000 0.18465300 -1.93635000 C -4.78968600 -3.14379400 -1.75637000 H -2.86663500 -4.11050400 -1.71229400 C -5.47135200 -1.92934000 -1.81586500 H -5.27963500 0.21424100 -1.93773900 H -5.34243200 -4.07724800 -1.71002500 H -6.55740200 -1.91276200 -1.81740200 C 0.98961000 0.89577500 0.58920500 H 1.76947300 1.40865200 1.16754900 C -5.78012700 -1.55101200 1.63414700 C -4.41839300 -1.72488200 1.71912000 C -3.58590700 -0.60657000 1.52352600 C -4.11939800 0.66643200 1.22192200 C -5.52638600 0.80722800 1.14554500 C -6.33829000 -0.28073400 1.35460000 H -6.43745600 -2.40176600 1.78214700 H -3.97579900 -2.69281000 1.93449200 C -3.21414800 1.72801500 0.96572500 H -5.94035600 1.78429300 0.91538300 H -7.41639900 -0.17388400 1.29672000 C -1.86157100 1.53169400 1.06247600 C -1.36838100 0.26319400 1.43768500 H -3.60550400 2.70251200 0.68282300 N -2.22107700 -0.73369900 1.62500200 C 0.11134400 0.14586600 1.68857800 H 0.25032500 0.73405300 2.60495700 C 0.64786000 -1.25618700 1.96358800 O -0.01981000 -2.25316100 1.73152400 C 2.03961900 -1.38144400 2.47370200 C 2.69663700 -0.34451400 3.14486700

C 2.71724500 -2.57552500 2.19651100 C 4.02507700 -0.50352000 3.52986700 H 2.18347800 0.58361100 3.37937000 C 4.04829300 -2.72185000 2.56545500 H 2.19899200 -3.36651800 1.66273900 C 4.70327300 -1.68423100 3.23109800 H 4.53164700 0.29797000 4.05783700 H 4.57885400 -3.63861300 2.32779900 H 5.74451900 -1.79678400 3.51779300 C -0.80962400 2.55700400 0.72061800 H -1.24752800 3.35940900 0.11983100 N 0.16075900 1.85474300 -0.13510900 H 2.79040300 2.60736800 -0.32461900 C 0.78991700 2.64338400 -1.14020400 C -0.01268400 3.13607500 -2.17725600 C 0.52809900 3.95405800 -3.16254600 C 1.88706700 4.26787300 -3.14686700 C 2.69403200 3.75773800 -2.13287400 C 2.15271100 2.95487400 -1.13019700 H -1.06754200 2.87352700 -2.19697700 H -0.11178700 4.33546000 -3.95281600 H 2.31298300 4.89859100 -3.92105400 H 3.75340600 3.99608500 -2.10783300 C 0.92753200 5.64090800 0.39222000 O 1.44367300 4.91612300 1.29423500 O -0.25587900 5.64472100 0.01027600 H 1.62924800 6.35652800 -0.09492400 H 0.32410300 -3.05826700 -2.15933800 O -0.26255900 3.04744600 1.90786700 H 0.37175400 3.80578900 1.67804700 H -1.82496500 -1.65918600 1.82019100

D

E (M062x-SMD/BS1) = -2198.00587 au H (M062x-SMD/BS1) = -2197.29209 au G (M06-SMD/6-31G(d)) = -2197.41147 au E (M062x-SMD/BS2//M062x-SMD/BS1) = -2198.87310 au C 4.82914600 -3.56526700 -2.37543100 C 3.48037600 -3.33380600 -2.50281100 C 2.87089300 -2.28081300 -1.77582100 C 3.66794700 -1.47520000 -0.92595200 C 5.05393600 -1.73780900 -0.80791600 C 5.62535200 -2.76433300 -1.52128300 H 5.29279900 -4.37309800 -2.93350400 H 2.85861400 -3.94270300 -3.15251200 C 3.00719600 -0.45345400 -0.19550700 H 5.64972700 -1.11717500 -0.14355200 H 6.68779500 -2.96753500 -1.43214500 C 1.66004800 -0.24685200 -0.31821500 C 0.92844500 -1.09641700 -1.22634800 H 3.58975200 0.15065800 0.49900000 N 1.53283400 -2.06787100 -1.90510200 C -0.50874600 -0.97571400 -1.37273000 H -0.99895000 -0.12937100 -0.92014600 C -1.28692600 -1.92863300 -1.95397000

