Supporting Information

Chiral Brønsted acid-catalyzed asymmetric dearomative spirocyclization of alkynyl thioethers

Xin-Yang Fan,^a Jia-Cheng Li,^a Ji-Jia Zhou,^{*,a} Bo Zhou^a and Long-Wu Ye^{*,a,b,c}

^aKey Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

^bState Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.

^cState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.

Content	Page Number
1. General Information	2
2. Preparation of Starting Materials	3
3. General Procedure for the Synthesis of Spirocyclic Enones 2	19
4. Synthetic Utility Study	39
5. References	44
6. Crystal Data	45
7. HPLC Chromatograms	46
8. NMR Spectra	81

1. General Information

Ethyl acetate (ACS grade), hexanes (ACS grade), anhydrous 1,2-dichloroethane (ACS grade) and toluene (ACS grade) were obtained commercially and used without further purification. Methylene chloride and tetrahydrofuran were purified according to standard methods unless otherwise noted. Commercially available reagents were used without further purification. Reactions were monitored by thin layer chromatography (TLC) using silicycle pre-coated silica gel plates. Flash column chromatography was performed over silica gel (300-400 mesh). Infrared spectra were recorded on a Nicolet AVATER FTIR330 spectrometer as thin film and are reported in reciprocal centimeter (cm⁻¹). Mass spectra were recorded with Micromass QTOF2 Quadrupole/Time-of-Flight Tandem mass spectrometer using electron spray ionization. HPLC analyses were carried out in a chromatograph equipped with a UV diode-array detector using chiral stationary columns from Daicel.

¹H NMR spectra were recorded on a Bruker AV-400 spectrometer and a Bruker AV-500 spectrometer in chloroform-d₃. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The data is being reported as (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, brs = broad singlet, coupling constant(s) in Hz, integration).

¹³C NMR spectra were recorded on a Bruker AV-400 spectrometer and a Bruker AV-500 spectrometer in chloroform-d₃. Chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard.

2. Preparation of Starting Materials

Alkynyl thioethers **1a–1ac** were prepared according to the following procedure.^{1,2}

To a suspension of *o*-bromobenzaldehyde derivative (2 mmol), phenylboronic acid (2.4 mmol) and sodium carbonate (4 mmol, 424.0 mg) in the mixed solvent (toluene/EtOH/H₂O = 2/1/1, 20 mL) was added Pd(PPh₃)₄ (0.04 mmol, 46.0 mg) at room temperature under N₂ atmosphere. The resulting mixture was stirred at 80 °C for 8 h, and the progress of the reaction was monitored by TLC. Upon completion, the solution was filtered through a pad of silica gel and concentrated under reduced pressure. The residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to give the biaryl benzaldehyde in 52–82% yield.

To the solution of PPh₃ (8 mmol, 2.1 g) in DCM (6 mL) was added CBr₄ (4 mmol, 1.4 g) slowly at 0 °C, and the reaction was stirred at this temperature for additional 30 min. The solution of the above biaryl benzaldehyde (2 mmol) in DCM (2 mL) was then added to the reaction mixture at 0 °C. The reaction was warmed to room temperature and stirred for 1 h. Upon completion, the reaction was diluted with a mixed solvent (hexanes/ethyl acetate = 30/1, 100 mL), filtered through a pad of silica gel and concentrated under reduced pressure. The obtained dibromide was directly used in the next step without further purification.

To a solution of the above dibromide (1.5 mmol) in DCM (6 mL) was added BBr₃ (2.2

mmol, 2 M in DCM, 2.2 mL) carefully at 0 °C. The reaction mixture was then warmed to room temperature and stirred for 20 min. Upon completion (monitored by TLC), the reaction was quenched with NaHCO₃ (aq), extracted with DCM for three times, dried over MgSO₄ and filtered. The filtrate was concentrated under reduced pressure to give crude free phenol without further purification.

To the solution of above free phenol (1.5 mmol) and Et₃N (4 mmol, 0.5 mL) in DCM (8 mL) was slowly added acetylchloride (1.8 mmol, 0.13 mL) at 0 °C. Then the resulting mixture was stirred at room temperature for 2 h and the progress of the reaction was monitored by TLC. Upon completion, the reaction was quenched with NaHCO₃ (aq), extracted with DCM for 3 times, dried over MgSO₄ and filtered. The filtrate was concentrated under reduced pressure to afford the corresponding Ac-protected phenol without further purification.

To a solution of the above Ac-protected phenol bearing alkenyl dibromide moiety (1.4 mmol) in DMSO (5 mL) was added DBU (2.8 mmol, 0.4 mL) slowly at room temperature and stirred for 5 min. Upon completion, the reaction was diluted with water, extracted with EtOAc, washed with brine, dried over MgSO₄ and filtered. The filtrate was concentrated under reduced pressure. Then the residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 30/1) to obtain alkynyl bromide in 77–93% yield (4 steps).

To a dry sealed tube equipped with a stir bar were added alkynyl bromide (1.2 mmol), thiol (1.3 mmol), dtbbpy (0.24 mmol, 64.3 mg) and 2,6-lutidine (2.4 mmol, 0.3 mL) under N₂ atmosphere. Aftrerwards, dry MeCN (5 mL) was added to the mixture under N₂ atmosphere. While stirring, the solution of Cu(MeCN)₄PF₆ (0.12 mmol, 44.6 mg in 1 mL dry MeCN) was added in one portion and the progress of the reaction was monitored by TLC. Upon completion, the reaction was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (eluent: hexanes/ethyl acetate = 15/1) to afford the desired Ac-protected alkynyl thioether.¹

To a solution of above Ac-protected alkynyl thioether (1 mmol) in MeCN (10 mL) was added N₂H₄·H₂O (2 mmol) dropwise at 0 °C and stirred for additional 10–30 min. The progress of the reaction was monitored by TLC. Upon completion, the reaction was quenched with saturated aqueous NH₄Cl and extracted with ethyl acetate for 3 times. The organic layer was dried over MgSO₄, concentrated and purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to afford the desired phenol-tethered alkynyl thioether **1a–1ac** in 58–96% yield.

2'-(((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-[1,1'-biphenyl]-2-ol (1a)

1a

Compound **1a** was prepared in 67% overall yield (483.0 mg) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.52 (m, 1H), 7.36 – 7.25 (m, 3H), 7.24 – 7.21 (m, 2H), 6.98 – 6.94 (m, 2H), 5.07 (s, 1H), 1.98 – 1.93 (m, 3H), 1.72 – 1.68 (m, 6H), 1.63 – 1.54 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.7, 138.2, 132.1, 130.7, 130.5, 129.2, 128.0, 128.0, 127.7, 123.9, 120.5, 116.0, 94.6, 82.0, 50.5, 42.7, 35.7, 30.0; IR (neat): 3502(bs), 2906, 2851, 2158(s), 2029, 1959, 1472, 1037, 752, 520; HRESIMS Calcd for [C₂₄H₂₄NaOS]⁺ (M + Na⁺) 383.1440, found 383.1437.

2'-(((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-4'-fluoro-[1,1'-biphenyl]-2-ol (1b)

1b

Compound **1b** was prepared in 71% overall yield (537.9 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.18 (m, 4H), 7.07 – 7.02 (m, 1H), 6.97 – 6.94 (m, 2H), 5.05 (s, 1H), 2.00 – 1.90 (m, 3H), 1.72 – 1.65 (m, 6H), 1.63 – 1.53 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, *J* = 247.0 Hz), 152.7, 134.2 (d, *J* = 3.0 Hz), 132.2 (d, *J*

= 9.0 Hz), 130.9, 129.3, 126.7, 125.7 (d, J = 9.0 Hz), 120.5, 118.3 (d, J = 23.0 Hz), 115.0, 115.3 (d, J = 22.0 Hz), 93.8 (d, J = 3.0 Hz), 83.5, 50.7, 42.7, 35.6, 30.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.7; IR (neat): 3045(bs), 2906, 2152(s), 1959, 1601, 1307, 881, 726; HRESIMS Calcd for [C₂₄H₂₃FNaOS]⁺ (M + Na⁺) 401.1346, found 401.1338.

2'-(((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-4'-chloro-[1,1'-biphenyl]-2-ol (1c)

Compound **1c** was prepared in 76% overall yield (600.7 mg) as a brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 2.0 Hz, 1H), 7.31 (dd, J = 8.4, 2.4 Hz, 1H), 7.26 – 7.19 (m, 3H), 6.98 – 6.94 (m, 2H), 5.02 (s, 1H), 1.98 – 1.92 (m, 3H), 1.71 – 1.67 (m, 6H), 1.64 – 1.54 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.6, 136.6, 133.8, 131.9, 131.6, 130.9, 129.5, 128.1, 126.6, 125.5, 120.6, 116.1, 93.7, 83.8, 50.8, 42.7, 35.7, 30.0; IR (neat): 3613(bs), 3102, 2985, 2157(s), 1957, 1412, 1056, 745; HRESIMS Calcd for [C₂₄H₂₃ClNaOS]⁺ (M + Na⁺) 417.1050, found 417.1048.

2'-(((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-4'-(trifluoromethyl)-[1,1'-biphenyl]-2-ol (1d)

Compound **1d** was prepared in 43% overall yield (368.6 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.28 – 7.21 (m, 2H), 7.00 – 6.95 (m, 2H), 5.11 (s, 1H), 1.98 – 1.93 (m, 3H), 1.71 – 1.67 (m, 6H), 1.64 – 1.53 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.5, 141.9, 131.1, 130.7,

130.2 (q, J = 32.0 Hz), 129.7, 128.7 (q, J = 4.0 Hz), 126.6, 124.7, 124.2 (q, J = 3.0 Hz), 123.6 (q, J = 271.0 Hz), 120.8, 116.3, 93.8, 84.2, 50.9, 42.7, 35.7, 30.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.4; IR (neat): 3498(bs), 3048, 2928, 2160(s), 1958, 1558, 729, 588,523; HRESIMS Calcd for [C₂₅H₂₃F₃NaOS]⁺ (M + Na⁺) 451.1314, found 451.1303.