O -0.79745900 -3.03467900 -2.52796700 C -2.76367400 -1.85761300 -1.93364100 C -3.43072000 -0.62743500 -1.88329800 C -3.50973800 -3.04251100 -1.93152500 C -4.81942900 -0.58585500 -1.81490100 H -2.86383800 0.29914000 -1.91837800 C -4.89793400 -2.99690900 -1.84777700 H -2.99568900 -3.99714700 -1.97661600 C -5.55641000 -1.76948700 -1.78545600 H -5.32727800 0.37336200 -1.78573000 H -5.46675900 -3.92162900 -1.82984900 H -6.64007700 -1.73409300 -1.72095400 C 0.99133600 0.76427600 0.60509900 H 1.80324800 1.23285600 1.17754500 C -5.85760300 -1.33648300 1.82997500 C -4.50226900 -1.54334300 1.92610500 C -3.59625300 -0.49030100 1.64380200 C -4.11108500 0.77020400 1.24005900 C -5.51281800 0.96257500 1.16240900 C -6.36978800 -0.07071200 1.45442600 H -6.54578300 -2.14849100 2.04478400 H -4.09269400 -2.50588100 2.21719700 C -3.17236200 1.77607200 0.89141800 H -5.89160500 1.93479600 0.85756000 H -7.44360100 0.07603700 1.39092100 C -1.83823600 1.50345000 0.99140600 C -1.41874500 0.22115400 1.46368600 H -3.52082100 2.74521300 0.53909000 N -2.25498600 -0.73510400 1.77422700 C 0.07203200 0.08927700 1.70843600 H 0.23814700 0.68777400 2.61050700 C 0.61150300 -1.31264500 1.97267000 O 0.06887000 -2.31127300 1.54208200 C 1.92823400 -1.41965500 2.68345800 C 2.49276600 -0.37555900 3.42425600 C 2.64469600 -2.61273500 2.52051100 C 3.75351000 -0.52844900 3.99762100 H 1.96238300 0.56055700 3.56872500 C 3.90623200 -2.75869400 3.08239800 H 2.20651000 -3.41021700 1.92839200 C 4.46258000 -1.71481400 3.82373100 H 4.18223500 0.28300900 4.57721700 H 4.45978300 -3.68151600 2.93895300 H 5.44940900 -1.82645100 4.26286100 C -0.76811000 2.47606600 0.57842000 H -1.18769800 3.25474000 -0.06313600 N 0.24707600 1.77129200 -0.15358600 H 2.89416400 2.47142400 -0.14635500 C 0.96657300 2.53479500 -1.12026000 C 0.26013800 3.01184100 -2.23107700 C 0.89102800 3.80753100 -3.18000400 C 2.24529600 4.11531200 -3.04884300 C 2.95899300 3.61333200 -1.96340200 C 2.32748600 2.82589800 -1.00097100 H -0.79118800 2.75531000 -2.33570300 H 0.32607500 4.17828500 -4.03006600

H 2.74164100 4.73154700 -3.79210600 H 4.01527400 3.84106000 -1.85345700 C 1.20285800 5.68911900 0.10922300 O 1.67528300 4.98205400 1.12099900 O 0.08416500 5.58857700 -0.34790300 H 1.94900400 6.40275800 -0.26439000 H 0.20322400 -2.96013100 -2.46764400 O -0.16275200 3.09554000 1.73356500 H -0.86154300 3.54074700 2.24634700 H 0.99189000 4.29978900 1.38033500

TS_{D-E}

E (M062x-SMD/BS1) = -2197.94951 au H (M062x-SMD/BS1) = -2197.23804 au G (M06-SMD/6-31G(d)) = -2197.36051 au E (M062x-SMD/BS2//M062x-SMD/BS1) = -2198.82983 au C 0.94372800 5.23126200 -3.31566700 C 1.33551500 3.91001800 -3.33610800 C 0.55576800 2.96879200 -2.64283000 C -0.59880300 3.35544100 -1.93752500 C -0.97269600 4.71725200 -1.93273900 C -0.21139500 5.63987000 -2.61366000 H 1.53392500 5.97010700 -3.84818600 H 2.22045100 3.58482500 -3.87458700 C -1.29371700 2.34828400 -1.21426800 H -1.85763300 5.01488700 -1.37797400 H -0.49285300 6.68744200 -2.61093400 C -0.88660700 1.03956000 -1.18918800 C 0.22164200 0.64281400 -2.01845900 H -2.14706900 2.66005200 -0.61340300 N 0.86681000 1.63130700 -2.67188700 C 0.68093100 -0.70162800 -2.22357900 H -0.04267500 -1.39269200 -2.63780600 C 2.03046100 -1.15834200 -2.25365600 O 2.30915400 -2.27623800 -2.73401600 C 3.13286200 -0.42284000 -1.51918400 C 2.92015300 0.60373600 -0.58847300 C 4.43533500 -0.91178700 -1.68399200 C 3.97781400 1.11592700 0.15871800 H 1.92808500 0.99393800 -0.38640000 C 5.49390100 -0.39833800 -0.94245700 H 4.60111100 -1.71807200 -2.39039200 C 5.26655300 0.61391200 -0.01020400 H 3.78425600 1.89495300 0.89059400 H 6.49459700 -0.79659100 -1.08162600 H 6.08685000 1.00440300 0.58507600 C -1.54327300 0.14980800 -0.12878100 H -2.59180200 0.44394000 -0.06946200 C 4.54878500 -0.78497600 3.64542500 C 3.32891100 -0.16812800 3.49986300 C 2.40695600 -0.63621500 2.53338600 C 2.75383400 -1.76340100 1.73637800 C 4.01912100 -2.38121600 1.90638100 C 4.90046700 -1.89667000 2.84109400 H 5.25618800 -0.41589400 4.38172700

H 3.04916000 0.69051200 4.10231500 C 1.81746900 -2.19731300 0.77298900 H 4.27431900 -3.23083900 1.27892300 H 5.87224100 -2.36309000 2.96806800 C 0.65251400 -1.48123400 0.61288900 C 0.40047800 -0.35588800 1.45015000 H 2.02973900 - 3.06245400 0.14765500 N 1.22262200 0.03423000 2.38680300 C -0.94781300 0.31652000 1.30601100 H -1.62742300 -0.23626200 1.96423800 C -0.91625900 1.79383800 1.69206700 O 0.05997600 2.46779200 1.41552100 C -2.11854600 2.41272400 2.32288000 C -3.28343500 1.69385200 2.61826900 C -2.07076700 3.78841200 2.59125100 C -4.37975100 2.34321000 3.18007300 H -3.35318700 0.62948500 2.41806100 C -3.16363400 4.43161800 3.15555900 H -1.16723200 4.33960600 2.35130200 C -4.32054800 3.70809400 3.45131900 H -5.27912200 1.78003300 3.40755500 H -3.11783100 5.49570200 3.36488000 H -5.17630500 4.21016700 3.89251200 C -0.35086600 -1.90684800 -0.33874800 H -0.28845800 -2.92392700 -0.72099800 N -1.49333900 -1.27352700 -0.48796100 H -4.02808200 -1.03366000 0.23431400 C -2.60738300 -1.88671000 -1.15101300 C -2.41283000 -2.74690300 -2.23107900 C -3.51328200 -3.38669900 -2.79664000 C -4.79358500 -3.17006800 -2.29433200 C -4.97544300 -2.30931500 -1.21329800 C -3.88594600 -1.66675200 -0.63603100 H -1.42127400 -2.94309700 -2.62559300 H -3.36081500 -4.05804000 -3.63566800 H -5.64567400 -3.67396400 -2.73905300 H -5.96700000 -2.14710000 -0.80311500 C -2.08925000 -5.16402800 -0.19481300 O -3.06406500 -4.74090900 0.47849400 O -0.88422100 -4.84076700 -0.08412900 H -2.33512200 -5.92393100 -0.97391700 H 1.63915100 1.34896000 -3.27526500 O -1.76386500 -2.94314900 2.07517900 H -0.89419900 -3.35727200 1.96218900 H -2.32900000 -3.52790400 1.51002600

Е

E (M062x-SMD/BS1) = -2121.62575 au H (M062x-SMD/BS1) = -2120.93890 au G (M06-SMD/6-31G(d)) = -2121.05284 au E (M062x-SMD/BS2//M062x-SMD/BS1) = -2122.44481 au C -1.64176200 0.98547400 5.67517400 C -0.56506700 1.06451900 4.82858300 C -0.75998500 1.02932700 3.42264000 C -2.07847600 0.91297500 2.90983200 C -3.17546500 0.83720200 3.80772900 C -2.95970900 0.87107000 5.16183100 H -1.48949300 1.01050000 6.74991800 H 0.45026700 1.15334500 5.20288100 C -2.22954600 0.88408500 1.50447700 H -4.17943600 0.74737700 3.40131600 H -3.79728900 0.80955600 5.84965000 C -1.12800200 0.94081300 0.68672400 C 0.14894600 1.06536000 1.30617000 H -3.23285800 0.82368200 1.08519000 N 0.32610400 1.12082100 2.60711400 C 1.38460000 1.23224700 0.44951800 H 1.59089400 2.30616100 0.40216000 C 2.60411500 0.52153100 1.00254700 O 2.50173700 -0.53034400 1.62222200 C 3.95794100 1.05169300 0.67571800 C 4.18506300 2.38460500 0.31133800 C 5.03714600 0.15826100 0.73908300 C 5.47625900 2.81465900 0.01649300 H 3.37228900 3.10295000 0.28125100 C 6.32124400 0.58851700 0.43245300 H 4.85049600 -0.87398700 1.01908900 C 6.54176800 1.91881300 0.07154100 H 5.64862900 3.85151500 -0.25381800 H 7.15101200 -0.11004300 0.47327100 H 7.54610800 2.25647100 -0.16573300 C -1.27647200 0.89340200 -0.82729600 H -2.14617600 1.49541100 -1.08689300 C 1.68022000 -5.65693100 -1.75074300 C 0.57461600 -4.84527600 -1.71733400 C 0.72596200 -3.44180300 -1.56801100 C 2.03029800 -2.89425500 -1.45954700 C 3.15774900 -3.75446400 -1.50633000 C 2.98445100 -5.10813600 -1.64488800 H 1.56188200 -6.73094800 -1.85784800 H -0.43134100 -5.24664200 -1.79483800 C 2.13356700 -1.49665900 -1.28036200 H 4.15093200 -3.32199900 -1.41695400 H 3.84556700 -5.76863300 -1.67129200 C 1.00264300 -0.72234800 -1.19241400 C -0.26016900 -1.37195400 -1.32572300 H 3.12310600 -1.04526200 -1.22585100 N -0.39078800 -2.66538600 -1.51839900 C -1.52364300 -0.54104800 -1.37385500 H -1.77003200 -0.41546700 -2.43409700 C -2.70999400 -1.19183100 -0.66939300 O -2.54789300 -1.97252900 0.25033200 C -4.09384700 -0.78413800 -1.07527500 C -4.36021200 0.05284000 -2.16596200 C -5.15935600 -1.25365300 -0.29478200 C -5.67238800 0.40486000 -2.47299900 H -3.55788300 0.43540600 -2.78907600 C -6.46674000 -0.90070400 -0.60224800 H -4.94396800 -1.89441900 0.55425200 C -6.72498600 -0.07061900 -1.69432200

H -5.87074900 1.05113000 -3.32214100 H -7.28545800 -1.26955600 0.00774200 H -7.74671900 0.20624000 -1.93624000 C 1.11541400 0.78312400 -1.02812800 H 1.95812800 1.10786100 -1.64265100 N -0.09827500 1.42064800 -1.51187900 H -2.16495700 2.82061900 -2.49072100 C -0.06732000 2.76257900 -1.93588000 C 1.12215000 3.51111200 -1.95608000 C 1.13195800 4.82088100 -2.43259000 C -0.03063700 5.42549000 -2.89683000 C -1.21143600 4.68405500 -2.89520600 C -1.23404200 3.37451900 -2.43240400 H 2.05750700 3.09007500 -1.60616700 H 2.06949700 5.36944300 -2.42937500 H -0.01813000 6.44771100 -3.26045800 H -2.13120100 5.12209700 -3.27196100 C 0.34993200 -3.11515100 1.63656600 O 0.10842400 -1.84601400 1.92673700 O 1.45345500 -3.59906800 1.51102000 H -0.58356700 -3.68403500 1.53507500 H 0.96714700 -1.34575100 1.93506200