2'-(((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-4'-methyl-[1,1'-biphenyl]-2-ol (1e)

1e

Compound **1e** was prepared in 65% overall yield (486.1 mg) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H), 7.25 – 7.18 (m, 4H), 6.97 – 6.93 (m, 2H), 5.05 (s, 1H), 2.36 (s, 3H), 1.98 – 1.93 (m, 3H), 1.72 – 1.67 (m, 6H), 1.63 – 1.54 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 137.9, 135.2, 132.6, 130.8, 130.4, 129.1, 129.0, 127.5, 123.7, 120.4, 115.8, 94.7, 81.5, 50.5, 42.7, 35.7, 30.0, 20.9; IR (neat): 3494(bs), 3029, 2905, 2849, 2152(s), 1763, 1451, 1367, 1178, 1037, 758; HRESIMS Calcd for [C₂₅H₂₆NaOS]⁺ (M + Na⁺) 397.1597, found 397.1604.

2'-(((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-4'-methoxy-[1,1'-biphenyl]-2-ol (1f)

Compound **1f** was prepared in 53% overall yield (413.5 mg) as a orange oil. ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.19 (m, 3H), 7.05 (d, J = 2.8 Hz, 1H), 6.97 – 6.90 (m, 3H), 5.24 (s, 1H), 3.82 (s, 3H), 1.99 – 1.92 (m, 3H), 1.72 – 1.67 (m, 6H), 1.63 – 1.54 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 153.0, 131.7, 131.0, 130.5, 129.0, 127.3,

124.9, 120.3, 116.3, 115.7, 115.0, 94.7, 81.8, 55.4, 50.6, 42.7, 35.7, 30.0; IR (neat): 3444(bs), 2904, 2850, 2155(s), 1958, 1607, 1473, 1282, 1037, 774, 552; HRESIMS Calcd for [C₂₅H₂₆NaO₂S]⁺ (M + Na⁺) 413.1546, found 413.1555.

2'-(((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-[1,1'-biphenyl]-2,4'-diol (1g)

Compound **1g** was prepared in 37% overall yield (274.1 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.11 (m, 2H), 7.06 (d, J = 8.4 Hz, 1H), 6.89 – 6.85 (m, 3H), 6.75 (dd, J = 8.4, 2.4 Hz, 1H), 6.17 (s, 1H), 5.20 (s, 1H), 1.88 – 1.84 (m, 3H), 1.61 – 1.58 (m, 6H), 1.55 – 1.45 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 152.8, 131.8, 131.0, 130.2, 128.9, 127.4, 124.9, 120.4, 118.4, 115.8, 115.7, 94.6, 81.7, 50.6, 42.7, 35.7, 30.0; IR (neat): 3620(bs), 3104, 2948, 2160(s), 1958, 1417, 1039, 843, 745, 530; HRESIMS Calcd for [C₂₄H₂₄NaO₂S]⁺ (M + Na⁺) 399.1389, found 399.1401.

2'-(((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-5'-fluoro-[1,1'-biphenyl]-2-ol (1h)

1h

Compound **1h** was prepared in 80% overall yield (566.8 mg) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.41 (m, 1H), 7.20– 7.13 (m, 2H), 6.99 – 6.95 (m, 2H), 6.92 – 6.88 (m, 2H), 5.01 (s, 1H), 1.90 – 1.84 (m, 3H), 1.63 – 1.60 (m, 6H), 1.56 – 1.46 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, *J* = 249.0 Hz), 152.5, 140.9 (d, *J* = 8.0 Hz), 134.0 (d, *J* = 9.0 Hz), 130.6, 129.6, 126.8 (d, *J* = 1.0 Hz), 120.7, 119.9 (d, *J* = 4.0 Hz), 117.7 (d, *J* = 22.0 Hz), 116.3, 115.3 (d, *J* = 22.0 Hz), 93.5, 81.5, 50.6,

42.7, 35.7, 30.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.1; IR (neat): 3459(bs), 2906, 2850, 2159(s), 1448, 1298, 1263, 1040, 752, 588; HRESIMS Calcd for [C₂₄H₂₃FNaOS]⁺ (M + Na⁺) 401.1346, found 401.1351.

2'-(((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-5'-chloro-[1,1'-biphenyl]-2-ol (1i)

Compound **1i** was prepared in 72% overall yield (413.5 mg) as a yellow solid (mp 201-203 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.24 – 7.19 (m, 4H), 6.99 – 6.95 (m, 2H), 5.06 (s, 1H), 1.98 – 1.92 (m, 3H), 1.71 –1.67 (m, 6H), 1.63 – 1.53 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.6, 140.0, 133.6, 133.1, 130.6, 130.5, 129.6, 128.1, 126.6, 122.3, 120.7, 116.3, 93.8, 83.1, 50.7, 42.7, 35.7, 30.0; IR (neat): 3440(bs), 3079, 2904, 2158(s), 2028, 1737, 1298, 1041, 726, 684, 540; HRESIMS Calcd for [C₂₄H₂₃ClNaOS]⁺ (M + Na⁺) 417.1050, found 417.1074.

2'-(((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-5'-methyl-[1,1'-biphenyl]-2-ol (1j)

1j

Compound **1j** was prepared in 55% overall yield (409.8 mg) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.0 Hz, 1H), 7.18 – 7.14 (m, 2H), 7.10 – 7.05 (m, 2H), 6.91 – 6.87 (m, 2H), 5.00 (s, 1H), 2.30 (s, 3H), 1.91 – 1.86 (m, 3H), 1.64 – 1.51 (m, 6H), 1.56 – 1.47 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.7, 138.4, 138.2, 132.2, 131.2, 130.7, 129.1, 128.9, 127.8, 120.9, 120.4, 115.9, 94.5, 80.9, 50.4, 42.7, 35.8, 30.0, 21.4; IR (neat): 3460(bs), 3057, 2907, 2849, 2153(s), 1709, 1447, 1231, 754,

589, 536; HRESIMS Calcd for $[C_{25}H_{26}NaOS]^+$ (M + Na⁺) 397.1597, found 397.1600.

1k

Compound **1k** was prepared in 58% overall yield (457.0 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.8 Hz, 1H), 7.27 – 7.22 (m, 2H), 6.99 – 6.95 (m, 2H), 6.89 (dd, J = 8.4, 2.4 Hz, 1H), 6.84 (d, J = 2.4 Hz, 1H), 5.12 (s, 1H), 3.82 (s, 3H), 1.99 – 1.93 (m, 3H), 1.72 – 1.68 (m, 6H), 1.64 – 1.55 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 152.7, 140.3, 133.9, 130.6, 129.3, 127.7, 120.5, 116.1, 116.0, 115.6, 114.3, 94.1, 79.7, 55.4, 50.3, 42.7, 35.8, 30.1; IR (neat): 3440(bs), 3000, 2906, 2850, 2162(s), 1958, 1604, 1242, 1211, 1018, 751, 589; HRESIMS Calcd for [C₂₅H₂₆NaO₂S]⁺ (M + Na⁺) 413.1546, found 413.1558.

2'-(((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-3'-chloro-[1,1'-biphenyl]-2-ol (11)

11

Compound **11** was prepared in 33% overall yield (262.6 mg) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (dd, J = 7.6, 0.8 Hz, 1H), 7.28 – 7.24 (m, 2H), 7.21 – 7.20 (m, 2H), 6.99 – 6.96 (m, 2H), 5.00 (s, 1H), 2.00 – 1.96 (m, 3H), 1.78 – 1.76 (m, 6H), 1.65 – 1.56 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.6, 140.2, 136.1, 130.7, 129.6, 128.8, 128.7, 128.1, 127.1, 123.8, 120.6, 116.2, 91.8, 88.5, 51.0, 42.8, 35.8, 30.1; IR (neat): 3429(bs), 3063, 2906, 2850, 2158(s), 1958, 1297, 1102, 1040, 754, 635; HRESIMS Calcd for [C₂₄H₂₃ClNaOS]⁺ (M + Na⁺) 417.1050, found 417.1059.

2'-(((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-5-fluoro-[1,1'-biphenyl]-2-ol (1m)

1m

Compound **1m** was prepared in 45% overall yield (338.7 mg) as a brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.51 (m, 1H), 7.36 – 7.31 (m, 2H), 7.28 – 7.24 (m, 1H), 6.97 – 6.88 (m, 3H), 5.00 (s, 1H), 2.01 – 1.93 (s, 3H), 1.76 – 1.69 (m, 6H), 1.65 – 1.55 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 156.7 (d, *J* = 237 Hz), 148.8 (d, *J* = 2.0 Hz), 137.2, 132.2, 130.2, 128.6 (d, *J* = 8.0 Hz), 128.3, 128.1, 123.7, 117.0, 116.9 (d, *J* = 14.0 Hz), 115.5 (d, *J* = 23.0 Hz), 94.3, 82.6, 50.6, 42.8, 35.7, 30.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.3; IR (neat): 3428(bs), 3012, 2907, 2850, 2160(s), 1958, 1737, 1578, 1109, 1072, 834, 730, 590; HRESIMS Calcd for [C₂₄H₂₃FNaOS]⁺ (M + Na⁺) 401.1346, found 401.1342.