F

E (M062x-SMD/BS1) = -1931.92353 au H (M062x-SMD/BS1) = -1931.27753 au G (M06-SMD/6-31G(d)) = -1931.38084 au E (M062x-SMD/BS2//M062x-SMD/BS1) = -1932.65169 au C -2.33075200 1.07268000 5.37693300 C -1.45045200 1.64802700 4.49583400 C -1.46098500 1.26950800 3.12746500 C -2.39214400 0.29048300 2.68759300 C -3.29378300 -0.28622800 3.62023200 C -3.26171600 0.09655000 4.93700600 H -2.31925300 1.36395400 6.42280300 H -0.73203900 2.39719700 4.81437500 C -2.37132500 -0.06154200 1.31754700 H -4.00059000 -1.03391600 3.27033200 H -3.94923100 -0.34616600 5.65094000 C -1.46414900 0.52273900 0.46923900 C -0.58353700 1.49878900 1.01154400 H -3.08116600 -0.80106200 0.94877800 N -0.58146700 1.86430100 2.27484700 C 0.38601100 2.23566700 0.11831600 H -0.00222600 3.25650900 0.03453700 C 1.77431100 2.43164200 0.73546500 O 2.28590000 3.53466600 0.62674500 C 2.55538400 1.30596300 1.35147500 C 2.04598600 0.01803600 1.56078100 C 3.91450900 1.54502100 1.59232200 C 2.88679500 -1.01233900 1.96887300 H 1.00374800 -0.21497100 1.37774800 C 4.75273000 0.51660200 2.00885500 H 4.31093200 2.54010200 1.41869900

C 4.24245700 -0.76904700 2.18657100 H 2.47917800 -2.01051300 2.10012300 H 5.80717500 0.71344400 2.17699100 H 4.89895700 -1.57924800 2.48996300 C -1.40226900 0.15956300 -1.00559200 H -2.42006400 -0.06187900 -1.32590900 C 5.30066300 -2.63148000 -1.30069100 C 3.93974000 -2.80437000 -1.26217600 C 3.07396900 -1.68523800 -1.38315300 C 3.63732100 -0.39265800 -1.55499900 C 5.04791000 -0.24315200 -1.60283100 C 5.86183400 -1.33989700 -1.47262700 H 5.95929300 -3.48864200 -1.19844800 H 3.49304900 - 3.78512000 - 1.12925900 C 2.74474100 0.70159800 -1.61871500 H 5.46417400 0.75333800 -1.72661300 H 6.94099500 -1.22480600 -1.49780100 C 1.39798200 0.49466500 -1.46586700 C 0.93260900 -0.84295700 -1.33707100 H 3.14055700 1.71047700 -1.73069000 N 1.72885600 -1.88791900 -1.31698500 C -0.55732400 -1.11359900 -1.31458300 H -0.82672400 -1.40818200 -2.33420900 C -0.92675100 -2.23247300 -0.34572000 O -0.31057900 -2.37296800 0.69668600 C -2.10629000 -3.09935200 -0.64894400 C -2.88743900 -2.94888800 -1.80135800 C -2.44785000 -4.08358300 0.28921100 C -3.98882700 -3.77496300 -2.01152400 H -2.65317600 -2.19189200 -2.54314000 C -3.54284000 -4.90973700 0.07447100 H -1.84194400 -4.18830500 1.18338600 C -4.31532400 -4.75598600 -1.07816800 H -4.59002200 -3.65189200 -2.90671100 H -3.79760000 -5.67268800 0.80336400 H -5.17265200 -5.40068500 -1.24690300 C 0.44774200 1.66349400 -1.34118700 H 0.82644200 2.45791900 -1.98787200 N -0.87546400 1.26612000 -1.80585400 H -3.28546800 0.80484000 -2.85047700 C -1.77642100 2.24894500 -2.27216400 C -1.45445200 3.61505700 -2.30185300 C -2.35115100 4.54583700 -2.82502000 C -3.58740300 4.15082900 -3.32308400 C -3.90935600 2.79400300 -3.30824000 C -3.01962400 1.85567200 -2.80158200 H -0.50763200 3.97787000 -1.91971300 H -2.07050200 5.59510000 -2.82945700 H -4.28383200 4.88106400 -3.72217700 H -4.85957700 2.45377300 -3.70966200 3

E (M062x-SMD/BS1) = -1931.91997 au H (M062x-SMD/BS1) = -1931.27371 au G (M06-SMD/6-31G(d)) = -1931.37783 au

E (M062x-SMD/BS2//M062x-SMD/BS1) = -1932.65806 au C -4.49712900 3.00273500 2.04645200 C -3.24940900 3.13576500 1.46390000 C -2.63994300 2.01076000 0.88779600 C -3.28608800 0.76145300 0.90044900 C -4.55207700 0.65358400 1.50164700 C -5.15506900 1.76110600 2.06900600 H -4.97041500 3.87151700 2.49344000 H -2.73297000 4.09159700 1.44816900 C -2.59584600 -0.34781400 0.30214300 H -5.04157200 -0.31698600 1.51208300 H -6.13217600 1.67442900 2.53253800 C -1.34420700 -0.22053200 -0.20149000 C -0.68493500 1.07678100 -0.23773500 H -3.09502600 -1.31482500 0.28283300 N -1.40420800 2.11532900 0.28482600 C 0.55617300 1.21603500 -0.85219100 C 1.38028000 2.40360700 -0.87847100 O 2.25805100 2.55795900 -1.74237500 C 1.26402600 3.46048200 0.18449000 C 1.16082000 3.11873700 1.53783900 C 1.33244600 4.80645900 -0.18640200 C 1.11317300 4.11628000 2.50728600 H 1.12368300 2.07063400 1.82491600 C 1.26478400 5.80325100 0.78323100 H 1.43079300 5.06289700 -1.23742400 C 1.15628700 5.45870400 2.13018900 H 1.04388700 3.84693600 3.55675900 H 1.30193100 6.84781600 0.48945400 H 1.10957600 6.23614200 2.88692200 C -0.56628200 -1.39373000 -0.76706700 H -1.28382700 -2.16834300 -1.02861300 C 6.36768300 -2.11398600 1.53960300 C 5.02578500 -2.41652700 1.67152100 C 4.09969800 -1.82091800 0.79952200 C 4.52677200 -0.92109800 -0.19603300 C 5.89967800 -0.63131300 -0.30643900 C 6.81127300 -1.21998600 0.54828800 H 7.08635900 -2.57416000 2.21061400 H 4.67432400 -3.10666400 2.43302000 C 3.52343000 -0.32934200 -1.03618700 H 6.22491000 0.06457800 -1.07487300 H 7.86866800 -0.99366200 0.45860400 C 2.21094200 -0.63705700 -0.88955800 C 1.78900900 -1.59846400 0.10485000 H 3.82997900 0.39453900 -1.78695600 N 2.75801700 -2.11381700 0.90213700 C 0.44138700 -1.96951900 0.22517400 C 0.01905700 -2.81765900 1.29662200 O 0.78969200 -3.27232500 2.17533600 C -1.44027500 -3.15155500 1.45056600 C -2.13787200 -3.90771200 0.50545900 C -2.09847400 -2.70204700 2.59855600 C -3.49149200 -4.18271200 0.69191000 H -1.62169400 -4.28426800 -0.37442500

```
C -3.45518500 -2.96107700 2.77501400
H -1.54783200 -2.12857500 3.33945400
C -4.15511400 -3.69690600 1.81825700
H -4.02801600 -4.77438600 -0.04373800
54546700 0.43246800 -2.58830600
N 0.11032600 -0.96159400 -2.00171700
H -1.68636600 -2.61006900 -3.01845800
C -0.76030300 -0.65989000 -3.08067900
C -0.72985200 0.56352800 -3.76459900
C -1.57372700 0.78442900 -4.85338900
C -2.47216200 -0.19108200 -5.27158900
C -2.51142600 -1.40809500 -4.58978200
C -1.66537200 -1.64371900 -3.51384300
H -0.06044300 1.35786400 -3.45208500
H -1.52822000 1.73999900 -5.36791400
H -3.13018700 -0.01034400 -6.11562600
H -3.19733000 -2.18879700 -4.90575700
H 2.42493100 -2.75589700 1.62870100
H -1.01200200 3.04959000 0.22676700
```

D*

E (M062x-SMD/BS1) = -2121.57554 au H (M062x-SMD/BS1) = -2120.89192 au G (M06-SMD/6-31G(d)) = -2121.00506 au E (M062x-SMD/BS2//M062x-SMD/BS1) = -2122.40466 au C 5.25994800 1.77787500 2.51091300 C 3.90758000 1.63155000 2.69720700 C 3.15620100 0.78708900 1.83846200 C 3.82573400 0.10489100 0.78927200 C 5.22318300 0.27182000 0.61771800 C 5.92715500 1.09175200 1.46453300 H 5.82936400 2.42896200 3.16745200 H 3.37909300 2.15648600 3.48710100 C 3.02791800 -0.66378000 -0.09175300 H 5.71732600 -0.24985800 -0.19795900 H 6.99646200 1.22487200 1.33346100 C 1.66989100 -0.72580600 0.08230100 C 1.09169500 -0.05661700 1.21960800 H 3.49890700 -1.14664800 -0.94713200 N 1.81875100 0.66042000 2.05491200 C -0.34601500 -0.15049700 1.45603000 H -0.82586500 -1.10050000 1.27037900 C -1.15882200 0.86895000 1.83112200 O -0.82727500 2.13821100 2.03788000 C -2.62144900 0.63878200 1.97044100 C -3.13751800 -0.56859500 2.45635800 C -3.50414900 1.65636200 1.58882100 C -4.51351700 -0.75509200 2.55781300 H -2.45889400 -1.35269600 2.78169400 C -4.87988300 1.46370200 1.68075500 H -3.09958200 2.58999200 1.20915800 C -5.38758800 0.25984700 2.16932900 H -4.90344600 -1.69067500 2.94804900 H -5.55680700 2.25404900 1.36953900 H -6.46108300 0.11276100 2.24579400