2'-(((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-5-chloro-[1,1'-biphenyl]-2-ol (1n)

1n

Compound **1n** was prepared in 57% overall yield (451.5 mg) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.53 (m, 1H), 7.38 – 7.35 (m, 2H), 7.29 – 7.27 (m, 1H), 7.23 – 7.19 (m, 2H), 6.92 (d, *J* = 8.8 Hz, 1H), 5.05 (s, 1H), 2.02 – 1.96 (m, 3H), 1.75 – 1.70 (m, 6H), 1.66 – 1.55 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.5, 136.8, 132.3, 130.3, 130.3, 129.1, 129.0, 128.5, 128.2, 125.2, 123.9, 117.4, 94.2, 82.8, 50.6, 42.8, 35.8, 30.1; IR (neat): 3441(bs), 3063, 2906, 2850, 2158(s), 1958, 1462, 1388, 1298, 1240, 1039, 834, 751, 601; HRESIMS Calcd for [C₂₄H₂₃ClNaOS]⁺ (M + Na⁺)

2'-(((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-5-methyl-[1,1'-biphenyl]-2-ol (10)

10

Compound **10** was prepared in 68% overall yield (509.4 mg) as a brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.51 (m, 1H), 7.34 – 7.27 (m, 3H), 7.04 – 7.02 (m, 2H), 6.88 – 6.86 (m, 1H), 4.92 (s, 1H), 2.28 (s, 3H), 1.98 – 1.91 (m, 3H), 1.72 – 1.68 (m, 6H), 1.63 – 1.53 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.5, 138.5, 132.0, 131.0, 130.5, 129.7, 129.5, 128.0, 127.9, 127.4, 123.8, 115.9, 94.7, 81.8, 50.5, 42.7, 35.7, 30.0, 20.4; IR (neat): 3363 (bs), 3061, 2905, 2849, 2160(s), 1958, 1672, 1450, 1239, 1040, 824, 751, 583; HRESIMS Calcd for [C₂₅H₂₆NaOS]⁺ (M + Na⁺) 397.1597, found 397.1606.

2'-(((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-5-ethyl-[1,1'-biphenyl]-2-ol (1p)

1p

Compound **1p** was prepared in 75% overall yield (583.7 mg) as a brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 6.0, 1.2 Hz, 1H), 7.35 – 7.29 (m, 3H), 7.08 – 7.05 (m, 2H), 6.89 (d, J = 7.6 Hz, 1H), 4.97 (s, 1H), 2.59 (q, J = 7.6 Hz, 2H), 1.98 – 1.90 (m, 3H), 1.72 – 1.68 (m, 6H), 1.63 – 1.53 (m, 6H), 1.22 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 138.7, 136.0, 132.0, 130.6, 129.9, 128.5, 128.0, 127.8, 127.5, 123.8, 115.9, 94.8, 81.9, 50.4, 42.7, 35.7, 30.0, 27.9, 15.7; IR (neat): 3433(bs), 3068, 2905, 2850, 2157(s), 1958, 1450, 1407, 1297, 1039, 736, 626, 604; HRESIMS Calcd

for $[C_{26}H_{28}NaOS]^+$ (M + Na⁺) 411.1753, found 411.1752.

2'-(((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-4-chloro-[1,1'-biphenyl]-2-ol (1q)

Compound **1q** was prepared in 59% overall yield (466.2 mg) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.52 (m, 1H), 7.37 – 7.35 (m, 2H), 7.27 (d, *J* = 4.0 Hz, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 7.01 (d, *J* = 1.6 Hz, 1H), 6.96 (dd, *J* = 8.0, 1.6 Hz, 1H), 5.19 (s, 1H), 2.05 – 1.96 (m, 3H), 1.76 – 1.69 (m, 6H), 1.67 – 1.55 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 136.9, 134.5, 132.1, 131.6, 130.4, 128.4, 128.1, 126.3, 124.0, 120.8, 116.4, 94.3, 82.6, 50.6, 42.8, 35.8, 30.0; IR (neat): 3597(bs), 3023, 2908, 2850, 2156(s), 2028, 1958, 1556, 1245, 1028, 747, 688, 583; HRESIMS Calcd for [C₂₄H₂₃ClNaOS]⁺ (M + Na⁺) 417.1050, found 417.1055.

2'-(((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-4-methyl-[1,1'-biphenyl]-2-ol (1r)

Compound **1r** was prepared in 61% overall yield (457.8 mg) as a orange solid (mp 133–135 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.50 (m, 1H), 7.34 – 7.26 (m, 3H), 7.11 (d, *J* = 7.6 Hz, 1H), 6.80 – 6.76 (m, 2H), 5.02 (s, 1H), 2.32 (s, 3H), 2.00 – 1.92 (m, 3H), 1.75 – 1.68 (m, 6H), 1.64 – 1.54 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.5, 139.3, 138.1, 132.0, 130.6, 130.5, 127.9, 127.8, 124.8, 124.0, 121.3, 116.6, 94.8, 81.8, 50.4, 42.7, 35.7, 30.0, 21.2; IR (neat): 3489(bs), 3062, 2908, 2850, 2158(s), 1713, 1473, 1450, 1039, 1016, 824, 749, 622; HRESIMS Calcd for [C₂₅H₂₆NaOS]⁺ (M + Na⁺) 397.1597,

found 397.1596.

2'-((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-4-methoxy-[1,1'-biphenyl]-2-ol (1s)

Compound **1s** was prepared in 74% overall yield (576.3 mg) as a brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.51 (m, 1H), 7.35 – 7.31 (m, 2H), 7.20 – 7.27 (m, 1H), 7.15 – 7.13 (m, 1H), 6.57 – 6.49 (m, 2H), 5.11 (s, 1H), 3.79 (s, 3H), 2.00 – 1.94 (m, 3H), 1.76 – 1.72 (m, 6H), 1.65 – 1.55 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 160.6, 153.7, 137.9, 132.1, 131.3, 130.8, 128.1, 127.8, 124.2, 120.3, 106.7, 101.3, 94.8, 81.9, 55.2, 50.5, 42.8, 35.8, 30.1; IR (neat): 3454(bs), 2976, 2903, 2849, 2158(s), 2028, 1568, 1236, 1171, 1039, 617, 566, 539; HRESIMS Calcd for [C₂₅H₂₆NaO₂S]⁺ (M + Na⁺) 413.1546, found 413.1560.

2'-(((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-3-chloro-[1,1'-biphenyl]-2-ol (1t)

1t

Compound **1t** was prepared in 36% overall yield (287.0 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.52 (m, 1H), 7.35 – 7.28 (m, 4H), 7.19 (dd, *J* = 7.6, 1.6 Hz, 1H), 6.93 – 6.90 (m, 1H), 5.55 (s, 1H), 2.01 – 1.95 (m, 3H), 1.73 – 1.69 (m, 6H), 1.65 – 1.53 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 138.3, 132.0, 130.1, 130.0, 129.3, 128.6, 127.9, 127.6, 123.8, 120.7, 120.5, 95.0, 81.2, 50.3, 42.8, 35.8, 30.1; IR (neat): 3501(bs), 3011, 2907, 2851, 2157(s), 2028, 1958, 1370, 1209, 968, 912, 750, 611; HRESIMS Calcd for [C₂₄H₂₃ClNaOS]⁺ (M + Na⁺) 417.1050, found 417.1068.

2'-(((((3s,5s,7s)-adamantan-1-yl)thio)ethynyl)-3-chloro-[1,1'-biphenyl]-2-ol (1u)

1u

Compound **1u** was prepared in 46% overall yield (358.1 mg) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.51 (m, 1H), 7.37 – 7.27 (m, 3H), 7.09 (d, *J* = 7.2 Hz, 1H), 7.05 (dd, *J* = 7.6, 1.6 Hz, 1H), 6.87 – 6.84 (m, 1H), 5.03 (s, 1H), 2.28 (s, 3H), 1.97 – 1.90 (m, 3H), 1.65 – 1.68 (m, 6H), 1.62 – 1.50 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 138.5, 132.0, 130.6, 130.5, 128.2, 128.0, 127.9, 127.1, 124.7, 124.0, 119.9, 94.7, 81.9, 50.4, 42.6, 35.7, 30.0, 16.2; IR (neat): 3453(bs), 3061, 2906, 2850, 2160(s), 1736, 1659, 1450, 1251, 1166, 1039, 750; HRESIMS Calcd for [C₂₅H₂₆NaOS]⁺ (M + Na⁺) 397.1597, found 397.1590.

2'-(((((1S,3S,5R)-3-methyladamantan-1-yl)thio)ethynyl)-[1,1'-biphenyl]-2-ol (1v)

1v

Compound **1v** was prepared in 66% overall yield (515.2 mg) as a red oil. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 6.0 Hz, 1H), 7.33 – 7.26 (m, 3H), 7.24 – 7.21 (m, 2H), 6.98 – 6.94 (m, 2H), 5.08 (s, 1H), 2.06 – 1.94 (m, 2H), 1.65 – 1.55 (m, 4H), 1.48 – 1.45 (m, 4H), 1.36 – 1.28 (m, 4H), 0.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.7, 138.2, 132.2, 130.7, 130.5, 129.3, 128.0, 127.9, 127.6, 123.9, 120.5, 116.0, 94.6, 82.0, 50.8, 49.4, 42.8, 41.9, 34.9, 32.4, 30.4, 30.3; IR (neat): 3421(bs), 3062, 2904, 2844, 2162(s), 1738, 1455, 1308, 1239, 988, 776, 749, 687; HRESIMS Calcd for [C₂₅H₂₆NaOS]⁺ (M + Na⁺) 397.1597, found 397.1602.

2'-(((((1r,3R,5S)-3,5,7-trimethyladamantan-1-yl)thio)ethynyl)-[1,1'-biphenyl]-2-ol (1w)

1w

Compound **1w** was prepared in 60% overall yield (483.7 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.52 (m 1H), 7.35 – 7.28 (m, 3H), 7.25 – 7.22 (m, 2H), 7.01 – 6.94 (m, 2H), 5.51 (s, 1H), 1.33 – 1.27 (m, 6H), 1.03 – 0.95 (m, 6H), 0.80 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 138.3, 132.3, 130.8, 130.6, 129.5, 128.0, 127.9, 127.6, 123.8, 120.5, 116.2, 94.7, 81.8, 51.4, 49.4, 48.1, 33.6, 29.6; IR (neat): 3505(bs), 3010, 2907, 2837, 2160(s), 1557, 1472, 1456, 1181, 756, 583; HRESIMS Calcd for [C₂₇H₃₀NaOS]⁺ (M + Na⁺) 425.1910, found 425.1896.