H -3.96631600 -2.59039900 3.65864100 H -5.21290000 -3.90062700 1.95562700 C 1.11151900 0.04446100 -1.66511000 Η1. C 0.83944900 -1.34397400 -1.03274400 H 1.55632700 -1.69131200 -1.78023200 C -5.98681700 1.19606500 -1.82191500 C -4.62678700 1.34631800 -1.96556200 C -3.75543400 0.29577100 -1.59622500 C -4.31026700 -0.90369700 -1.06519000 C -5.71651400 -1.03136000 -0.92506400 C -6.53950000 -0.00025400 -1.30297900 H -6.65001400 2.00626600 -2.10928700 H -4.19256400 2.25859300 -2.36165400 C -3.41347400 -1.92919500 -0.70586900 H -6.11932500 -1.95339300 -0.51475000 H -7.61575200 -0.09298000 -1.19991600 C -2.06116500 -1.72513900 -0.89291600 C -1.59828100 -0.48613600 -1.43506500 H -3.78308800 -2.86539500 -0.29322000 N -2.40947200 0.47234000 -1.78449200 C -0.13203200 -0.36827400 -1.78110100 H -0.07849900 -0.64887200 -2.84041700 C 0.43494800 1.05807900 -1.65533800 O -0.12595700 1.91456000 -1.00641400 C 1.77022800 1.31145800 -2.27953400 C 2.25294900 0.58024900 -3.36971300 C 2.58563700 2.27352900 -1.67023200 C 3.53846700 0.81825500 -3.85107700 H 1.63532300 -0.16759700 -3.85877700 C 3.87442000 2.49297600 -2.14117800 H 2.21714600 2.79986500 -0.79367200 C 4.35129500 1.76733500 -3.23406800 H 3.90597000 0.25785300 -4.70497300 H 4.51244900 3.22095700 -1.64928200 H 5.35869600 1.93862900 -3.60154700 C -1.12571300 -2.74665200 -0.52966700 H -1.49218900 -3.70662100 -0.17222500 N 0.16048400 -2.59112800 -0.57438100 H 2.05338800 -3.88040000 -1.96004800 C 1.03127300 -3.63186200 -0.07554800 C 0.90384000 -4.02346800 1.25351600 C 1.74591700 -5.01911500 1.74175300 C 2.70025000 -5.59816200 0.90828600 C 2.81659900 -5.18680400 -0.41933700 C 1.98176300 -4.19412300 -0.92293500 H 0.16836500 -3.54362200 1.89327900 H 1.65932400 -5.33244900 2.77690900 H 3.35753100 -6.37100000 1.29375000 H 3.55550200 -5.64304900 -1.06983300 C 0.82054500 4.49373700 0.77350900 O 1.26363800 3.45303000 1.35263100 O -0.35862800 4.77405800 0.50885900 H 1.60753000 5.22746800 0.47989700 H 0.09407200 2.46327400 1.72611600
TS_{D*-E} E (M062x-SMD/BS1) = -2121.56701 au H (M062x-SMD/BS1) = -2120.88509 au G (M06-SMD/6-31G(d)) = -2120.99554 au E (M062x-SMD/BS2//M062x-SMD/BS1) = -2122.39572 au C -2.15243300 -0.68541800 5.51575600 C -0.98370000 -0.41259300 4.85017700 C -1.02113200 0.04675400 3.50722900 C -2.27569900 0.21475200 2.87197000 C -3.47132800 -0.06464300 3.58263000 C -3.40829500 -0.50860900 4.87936300 H -2.12180300 -1.03899700 6.54189400 H -0.01455200 -0.53706400 5.32344900 C -2.25671500 0.63632800 1.52450700 H -4.42537000 0.06680300 3.07859400 H -4.31976700 -0.73087800 5.42544400 C -1.07246800 0.84514300 0.85872700 C 0.14378300 0.74218300 1.62269800 H -3.20885500 0.76585500 1.01214500 N 0.14644600 0.35383000 2.88339900 C 1.47732800 1.16305000 1.11785900 H 1.60142100 2.22577900 0.94483000 C 2.58985200 0.37529300 1.14589800 O 2.58084200 -0.93413300 1.32136800 C 3.94056400 0.93274100 0.85931500 C 4.22674700 2.29836400 0.99764500 C 4.95949800 0.06822800 0.43859300 C 5.49324400 2.78786300 0.69449300 H 3.46974600 2.98274200 1.36891600 C 6.22639300 0.56068000 0.13655300 H 4.74905700 -0.99258500 0.34914700 C 6.49622600 1.92205200 0.25867500 H 5.70088000 3.84719000 0.81146200 H 7.00399100 -0.12175700 -0.19307600 H 7.48465200 2.30638600 0.02567800 C -1.20702600 1.10188500 -0.64480200 H -2.06007500 1.76383500 -0.78371200 C 1.75825300 -5.24881000 -2.24959100 C 0.64061800 -4.45137900 -2.19659900 C 0.77237700 -3.05992200 -1.97466200 C 2.07528200 -2.50431900 -1.83446600 C 3.21337500 -3.34849100 -1.90372200 C 3.05503100 -4.69691500 -2.09912000 H 1.65131600 -6.31796500 -2.40533800 H -0.35873500 -4.86176700 -2.30180200 C 2.17152600 -1.11686000 -1.61490200 H 4.19976900 -2.90778600 -1.78783600 H 3.92161300 -5.34887900 -2.13971500 C 1.01194100 -0.38102100 -1.48465200 C -0.24891800 -1.04149400 -1.59399300 H 3.14609800 -0.63724500 -1.55443000 N -0.36594400 -2.30894900 -1.87609500 C -1.48098000 -0.17545700 -1.49457300 H -1.70400700 0.17657700 -2.50929400 C -2.69402400 -0.92796600 -0.94282400

O -2.53955300 -1.83321300 -0.14718100 C -4.06313200 -0.47669400 -1.33796000 C -4.29418600 0.57111300 -2.23736300 C -5.15346100 -1.12348300 -0.73950900 C -5.59768500 0.95764400 -2.53893100 H -3.47048300 1.09614000 -2.71138100 C -6.45189300 -0.73801900 -1.04427100 H -4.96547000 -1.92737400 -0.03517300 C -6.67537900 0.30369000 -1.94633300 H -5.76948800 1.76969400 -3.23815300 H -7.29106600 -1.24564600 -0.57922200 H -7.69058300 0.60615700 -2.18486300 C 1.06201600 1.05479200 -1.36702200 H 1.97955500 1.56503200 -1.64542700 N -0.02103800 1.78184000 -1.20921800 H -2.04915300 3.35609600 -1.95144700 C 0.00743400 3.21722200 -1.28698400 C 1.18015200 3.92407900 -1.00925700 C 1.18414600 5.31185900 -1.11521400 C 0.03343100 5.99676500 -1.49553600 C -1.12699200 5.28291500 -1.78571100 C -1.14594900 3.89589300 -1.68696000 H 2.09153400 3.41675400 -0.71073600 H 2.09649300 5.85469000 -0.89029900 H 0.04212600 7.07920400 -1.57117300 H -2.02574900 5.80293700 -2.10087600 C 0.62403800 -3.37175600 1.06166800 O 0.40362400 -2.12542500 1.22541800 O 1.72127100 -3.94354700 1.07687300 H -0.29500300 -3.97564400 0.89858700 H 1.61504100 -1.39942400 1.32257900