2'-(((((1R,2r,38,5r)-adamantan-2-yl)thio)ethynyl)-[1,1'-biphenyl]-2-ol (1x)

1x

Compound **1x** was prepared in 59% overall yield (451.5 mg) as a orange oil. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.49 (m, 1H), 7.35 – 7.27 (m, 4H), 7.20 (dd, *J* = 7.2, 1.6 Hz, 1H), 6.98 – 6.94 (m, 2H), 5.04 (s, 1H), 3.36 – 3.31 (m, 1H), 2,01 – 1.98 (m, 2H), 1.85 – 1.79 (m, 6H), 1.70 – 1.64 (m, 4H), 1.49 – 1.46 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 152.7, 138.3, 131.7, 130.7, 130.4, 129.3, 128.0, 127.4, 123.8, 120.4, 115.9, 91.7, 84.6, 57.7, 38.5, 37.6, 31.9, 31.4, 27.5, 27.2; IR (neat): 3471(bs), 3061, 2906, 2850, 2156(s), 1958, 1737, 1461, 1449, 1238, 748, 588; HRESIMS Calcd for [C₂₄H₂₄NaOS]⁺ (M + Na⁺) 383.1440, found 383.1461.

2'-((*tert*-butylthio)ethynyl)-[1,1'-biphenyl]-2-ol (1y)

1y

Compound **1y** was prepared in 63% overall yield (423.6 mg) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.52 (m, 1H), 7.35 – 7.29 (m, 3H), 7.25 – 7.21 (m, 2H), 6.97 – 6.94 (m, 2H), 5.06 (s, 1H), 1.20 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 152.7, 138.1, 131.9, 130.7, 130.5, 129.3, 128.0, 128.0, 127.5, 123.9, 120.5, 116.0, 94.6, 83.5, 48.6, 30.1; IR (neat): 3520(bs), 3056, 2962, 2922, 2863, 2161(s), 1958, 1609, 1581, 1290, 1041, 934, 580; HRESIMS Calcd for [C₁₈H₁₈NaOS]⁺ (M + Na⁺) 305.0971, found 305.0959.

2'-((isopropylthio)ethynyl)-[1,1'-biphenyl]-2-ol (1z)

1z

Compound **1z** was prepared in 73% overall yield (353.8 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.55 (m, 1H), 7.41 – 7.35 (m, 3H), 7.31 – 7.25 (m, 2H), 7.02 – 6.98 (m, 2H), 5.07 (s, 1H), 3.06 – 2.96 (m, 1H), 1.20 (s, 3H), 1.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.7, 138.3, 131.9, 130.8, 130.4, 129.4, 128.1, 128.0, 127.4, 123.8, 120.5, 116.0, 93.4, 83.2, 40.0, 22.7; IR (neat): 3449(bs), 3025, 2959, 2922, 2368, 2157(s), 2028, 1958, 1617, 1583, 1034, 729; HRESIMS Calcd for [C₁₇H₁₆NaOS]⁺ (M + Na⁺) 291.0814, found 291.0829.

2'-((cyclohexylthio)ethynyl)-[1,1'-biphenyl]-2-ol (1aa)

1aa

Compound **1aa** was prepared in 78% overall yield (479.9 mg) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.50 (m, 1H), 7.37 – 7.29 (m, 3H), 7.28 – 7.20 (m, 2H), 6.99 – 6.94 (m, 2H), 5.06 (s, 1H), 2.73 – 2.65 (m, 1H), 1.80 – 1.75 (m, 2H), 1.68 – 1.65 (m, 2H), 1.56 – 1.52 (m, 1H), 1.26 – 1.11 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 152.7, 138.3, 131.8, 130.8, 130.4, 129.3, 128.0, 127.9, 127.5, 123.8, 120.4, 115.9, 92.9, 83.3, 47.7, 32.8, 26.1, 25.1; IR (neat): 3440(bs), 3000, 2906, 2850, 2162(s), 1958, 1604, 1242, 1211, 1018, 751, 589; HRESIMS Calcd for [C₂₀H₂₀NaOS]⁺ (M + Na⁺) 331.1127, found 331.1126.

2'-((benzylthio)ethynyl)-[1,1'-biphenyl]-2-ol (1ab)

Compound **1ab** was prepared in 57% overall yield (631.2 mg) as a brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.2 Hz, 1H), 7.30 – 7.20 (m, 8H), 7.07 – 7.05 (m, 2H), 6.98 – 6.94 (m, 2H), 5.13 (s, 1H), 3.72 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 152.6, 138.4, 136.5, 131.9, 130.9, 130.3, 129.5, 128.8, 128.4, 128.2, 127.8, 127.5, 127.3, 123.3, 120.4, 116.0, 93.1, 83.9, 40.3; IR (neat): 3410(bs), 3060, 3029, 2927, 2163(s), 2028, 1958, 1610, 1580, 1423, 911, 894, 552; HRESIMS Calcd for [C₂₁H₁₆NaOS]⁺ (M + Na⁺) 339.0814, found 339.0795.

2'-((phenylthio)ethynyl)-[1,1'-biphenyl]-2-ol (1ac)

1ac

Compound **1ac** was prepared in 43% overall yield (260.6 mg) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.5 Hz, 1H), 7.43 – 7.35 (m, 3H), 7.33 – 7.27 (m, 2H), 7.20 – 7.14 (m, 3H), 7.05 – 6.99 (m, 4H), 5.02 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.6, 138.4, 132.4, 132.1, 130.8, 130.5, 129.6, 129.2, 128.7, 128.1, 127.2, 126.2, 125.9, 123.3, 120.6, 116.0, 96.8, 79.5; IR (neat): 3523(bs), 3012, 2330, 2161(s), 1958, 1653, 1149, 986, 893, 834, 639; HRESIMS Calcd for [C₂₀H₁₄NaOS]⁺ (M + Na⁺) 325.0658, found 325.0659.

3. General Procedure for the Synthesis of Spirocyclic Enones 2

To a mixture of alkynyl thioether **1** (0.1 mmol) in DCE (2 mL) was added **A7** (0.005 mmol, 4.6 mg) at 10 °C. Then, the reaction mixture was stirred at 10 °C and the progress of the reaction was monitored by TLC. Upon completion, the mixture was quenched by Et₃N (0.012 mmol, 1.7 μ L) and concentrated under reduced pressure. The residue was purified by chromatography on silica gel (eluent: hexanes/acetone) to afford the desired chiral spirocyclic enone **2**.

(S)-2'-(((3R,5R,7R)-adamantan-1-yl)thio)spiro[cyclohexane-1,1'-indene]-2,4dien-6-one (2a)

Compound **2a** was prepared in 93% yield (33.5 mg) according to the general procedure (Table 2, entry 1). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a yellow solid (mp 156–158 °C). $[\alpha]_D^{20} = +241.7^{\circ}$ (c = 1.0, CHCl₃). 96:4 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 6.20 min (major), 7.58 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.18 (m, 3H), 7.08 – 7.04 (m, 1H), 7.02 – 6.99 (m, 2H), 6.48 (ddd, J = 9.2, 5.6, 0.4 Hz, 1H), 6.21 (d, J = 10.0 Hz, 1H), 5.95 – 5.92 (m, 1H), 2.06 – 1.98 (m, 9H), 1.69 – 1.68 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 145.2, 143.6, 142.7, 142.1, 140.5, 135.4, 128.1, 127.3, 125.3, 122.9, 122.0, 120.6, 72.7, 50.0, 43.5, 36.0, 29.9; IR (neat): 3441, 2905, 2848, 1958, 1666(s), 1630, 1461, 1039, 748, 688; HRESIMS Calcd for [C₂₄H₂₄NaOS]⁺ (M + Na⁺) 383.1440, found 383.1443.

(S)-2'-(((3R,5R,7R)-adamantan-1-yl)thio)-5'-fluorospiro[cyclohexane-1,1'indene]-2,4-dien-6-one (2b)

Compound **2b** was prepared in 72% yield (27.2 mg) according to the general procedure (Table 2, entry 2). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 20/1) as an orange oil. $[\alpha]_D^{20} = +228.2^\circ$ (c = 1.0, CHCl₃). 97:3 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 6.22 min (major), 7.17 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.24 -7.20 (m, 1H), 6.97 - 6.91 (m, 3H), 6.77 - 6.72 (m, 1H), 6.50 (dd, J = 9.2, 6.0 Hz, 1H),

6.22 (d, J = 9.6 Hz, 1H), 5.93 (d, J = 8.8 Hz, 1H), 2.11 – 2.06 (m, 3H), 2.03 – 2.01 (m, 6H), 1.73 – 1.67 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 163.1 (d, J = 244.0 Hz), 147.4 (d, J = 10.0 Hz), 145.1, 142.7, 140.3, 138.9 (d, J = 3.0 Hz), 133.4 (d, J = 2.0 Hz), 127.4, 123.1, 123.0, 111.8 (d, J = 23.0 Hz), 107.8 (d, J = 24.0 Hz), 71.9, 50.5, 43.5, 36.1, 30.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.0; IR (neat): 3058, 2907, 2850, 1958, 1712, 1591(s), 1559, 1540, 1488, 1193, 965, 754, 689; HRESIMS Calcd for [C₂₄H₂₃FNaOS]⁺ (M + Na⁺) 401.1346, found 401.1350.

(S)-2'-(((3R,5R,7R)-adamantan-1-yl)thio)-5'-chlorospiro[cyclohexane-1,1'-

indene]-2,4-dien-6-one (2c)

2c

Compound **2c** was prepared in 86% yield (33.9 mg) according to the general procedure (Table 2, entry 3). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a yellow oil. $[\alpha]_D{}^{20} = +283.4^{\circ}$ (c = 1.0, CHCl₃). 96:4 e.r. (determined by HPLC: Chiralpak IC Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 7.99 min (major), 8.86 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.20 (m, 2H), 7.03 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.93 – 6.90 (m, 2H), 6.51 (dd, *J* = 9.2, 6.0 Hz, 1H), 6.22 (d, *J* = 10.0 Hz, 1H), 5.92 (d, *J* = 9.2 Hz, 1H), 2.08 – 1.98 (m, 9H), 1.74 – 1.66 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 147.0, 144.9, 142.8, 141.7, 139.9, 134.2, 133.0, 127.4, 125.1, 123.3, 123.0, 120.6, 72.1, 50.5, 43.4, 36.0, 30.0; IR (neat): 2906, 2850, 2028, 1958, 1668(s), 1635, 1445, 1297, 1037, 751, 551; HRESIMS Calcd for [C₂₄H₂₃ClNaOS]⁺ (M + Na⁺) 417.1050, found 417.1057.

(S)-2'-(((3R,5R,7R)-adamantan-1-yl)thio)-5'-(trifluoromethyl)spiro[cyclohexane-1,1'-indene]-2,4-dien-6-one (2d)

Compound **2d** was prepared in 71% yield (30.4 mg) according to the general procedure (Table 2, entry 4). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a brown oil. $[\alpha]_D^{20} = +3.8^\circ$ (c = 1.0, CHCl₃). 90:10 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR =5.07 min (minor), 5.98 min (major)). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.27 – 7.23 (m, 1H), 7.09 (d, J = 7.6 Hz, 1H), 7.01 (s, 1H), 6.57 – 6.53 (m, 1H), 6.24 (d, J = 9.6 Hz, 1H), 5.92 (d, J = 9.2 Hz, 1H), 2.09 – 2.00 (m, 9H), 1.73 – 1.69 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 196.1, 147.0, 146.1, 145.4, 142.9 139.4, 132.7, 130.7 (q, J = 32.0 Hz), 127.6, 124.2 (q, J = 270.0 Hz), 123.7, 122.3, 122.2 (q, J = 4.0 Hz), 117.2 (q, J = 4.0 Hz), 72.5, 50.6, 43.4, 36.1, 30.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.3; IR (neat): 2923, 2908, 2849, 2029, 1959, 1668(s), 1333, 1233, 619, 525; HRESIMS Calcd for [C₂₅H₂₃F₃NaOS]⁺ (M + Na⁺) 451.1314, found 451.1328.

(S)-2'-(((3R,5R,7R)-adamantan-1-yl)thio)-5'-methylspiro[cyclohexane-1,1'indene]-2,4-dien-6-one (2e)

2e

Compound **2e** was prepared in 88% yield (32.9 mg) according to the general procedure (Table 2, entry 5). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a yellow oil. $[\alpha]_D^{20} = +128.7^\circ$ (c = 1.0, CHCl₃). 97:3 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 8.27 min (major), 10.02 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ

7.22 – 7.18 (m, 1H), 7.10 (s, 1H), 6.99 (s, 1H), 6.93 – 6.86 (m, 2H), 6.48 (dd, J = 8.8, 6.4 Hz, 1H), 6.20 (d, J = 10.0 Hz, 1H), 5.94 (d, J = 9.2 Hz, 1H), 2.33 (s, 3H), 2.06 – 1.96 (m, 9H), 1.70 – 1.66 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 145.4, 142.7, 142.0, 141.0, 140.9, 138.0, 135.9, 127.4, 126.3, 122.8, 121.9, 121.5, 72.5, 50.2, 43.6, 36.1, 30.0, 21.5; IR (neat): 2912, 2851, 2029, 1959, 1669(s), 1540, 1539, 1039, 739, 729, 560; HRESIMS Calcd for [C₂₅H₂₆NaOS]⁺ (M + Na⁺) 397.1597, found 397.1597.

(S)-2'-(((3R,5R,7R)-adamantan-1-yl)thio)-5'-methoxyspiro[cyclohexane-1,1'indene]-2,4-dien-6-one (2f)

2f

Compound **2f** was prepared in 69% yield (26.9 mg) according to the general procedure (Table 2, entry 6). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 12/1) as a yellow oil. $[\alpha]_D^{20} = +56.7^\circ$ (c = 1.0, CHCl₃). 92:8 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 9.81 min (major), 11.63 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.19 (m, 1H), 6.98 (s, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.85 (s, 1H), 6.62 (d, J = 8.0 Hz, 1H), 6.48 (dd, J = 9.2, 6.8 Hz, 1H), 6.21 (d, J = 10.0 Hz, 1H), 5.95 (d, J = 9.2 Hz, 1H), 3.80 (s, 3H), 2.07 – 1.98 (m, 9H), 1.71 –1.68 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 160.1, 146.8, 143.4, 142.7, 141.0, 135.7, 135.2, 127.4, 122.7(4), 122.7(1), 111.2, 106.5, 72.1, 55.5, 50.3, 43.4, 36.1, 30.1; IR (neat): 2905, 2849, 2029, 1959, 1666(s), 1464, 1226, 1039, 800, 586; HRESIMS Calcd for [C₂₅H₂₆NaO₂S]⁺ (M + Na⁺) 413.1546, found 413.1563.

(S)-2'-(((3R,5R,7R)-adamantan-1-yl)thio)-5'-hydroxyspiro[cyclohexane-1,1'indene]-2,4-dien-6-one (2g)

Compound **2g** was prepared in 72% yield (27.1 mg) according to the general procedure (Table 2, entry 7). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 20/1) as a yellow oil. $[\alpha]_D^{20} = +85.4^{\circ}$ (c = 1.0, CHCl₃). 64:36 e.r. (determined by HPLC: Chiralpak IC Column, 10/90 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 27.65 min (minor), 30.66 min (major)). ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.17 (m, 1H), 6.82 (s, 1H), 6.68 (d, J = 8.4 Hz, 1H), 6.47 (d, J = 2.0 Hz, 1H), 6.41 (dd, J = 9.2, 6.0 Hz, 1H), 6.36 – 6.34 (m, 2H), 6.16 (d, J = 9.6 Hz, 1H), 5.89 (d, J = 8.8 Hz, 1H), 2.00 – 1.90 (m, 9H), 1.64 –1.58 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 199.1, 156.6, 146.8, 143.9, 142.4, 141.8, 135.6, 134.5, 127.1, 122.6, 122.5, 112.6, 108.4, 72.1, 50.3, 43.5, 36.1, 30.0; IR (neat): 3240(bs), 2906, 2850, 2028, 1958, 1665(s), 1502, 1403, 1270, 883, 799, 693; HRESIMS Calcd for [C₂₄H₂₄NaO₂S]⁺ (M + Na⁺) 399.1389, found 399.1388.

(S)-2'-(((3R,5R,7R)-adamantan-1-yl)thio)-6'-fluorospiro[cyclohexane-1,1'indene]-2,4-dien-6-one (2h)

2h

Compound **2h** was prepared in 92% yield (34.8 mg) according to the general procedure (Table 2, entry 8). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 20/1) as a yellow solid (mp 185–186 °C). $[\alpha]_D^{20} = -70.6^\circ$ (c = 1.0, CHCl₃). 90:10 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 5.00 min (major), 7.94 min (minor)). ¹H NMR (400 MHz,

CDCl₃) δ 7.17 – 7.13 (m, 2H), 6.91 – 6.87 (m, 2H), 6.68 (dd, J = 8.4, 2.0 Hz, 1H), 6.45 (dd, J = 9.2, 6.0 Hz, 1H), 6.16 (d, J = 10.0 Hz, 1H), 5.86 (d, J = 9.2 Hz, 1H), 2.03 – 1.99 (m, 3H), 1.95 – 1.88 (m, 6H), 1.64 –1.60 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 196.5, 161.3 (d, J = 245.0 Hz), 145.7 (d, J = 8.0 Hz), 142.8, 141.6 (d, J = 4.0 Hz), 141.2 (d, J = 3.0 Hz), 139.9, 135.2, 127.5, 123.4, 121.4 (d, J = 8.0 Hz), 115.0 (d, J = 22.0 Hz), 110.4 (d, J = 25.0 Hz), 72.7, 50.3, 43.6, 36.1, 30.1; ¹⁹F NMR (376 MHz, CDCl₃) δ - 116.0; IR (neat): 2956, 2907, 2850, 2029, 1959, 1667(s), 1476, 1264, 1039, 784, 575; HRESIMS Calcd for [C₂₄H₂₃FNaOS]⁺ (M + Na⁺) 401.1346, found 401.1356.

(S)-2'-(((3R,5R,7R)-adamantan-1-yl)thio)-6'-chlorospiro[cyclohexane-1,1'indene]-2,4-dien-6-one (2i)

2i

Compound **2i** was prepared in 87% yield (34.6 mg) according to the general procedure (Table 2, entry 9). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a yellow oil. $[\alpha]_D^{20} = +283.8^{\circ}$ (c = 1.0, CHCl₃). 95.5:4.5 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 5.08 min (major), 8.28 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.17 (m, 3H), 6.98 (s, 1H), 6.96 (s, 1H), 6.52 (dd, J = 9.2, 6.4 Hz, 1H), 6.23 (d, J = 9.6 Hz, 1H), 5.93 (d, J = 9.2 Hz, 1H), 2.08 – 1.97 (m, 9H), 1.72 –1.67 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 196.3, 145.1, 143.8, 143.1, 142.8, 139.7, 134.0, 131.1, 128.3, 127.5, 123.4, 122.8, 121.3, 72.5, 50.4, 43.5, 36.0, 30.0; IR (neat): 2918, 2852, 2028, 1959, 1668(s), 1452, 1262, 1037, 720, 627; HRESIMS Calcd for [C₂₄H₂₃ClNaOS]⁺ (M + Na⁺) 417.1050, found 417.1071.