TS_{D-D}* E (M062x-SMD/BS1) = -2197.97614 au H (M062x-SMD/BS1) = -2197.26606 au G (M06-SMD/6-31G(d)) = -2197.38843 au E (M062x-SMD/BS2//M062x-SMD/BS1) = -2198.85014 au C 5.24279700 -2.44295500 -2.96002800 C 3.87335400 -2.36357600 -3.04462800 C 3.15245100 -1.57547200 -2.11338900 C 3.85945600 -0.87541700 -1.10540900 C 5.26982700 -0.97506600 -1.03874400 C 5.95014600 -1.74602200 -1.95057300 H 5.79250800 -3.04820000 -3.67450000 H 3.32019200 -2.89479900 -3.81344800 C 3.09211000 -0.10868900 -0.19079600 H 5.79645900 -0.43572800 -0.25580100 H 7.03139800 -1.82544800 -1.90117300 C 1.72685300 -0.05664000 -0.27574900 C 1.08510900 -0.79166300 -1.33831100 H 3.61097000 0.43069500 0.60040800 N 1.79650900 -1.50823900 -2.20402200 C -0.35487500 -0.80210100 -1.49727800 H -0.96135200 -0.23351700 -0.81270900 C -1.00795400 -1.53975900 -2.43957100 O -0.38412200 -2.32817500 -3.31877600 C -2.48322000 -1.56443400 -2.54002800 C -3.25603400 -0.47375100 -2.12214800 C -3.12199900 -2.70136000 -3.04898200 C -4.64429200 -0.53199600 -2.18410600 H -2.77003400 0.43205400 -1.77036600 C -4.51133800 -2.75676700 -3.10834000 H -2.52589200 -3.54480400 -3.38211600 C -5.27595900 -1.67601800 -2.67148300 H -5.23324200 0.32257800 -1.86375400 H -4.99796900 -3.64731500 -3.49429300 H -6.35979400 -1.72075400 -2.71918800 C 0.98384300 0.71883600 0.80393800 H 1.76184500 1.22802800 1.38082200 C -5.38154900 -2.46220700 2.38393500 C -4.01149000 -2.41959100 2.47252500 C -3.30356600 -1.28042800 2.01555500 C -4.03390900 -0.18645800 1.47564700 C -5.44828400 -0.25502600 1.39653000 C -6.10807400 -1.37323700 1.84142700 H -5.91853300 -3.33955200 2.73123000 H -3.44093300 -3.24668400 2.88315900 C -3.29454600 0.93209500 1.02477800 H -5.99093900 0.58949200 0.98037700 H -7.19024600 -1.42912100 1.78058000 C -1.92710700 0.90362200 1.11821700 C -1.28388900 -0.24193000 1.66792800 H -3.80741000 1.79401700 0.60211700 N -1.93923000 -1.28098500 2.11423100 C 0.21328800 -0.15426400 1.85795600 H 0.33698900 0.36494700 2.81435900 C 0.92500500 -1.50830500 1.91537000 O 0.50493700 -2.45553000 1.28010900

```
C 2.21896400 -1.59502600 2.65722400
C 2.68574600 -0.58161900 3.50230400
C 3.01421700 -2.72717400 2.43324800
C 3.92833300 -0.70561700 4.11947500
H 2.09292600 0.30705700 3.69451100
C 4.25418800 -2.84611900 3.04621400
H 2.64996100 -3.50024100 1.76422100
C 4.71267300 -1.83398900 3.89159000
H 4.28274200 0.08152400 4.77732500
H 4.86713500 -3.72314800 2.86349300
H 5.68292900 -1.92521800 4.37047700
C -1.11276000 2.01381900 0.60785100
H -1.61748300 2.81465100 0.07182200
N 0.13796000 1.77710300 0.22145400
H 2.21168400 3.35859800 0.86713100
C 0.79500400 2.73164200 -0.63223500
C 0.32558100 2.89384700 -1.93349200
C 0.92237500 3.84076300 -2.76151400
C 1.99179000 4.60213900 -2.29325200
C 2.46631900 4.41703000 -0.99518600
C 1.86848400 3.48050300 -0.15606000
H -0.50260200 2.28338900 -2.28410800
H 0.55499600 3.97715300 -3.77366300
H 2.45839600 5.33795000 -2.94084800
H 3.29602200 5.01250900 -0.62747700
C -0.74126400 5.57424100 0.28923600
O -0.19521600 5.28932400 1.40236600
O -1.66303900 4.96204000 -0.27280400
H -0.33486600 6.48122000 -0.20676700
H 0.60168100 -2.23596800 -3.12581600
O -0.96956500 3.04648000 2.20980100
H -1.88001200 3.16490200 2.53793200
H -0.66297400 4.00630800 1.88097400
NH2-Ph
E (M062x-SMD/BS1) = -287.478497 au
H (M062x-SMD/BS1) = -287.353394 au
G(M06-SMD/6-31G(d)) = -287.389075 au
E (M062x-SMD/BS2//M062x-SMD/BS1) = -287.597891 au
C 0.93797100 -0.00007000 -0.01016200
C 0.22189500 -1.20669600 -0.00498500
C -1.16913100 -1.20091100 0.00349300
C -1.87823200 0.00008000 0.00738600
C -1.16899500 1.20099900 0.00354400
C 0.22202200 1.20661800 -0.00503200
H 0.76809100 -2.14676700 -0.00792800
H -1.70295000 -2.14729200 0.00976600
H -2.96351900 0.00005400 0.01528800
H -1.70261800 2.14748300 0.00987200
H 0.76834300 2.14662000 -0.00812600
N 2.33053600 -0.00001100 -0.08291400
H 2.76288600 0.83515600 0.29814200
H 2.76283300 -0.83529800 0.29792000
```