(S)-2'-(((3R,5R,7R)-adamantan-1-yl)thio)-6'-methylspiro[cyclohexane-1,1'indene]-2,4-dien-6-one (2j)

Compound **2j** was prepared in 91% yield (34.0 mg) according to the general procedure (Table 2, entry 10). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a brown oil. $[\alpha]_D^{20} = +268.9^\circ$ (c = 1.0, CHCl₃). 95.5:4.5 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 4.93 min (major), 6.94 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.20 (m, 1H), 7.17 (d, *J* = 7.6 Hz, 1H), 7.06 (d, *J* = 7.6 Hz, 1H), 7.01 (s, 1H), 6.83 (s, 1H), 6.49 (dd, *J* = 9.2, 6.0 Hz, 1H), 6.22 (d, *J* = 10.0 Hz, 1H), 5.95 (d, *J* = 9.2 Hz, 1H), 2.28 (s, 3H), 2.09 – 2.04 (m, 3H), 2.02 – 1.96 (m, 6H), 1.70 – 1.67 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 144.2, 142.8, 142.6, 141.0, 140.5, 136.5, 135.6, 128.9, 127.5, 123.1, 122.9, 120.5, 72.8, 50.1, 43.7, 36.1, 30.1, 21.4; IR (neat): 2904, 2847, 2361, 2029, 1959, 1667(s), 1456, 1297, 1039, 772, 595; HRESIMS Calcd for [C₂₅H₂₆NaOS]⁺ (M + Na⁺) 397.1597, found 397.1604.

(S)-2'-(((3R,5R,7R)-adamantan-1-yl)thio)-6'-methoxyspiro[cyclohexane-1,1'indene]-2,4-dien-6-one (2k)

2k

Compound **2k** was prepared in 93% yield (36.3 mg) according to the general procedure (Table 2, entry 11). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 12/1) as a yellow oil. $[\alpha]_D^{20} = +149.7^\circ$ (c = 1.0, CHCl₃). 90:10 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 6.17 min (major), 10.66 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.19 (m, 2H), 7.00 (s, 1H), 6.81 (dd, J = 8.4, 2.4 Hz, 1H), 6.59 (d, J = 2.0 Hz,

1H), 6.50 (dd, J = 9.2, 6.0 Hz, 1H), 6.22 (d, J = 9.6 Hz, 1H), 5.95 (d, J = 9.2 Hz, 1H), 3.74 (s, 3H), 2.08 – 2.03 (m, 3H), 1.99 – 1.93 (m, 6H), 1.69 –1.66 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 158.4, 146.0, 142.8, 140.8, 138.5, 138.1, 137.4, 127.5, 123.0, 121.4, 113.6, 109.1, 72.9, 55.6, 50.1, 43.8, 36.1, 30.1; IR (neat): 2904, 2849, 1958, 1667(s), 1475, 1282, 1229, 1038, 772, 731, 543; HRESIMS Calcd for [C₂₅H₂₆NaO₂S]⁺ (M + Na⁺) 413.1546, found 413.1539.

(S)-2'-(((3R,5R,7R)-adamantan-1-yl)thio)-4'-chlorospiro[cyclohexane-1,1'-

indene]-2,4-dien-6-one (2l)

21

Compound **21** was prepared in 89% yield (35.2 mg) according to the general procedure (Table 2, entry 12). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a brown oil. $[\alpha]_D^{20} = +181.8^{\circ}$ (c = 1.0, CHCl₃). 80:20 e.r. (determined by HPLC: Chiralpak IC Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 5.79 min (major), 6.70 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.20 (m, 2H), 7.07 (s, 1H), 7.01 – 6.98 (m, 1H), 6.89 (d, *J* = 7.2 Hz, 1H), 6.51 (dd, *J* = 9.2, 5.6 Hz, 1H), 6.23 (d, *J* = 9.6 Hz, 1H), 5.92 (d, *J* = 9.2 Hz, 1H), 2.09 – 2.01 (m, 9H), 1.73 –1.69 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 196.2, 144.9, 144.1, 143.7, 142.8, 139.7, 131.5, 128.5, 127.5, 126.5, 125.2, 123.3, 120.5, 73.3, 50.5, 43.4, 36.0, 30.0; IR (neat): 2907, 2850, 1959, 1668(s), 1450, 1298, 1039, 763, 730, 607; HRESIMS Calcd for [C₂₄H₂₃ClNaOS]⁺ (M + Na⁺) 417.1050, found 417.1060.

(S)-2'-(((3R,5R,7R)-adamantan-1-yl)thio)-3-fluorospiro[cyclohexane-1,1'indene]-2,4-dien-6-one (2m)

Compound **2m** was prepared in 79% yield (29.9 mg) according to the general procedure (Table 2, entry 13). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a brown solid (mp 141–143 °C). $[\alpha]_D^{20} = +87.3^{\circ}$ (c = 1.0, CHCl₃). 95:5 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 5.29 min (major), 6.74 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.27 (m, 2H), 7.14 – 7.08 (m, 2H), 7.05 (d, J = 7.6 Hz, 1H), 7.00 (s, 1H), 6.23 (dd, J = 10.4, 4.4 Hz, 1H), 5.46 (dd, J = 9.6, 3.2 Hz, 1H), 2.10 – 2.06 (m, 3H), 2.01 – 1.96 (m, 6H), 1.71 – 1.68 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 195.6 (d, J = 1.0 Hz), 155.9 (d, J = 250.0 Hz), 144.9, 144.2 (d, J = 3.0 Hz), 142.5 (d, J = 3.0 Hz), 138.4 (d, J = 37.0 Hz), 135.6, 129.5 (d, J = 8.0 Hz), 128.5, 125.7, 122.3, 120.9, 114.2 (d, J = 19.0 Hz), 70.4 (d, J = 8.0 Hz), 50.4, 43.6, 36.1, 30.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.3; IR (neat): 2909, 2850, 1958, 1649(s), 1462, 1403, 1298, 1219, 1039, 881, 740; HRESIMS Calcd for [C₂₄H₂₃FNaOS]⁺ (M + Na⁺) 401.1346, found 401.1359.

(S)-2'-(((3R,5R,7R)-adamantan-1-yl)thio)-3-chlorospiro[cyclohexane-1,1'indene]-2,4-dien-6-one (2n)

2n

Compound **2n** was prepared in 88% yield (31.5 mg) according to the general procedure (Table 2, entry 14). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a brown oil. $[\alpha]_D^{20} = -7.8^\circ$ (c = 1.0, CHCl₃). 91.5:8.5 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 5.25 min (major), 6.49 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.28

-7.26 (m, 2H), 7.11 - 7.08 (m, 2H), 7.05 (d, J = 7.2 Hz, 1H), 7.01 (s, 1H), 6.22 (d, J = 10.0 Hz, 1H), 5.94 (d, J = 2.4 Hz, 1H), 2.09 - 2.04 (m, 3H), 2.03 - 1.96 (m, 6H), 1.70 - 1.67 (m, 6H); 13 C NMR (100 MHz, CDCl₃) δ 195.1, 144.9, 144.5, 143.4, 141.7, 136.2, 134.7, 128.7, 128.5, 127.7, 125.8, 122.4, 120.9, 72.8, 50.4, 43.6, 36.0, 30.0; IR (neat): 3062, 2930, 2852, 2029, 1958, 1668(s), 1452, 1298, 1219, 1039, 833, 749, 638; HRESIMS Calcd for [C₂₄H₂₃ClNaOS]⁺ (M + Na⁺) 417.1050, found 417.1052.

(S)-2'-(((3R,5R,7R)-adamantan-1-yl)thio)-3-methylspiro[cyclohexane-1,1'-

indene]-2,4-dien-6-one (20)

20

Compound **20** was prepared in 89% yield (33.3 mg) according to the general procedure (Table 2, entry 15). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a yellow oil. $[\alpha]_D^{20} = +140.7^{\circ}$ (c = 1.0, CHCl₃). 92.5:7.5 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 5.67 min (major), 6.69 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.21 (m, 2H), 7.09 – 7.04 (m, 2H), 7.00 – 6.99 (m, 2H), 6.19 (d, *J* = 10.0 Hz, 1H), 5.61 (s, 1H), 2.07 – 1.97 (m, 12H), 1.70 –1.67 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 147.1, 145.1, 144.4, 142.8, 134.9, 134.1, 130.7, 128.0, 127.1, 125.3, 122.1, 120.6, 72.1, 50.0, 43.5, 36.1, 30.0, 21.2; IR (neat): 3061, 2904, 2850, 2029, 1959, 1671(s), 1645, 1450, 1298, 1123, 1039, 824, 751, 738; HRESIMS Calcd for [C₂₅H₂₆NaOS]⁺ (M + Na⁺) 397.1597, found 397.1585.

(1S)-2'-(((3S)-adamantan-1-yl)thio)-3-methoxyspiro[cyclohexane-1,1'-indene]-2,4-dien-6-one (2p)

Compound **2p** was prepared in 88% yield (34.2 mg) according to the general procedure (Table 2, entry 16). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a yellow oil. $[\alpha]_D^{20} = +174.9^{\circ}$ (c = 1.0, CHCl₃). 97.5:2.5 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 5.16 min (major), 6.27 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 7.2 Hz, 1H), 7.23 (d, *J* = 6.8 Hz, 1H), 7.12 (dd, *J* = 10.0, 2.4 Hz, 1H), 7.08 – 7.04 (m, 1H), 7.00 – 6.97 (m, 2H), 6.21 (d, *J* = 10.0 Hz, 1H), 5.58 (s, 1H), 2.35 – 2.40 (m, 2H), 2.09 – 2.05 (m, 3H), 2.01 – 1.97 (m, 6H), 1.70 – 1.68 (m, 6H), 1.14 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.5, 146.5, 145.2, 144.6, 142.9, 136.6, 135.3, 132.8, 128.0, 127.3, 125.4, 122.2, 120.6, 72.1, 50.0, 43.7, 36.1, 30.1, 28.2, 12.9; IR (neat): 2964, 2903, 2849, 2029, 1959, 1761, 1668(s), 1452, 1298, 1204, 1193, 1038, 750, 737; HRESIMS Calcd for [C₂₆H₂₈NaOS]⁺ (M + Na⁺) 411.1753, found 411.1761.

(1S)-2'-(((3S)-adamantan-1-yl)thio)-4-chlorospiro[cyclohexane-1,1'-indene]-2,4dien-6-one (2q)

Compound **2q** was prepared in 94% yield (37.1 mg) according to the general procedure (Table 2, entry 17). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a yellow solid (mp 189–191 °C). $[\alpha]_D^{20} = +33.2^\circ$ (c = 1.0, CHCl₃). 90:10 e.r. (determined by HPLC: Chiralpak IA Column, 10/90 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 6.57 min (major), 7.78 min (minor)). ¹H NMR (400 MHz,

CDCl₃) δ 7.29 – 7.16 (m, 2H), 7.11 – 7.08 (m, 1H), 7.05 – 7.00 (m, 2H), 6.53 (d, J = 9.6 Hz, 1H), 6.42 (s, 1H), 5.98 (d, J = 9.6 Hz, 1H), 2.10 – 2.05 (m, 3H), 2.04 – 2.00 (m, 6H), 1.71 –1.67 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 152.4, 145.3, 143.4, 141.8, 141.3, 136.2, 128.5, 126.5, 125.7, 125.6, 122.4, 120.9, 71.6, 50.5, 43.6, 36.1, 30.1. IR (neat): 2905, 2850, 2029, 1959, 1662(s), 1558, 1456, 1284, 1039, 821, 673, 594; HRESIMS Calcd for [C₂₄H₂₃ClNaOS]⁺ (M + Na⁺) 417.1050, found 417.1063.

(1S)-2'-(((3S)-adamantan-1-yl)thio)-4-methylspiro[cyclohexane-1,1'-indene]-2,4dien-6-one (2r)

Compound **2r** was prepared in 93% yield (34.8 mg) according to the general procedure (Table 2, entry 18). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a brown oil. $[\alpha]_D^{20} = +111.2^\circ$ (c = 1.0, CHCl₃). 91:9 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 6.25 min (major), 7.45 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.25 (m, 1H), 7.25 – 7.21 (m, 1H), 7.06 – 6.97 (m, 3H), 6.38 (d, *J* = 9.6 Hz, 1H), 6.09 (s, 1H), 5.91 (d, *J* = 9.2 Hz, 1H), 2.20 (s, 3H), 2.07 – 1.99 (m, 9H), 1.71 – 1.68 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 155.1, 145.3, 144.1, 142.5, 139.7, 135.3, 128.1, 126.9, 125.3, 125.1, 122.1, 120.6, 71.5, 50.1, 43.6, 36.1, 30.1, 23.2; IR (neat): 2908, 2850, 2029, 1959, 1661(s), 1461, 1185, 1039, 773, 746, 613; HRESIMS Calcd for [C₂₅H₂₆NaOS]⁺ (M + Na⁺) 397.1597, found 397.1607.

(1S)-2'-(((3S)-adamantan-1-yl)thio)-4-methoxyspiro[cyclohexane-1,1'-indene]-2,4-dien-6-one (2s)

Compound **2s** was prepared in 90% yield (35.1 mg) according to the general procedure (Table 2, entry 19). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 12/1) as a red oil. $[\alpha]_D^{20} = +157.6^\circ$ (c = 1.0, CHCl₃). 90:10 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 7.31 min (major), 10.76 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 7.2 Hz, 1H), 7.24 – 7.22 (m, 1H), 7.09 – 7.05 (m, 1H), 7.04 (s, 1H), 7.01 (d, *J* = 7.6 Hz, 1H), 6.38 (dd, *J* = 10.0, 2.0 Hz, 1H), 5.95 (d, *J* = 10.0 Hz, 1H), 5.66 (d, *J* = 1.6 Hz, 1H), 3.84 (s, 3H), 2.07 – 2.00 (m, 9H), 1.72 – 1.68 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 172.5, 145.3, 144.3, 142.4, 141.4, 135.5, 128.1, 125.4, 123.2, 122.2, 120.6, 101.6, 71.1, 55.9, 50.1, 43.6, 36.1, 30.0; IR (neat): 3060, 2920, 2852, 1959, 1648(s), 1568, 1506, 1265, 1196, 1034, 929, 921, 895, 564; HRESIMS Calcd for [C₂₅H₂₆NaO₂S]⁺ (M + Na⁺) 413.1546, found 413.1550.

(1S)-2'-(((3S)-adamantan-1-yl)thio)-5-chlorospiro[cyclohexane-1,1'-indene]-2,4dien-6-one (2t)

Compound **2t** was prepared in 71% yield (28.0 mg) according to the general procedure (Table 2, entry 20). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a yellow soild (mp 166–170 °C). $[\alpha]_D^{20} = +217.7^{\circ}$ (c = 1.0, CHCl₃). 97:3 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 10.29 min (major), 11.53 min (minor)). ¹H NMR (400 MHz,

CDCl₃) δ 7.37 (d, J = 6.8 Hz, 1H), 7.29 – 7.24 (m, 2H), 7.10 – 7.06 (m, 1H), 7.02 (s, 1H), 7.00 (d, J = 7.6 Hz, 1H), 6.41 (dd, J = 9.2, 6.8 Hz, 1H), 5.88 (d, J = 9.2 Hz, 1H), 2.10 – 2.04 (m, 3H), 2.02 – 1.95 (m, 6H), 1.72 – 1.66 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 189.7, 145.1, 143.0, 141.3, 140.1, 139.5, 136.3, 132.0, 128.4, 125.7, 122.7, 122.2, 120.8, 73.9, 50.5, 43.6, 35.9, 30.0; IR (neat): 2905, 2848, 2029, 1959, 1679(s), 1632, 1461, 1450, 1328, 1038, 781, 635; HRESIMS Calcd for [C₂₄H₂₃ClNaOS]⁺ (M + Na⁺) 417.1050, found 417.1055.

(1S)-2'-(((3S)-adamantan-1-yl)thio)-5-methylspiro[cyclohexane-1,1'-indene]-2,4dien-6-one (2u)

Compound **2u** was prepared in 93% yield (34.7 mg) according to the general procedure (Table 2, entry 21). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a yellow oil. $[\alpha]_D{}^{20} = +220.1^\circ$ (c = 1.0, CHCl₃). 96:4 e.r. (determined by HPLC: Chiralpak IA Column, 10/90 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 6.66 min (major), 7.58 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.21 (m, 2H), 7.07 – 7.04 (m, 1H), 7.01 – 6.98 (m, 3H), 6.42 (dd, J = 9.2, 6.0 Hz, 1H), 5.84 (d, J = 9.2, 1H), 2.10 – 2.05 (m, 3H), 2.04 – 1.97 (m, 6H), 1.92 (s, 3H), 1.71 – 1.68 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 145.3, 144.2, 142.4, 139.0, 138.0, 135.3, 135.1, 128.0, 125.4, 123.3, 122.0, 120.6, 72.6, 50.1, 43.6, 36.1, 30.1, 16.0; IR (neat): 2916, 2851, 2029, 1959, 1661(s), 1644, 1455, 1298, 776, 738, 577; HRESIMS Calcd for [C₂₅H₂₆NaOS]⁺ (M + Na⁺) 397.1597, found 397.1598.

(S)-2'-(((1s,3R,5R,7S)-3-methyladamantan-1-yl)thio)spiro[cyclohexane-1,1'indene]-2,4-dien-6-one (2v)

Compound **2v** was prepared in 83% yield (31.0 mg) according to the general procedure (Table 3, entry 1). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a yellow oil. $[\alpha]_D^{20} = +91.2^{\circ}$ (c = 1.0, CHCl₃). 95.5:3.5 e.r. (determined by HPLC: Chiralpak IA Column, 5/95 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 10.12 min (major), 12.49 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.27 (m, 1H), 7.25 – 7.20 (m, 2H), 7.09 – 7.05 (m, 1H), 7.02 – 7.01 (m, 2H), 6.49 (dd, *J* = 9.2, 6.0 Hz, 1H), 6.22 (d, *J* = 9.6 Hz, 1H), 5.95 (d, *J* = 9.2 Hz, 1H), 2.13 – 2.08 (m, 2H), 1.98 – 1.85 (m, 4H), 1.75 – 1.69 (m, 2H), 1.65 – 1.54 (m, 2H), 1.45 – 1.40 (m, 4H), 0.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.0, 145.3, 143.7, 142.7, 142.2, 140.7, 135.3, 128.2, 127.5, 125.4, 123.0, 122.1, 120.7, 72.8, 50.6, 50.2, 43.1, 42.8, 42.7, 35.3, 32.4, 30.6, 30.3(9), 30.3(8); IR (neat): 2904, 2845, 2333, 2029, 1959, 1668(s), 1631, 1455, 1308, 989, 744, 689; HRESIMS Calcd for [C₂₅H₂₆NaOS]⁺ (M + Na⁺) 397.1597, found 397.1610.