TS'AB-B

E (M062x-SMD/BS1) = -2197.94849 au H (M062x-SMD/BS1) = -2197.24188 au G (M06-SMD/6-31G(d)) = -2197.35816 au E (M062x-SMD/BS2//M062x-SMD/BS1) = -2198.82121au C 6.31949000 1.42498400 1.23672900 C 5.03616800 1.91496000 1.18865800 C 3.94195900 1.01896300 1.09460700 C 4.18901700 -0.37520500 1.05963900 C 5.51978600 -0.85471700 1.11730700 C 6.56742800 0.03087500 1.20159500 H 7.15698000 2.11304500 1.30119100 H 4.83360200 2.98165500 1.21182300 C 3.07000200 -1.22607900 0.87907700 H 5.69260500 -1.92712200 1.07987300 H 7.58926200 -0.33283200 1.23970100 C 1.80259800 -0.72041500 0.74737900 C 1.63375400 0.71113100 0.83713400 H 3.24079100 -2.29720700 0.79404100 N 2.67960500 1.51546700 1.00644900 C 0.33622900 1.34158700 0.69476100 H -0.53789600 0.71863200 0.56764800 C 0.15010900 2.68889900 0.64982700 O 1.14452100 3.58210700 0.71530200 C -1.19408800 3.28544900 0.50466500 C -2.30523500 2.66823700 1.09092100 C -1.36237100 4.48028000 -0.20486700 C -3.56934200 3.23391300 0.96353700 H -2.16956300 1.76017200 1.67124300 C -2.63203400 5.03498400 -0.34348800 H -0.49983600 4.96482000 -0.65219000 C -3.73679700 4.41579500 0.24220800 H -4.42344500 2.75115700 1.42998700 H -2.75855600 5.95640000 -0.90387000 H -4.72394700 4.85720100 0.14137900 C 0.74185200 -1.69776200 0.32166400 H 1.20650600 -2.64971100 0.07676900 C -4.85193700 1.70969600 -2.01586600 C -3.49394500 1.51201100 -1.93220400 C -2.99295000 0.19703000 -1.80959800 C -3.88858900 -0.90319000 -1.78087500 C -5.28350800 -0.66635900 -1.86315800 C -5.75390400 0.61826800 -1.97936200 H -5.24115200 2.71943700 -2.10512700 H -2.79479200 2.34415000 -1.94653000 C -3.32868900 -2.19847700 -1.69628500 H -5.96086900 -1.51499800 -1.83750300 H -6.82073600 0.80521300 -2.04481300 C -1.96671600 -2.37775400 -1.62525500 C -1.12768200 -1.21987900 -1.63094500 H -3.98780600 -3.06499400 -1.69228800 N -1.64596700 -0.00660700 -1.72307400 C 0.34420300 -1.30933400 -1.49925600 H 0.72349400 -2.24594900 -1.88869200 C 1.10490500 -0.17938500 -2.00734400 O 0.54900400 0.95281600 -2.21543100 C 2.55406500 -0.25380500 -2.22367400

C 3.22594100 -1.48064000 -2.34452800 C 3.28539800 0.94415600 -2.22269800 C 4.60958000 -1.50146800 -2.46411200 H 2.67897400 -2.41802200 -2.35731100 C 4.67079400 0.91427700 -2.32807700 H 2.76379700 1.88856700 -2.10209200 C 5.33295200 -0.30754400 -2.44870800 H 5.12616800 -2.45040100 -2.56489900 H 5.23421000 1.84158100 -2.30744300 H 6.41576000 -0.33076600 -2.52707000 C -1.46163700 -3.77093100 -1.58098800 H -2.24831200 -4.53278600 -1.70359200 N -0.39333500 -1.92469300 1.06652100 H 0.73355500 -0.66537700 3.18414700 C -1.03665200 -1.13507700 2.04518400 C -2.43251200 -1.02923900 1.99141500 C -3.12253400 -0.33974500 2.98511800 C -2.42797600 0.27556900 4.02557100 C -1.03784000 0.17175200 4.07720400 C -0.34254900 -0.54627400 3.10817100 H -2.96535100 -1.50576000 1.17351000 H -4.20555200 -0.27213300 2.93530000 H -2.96401000 0.82424200 4.79377400 H -0.48830700 0.63183200 4.89308700 C -2.31252200 -4.53798100 2.04209500 O -2.28659300 -4.03985200 0.88054700 O -1.49836900 -4.35944200 2.96565700 H -3.17568300 -5.21746400 2.24592200 H 1.98900700 3.04774900 0.83131300 O -0.29626800 -4.09496700 -1.45499400 H -0.92738800 -2.78634400 0.85976300 H -0.51732900 0.82220800 -1.99402500

References

Darbandizadeh, S. A., Amiri, K., Rominger, F. and Balalaie, S. Synthesis of Naphthyridine and Azepine Backbones through Formal [4+ 3] and [4+ 2] Annulation via Cascade Ring-Opening/Cyclization Reaction of 2H-Azirines, *Eur. J. Org. Chem.*, **26**, e202201109 (2023); Motaghi, M., Khosravi, H., Balalaie, S. and Rominger, F. Catalytic formal [4+1] isocyanide-based cycloaddition: an efficient strategy for the synthesis of 1H-cyclopenta[b]quinolin-1-one derivatives, *Org. Biomol. Chem.*, **17**, 275-282 (2019).