(S)-2'-(((3R,5R,7R)-3,5,7-trimethyladamantan-1-yl)thio)spiro[cyclohexane-1,1'indene]-2,4-dien-6-one (2w)

2w

Compound **2w** was prepared in 88% yield (35.3 mg) according to the general procedure (Table 3, entry 2). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a brown oil. $[\alpha]_D^{20} = +81.4^{\circ}$ (c = 1.0, CHCl₃). 95.5:4.5 e.r. (determined by HPLC: Chiralpak IC Column, 5/95 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 16.89 min (major), 18.08 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.19

(m, 3H), 7.08 - 7.04 (m, 1H), 7.00 (d, J = 7.6 Hz, 1H), 6.97 (s, 1H), 6.48 (dd, J = 9.2, 6.4 Hz, 1H), 6.21 (d, J = 9.6 Hz, 1H), 5.94 (d, J = 8.8 Hz, 1H), 1.61 - 1.54 (m, 6H), 1.14 - 1.04 (m, 6H), 0.86 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 197.0, 145.3, 143.6, 142.7, 142.4, 140.8, 134.7, 128.2, 127.4, 125.4, 122.9, 122.1, 120.6, 72.7, 51.2, 49.7, 48.8, 33.5, 29.8; IR (neat): 2945, 2920, 2836, 2029, 1959, 1668(s), 1456, 1334, 1249, 748, 599; HRESIMS Calcd for [C₂₇H₃₀NaOS]⁺ (M + Na⁺) 425.1910, found 425.1883.

(S)-2'-(((1R,3S,5S,7S)-adamantan-2-yl)thio)spiro[cyclohexane-1,1'-indene]-2,4dien-6-one (2x)

2x

Compound **2x** was prepared in 89% yield (32.0 mg) according to the general procedure (Table 3, entry 3). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a yellow oil. $[\alpha]_D{}^{20} = +127.5^\circ$ (c = 1.0, CHCl₃). 90:10 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 7.71 min (major), 8.65 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.23 (m, 1H), 7.22 – 7.20 (m, 2H), 7.01 – 7.00 (m, 2H), 6.64 (s, 1H), 6.50 (dd, *J* = 9.2, 6.0 Hz, 1H), 6.23 (d, *J* = 9.6 Hz, 1H), 6.01 (dd, *J* = 9.6, 1.2 Hz, 1H), 3.68 – 3.63 (m, 1H), 2.15 – 2.02 (m, 4H), 1.96 – 1.82 (m, 6H), 1.76 – 1.72 (m, 2H), 1.60 – 1.57 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 147.2, 145.2, 143.1, 142.6, 141.3, 128.2, 127.3, 127.2, 124.5, 122.6, 121.8, 119.9, 71.5, 54.1, 38.6, 38.5, 37.5, 32.8, 32.6, 32.3, 32.2, 27.5, 27.3; IR (neat):3065, 2908, 2851, 2029, 1959, 1667(s), 1593, 1203, 933, 774, 753, 690, 531; HRESIMS Calcd for [C₂₄H₂₄NaOS]⁺ (M + Na⁺) 383.1440, found 383.1443.

(S)-2'-(tert-butylthio)spiro[cyclohexane-1,1'-indene]-2,4-dien-6-one (2y)

Compound **2y** was prepared in 77% yield (21.7 mg) according to the general procedure (Table 3, entry 4). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 12/1) as a yellow oil. $[\alpha]_D{}^{20} = +153.7^{\circ}$ (c = 1.0, CHCl₃). 86:14 e.r. (determined by HPLC: Chiralpak IC Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 7.66 min (major), 10.76 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.13 (m, 3H), 7.00 – 6.93 (m, 2H), 6.89 (s, 1H), 6.42 (dd, J = 9.2, 6.0 Hz, 1H), 6.15 (d, J = 10.0 Hz, 1H), 5.90 (d, J = 9.2 Hz, 1H), 1.40 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 197.0, 145.4, 144.3, 143.4, 142.7, 140.9, 133.2, 128.2, 127.4, 125.3, 122.8, 122.1, 120.5, 72.6, 47.4, 31.1; IR (neat): 2961, 2924, 2029, 1959, 1667(s), 1489, 1456, 1196, 952, 751, 526; HRESIMS Calcd for [C₁₈H₁₈NaOS]⁺ (M + Na⁺) 305.0971, found 305.0981.

(S)-2'-(isopropylthio)spiro[cyclohexane-1,1'-indene]-2,4-dien-6-one (2z)

2z

Compound **2z** was prepared in 92% yield (24.7 mg) according to the general procedure (Table 3, entry 5). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a yellow oil. $[\alpha]_D^{20} = +114.4^\circ$ (c = 1.0, CHCl₃). 85:15 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 5.40 min (minor), 10.45 min (major)). ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.19 (m, 3H), 7.04 – 7.00 (m, 2H), 6.69 (s, 1H), 6.48 (dd, *J* = 9.2, 6.0 Hz, 1H), 6.21 (d, *J* = 10.0 Hz, 1H), 5.99 (dd, *J* = 9.2, 0.8 Hz, 1H), 3.49 – 3.39 (m, 1H), 1.38 (d, *J* = 2.8 Hz, 3H), 1.36 (d, *J* = 2.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 146.3,
145.1, 143.2, 142.7, 141.0, 128.3, 128.2, 127.2, 124.7, 122.6, 121.8, 120.0, 71.3, 36.9, 22.8, 22.6; IR (neat): 2962, 2823, 2029, 1959, 1667(s), 1629, 1462, 1243, 748, 735, 689; HRESIMS Calcd for [C₁₇H₁₆NaOS]⁺ (M + Na⁺) 291.0814, found 291.0802.

(S)-2'-(cyclohexylthio)spiro[cyclohexane-1,1'-indene]-2,4-dien-6-one (2aa)

2aa

Compound **2aa** was prepared in 90% yield (27.7 mg) according to the general procedure (Table 3, entry 6). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 20/1) as a brown oil. $[\alpha]_D^{20} = +179.8^{\circ}$ (c = 1.0, CHCl₃). 90:10 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 9.00 min (major), 10.50 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.20 (m, 3H), 7.02 – 6.99 (m, 2H), 6.69 (s, 1H), 6.49 (dd, J = 9.2, 6.0 Hz, 1H), 6.22 (d, J = 9.6 Hz, 1H), 5.99 (d, J = 9.2 Hz, 1H), 3.25 – 3.20 (m, 1H), 2.11 – 2.08 (m, 2H), 1.78 – 1.76 (m, 2H), 1.66 – 1.58 (m, 2H), 1.51 – 1.30 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 146.1, 145.2, 143.3, 142.7, 141.1, 128.2, 128.1, 127.2, 124.7, 122.7, 121.9, 120.0, 71.5, 45.3, 33.0, 32.7, 25.8, 25.7; IR (neat): 2930, 2851, 2029, 1959, 1668(s), 1632, 1461, 1450, 1243, 748, 687; HRESIMS Calcd for [C₂₀H₂₀NaOS]⁺ (M + Na⁺) 331.1127, found 331.1134.

(S)-2'-(benzylthio)spiro[cyclohexane-1,1'-indene]-2,4-dien-6-one (2ab)

2ab

Compound **2ab** was prepared in 87% yield (27.5 mg) according to the general procedure (Table 3, entry 7). The product was purified by chromatography on silica gel

(eluent: hexanes/acetone = 10/1) as a yellow oil. $[\alpha]_D^{20} = +151.5^\circ$ (c = 1.0, CHCl₃). 91.5:8.5 e.r. (determined by HPLC: Chiralpak IA Column, 30/70 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 7.14 min (minor), 19.58 min (major)). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.29 (m, 2H), 7.25 – 7.22 (m, 2H), 7.20 – 7.12 (m, 4H), 6.98 – 6.93 (m, 2H), 6.60 (s, 1H), 6.41 (dd, J = 9.2, 6.0 Hz, 1H), 6.16 (d, J = 9.6 Hz, 1H), 5.92 (d, J = 9.2 Hz, 1H), 4.06 (dd, J = 16.8, 12.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 146.6, 144.9, 143.2, 142.8, 141.0, 135.9, 128.9, 128.6, 128.3, 128.0, 127.5, 127.2, 124.9, 122.8, 121.9, 120.2, 71.3, 37.5; IR (neat): 2932, 2029, 1959, 1667(s), 1489, 1196, 1023, 950, 751, 688; HRESIMS Calcd for $[C_{21}H_{16}NaOS]^+$ (M + Na⁺) 339.0814, found 339.0821.

(S)-2'-(phenylthio)spiro[cyclohexane-1,1'-indene]-2,4-dien-6-one (2ac)

2ac

Compound **2ac** was prepared in 85% yield (25.7 mg) according to the general procedure (Table 3, entry 8). The product was purified by chromatography on silica gel (eluent: hexanes/acetone = 15/1) as a yellow oil. $[\alpha]_D{}^{20} = +136.2^\circ$ (c = 1.0, CHCl₃). 82:18 e.r. (determined by HPLC: Chiralpak IC Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 9.76 min (major), 12.18 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.54 (m, 2H), 7.34 – 7.33 (m, 3H), 7.23 – 7.15 (m, 3H), 7.06 – 7.00 (m, 2H), 6.57 (s, 1H), 6.42 (dd, J = 9.2, 6.0 Hz, 1H), 6.20 (d, J = 10.0 Hz, 1H), 6.00 (d, J = 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 146.9, 144.5, 143.9, 142.6, 140.5, 134.1, 131.7, 131.5, 129.2, 128.7, 128.3, 127.4, 125.2, 122.7, 122.0, 120.7, 71.2; IR (neat): 2029, 1959, 1662(s), 1629, 1433, 746, 688, 626, 587; HRESIMS Calcd for $[C_{20}H_{14}NaOS]^+$ (M + Na⁺) 325.0658, found 325.0658.

4. Synthetic Utility Study

Catalyst recycling experiment:

To a mixture of alkynyl thioether **1a** (1 mmol, 360.5 mg) in DCE (10 mL) was added A7 (0.025 mmol, 23.0 mg) at 10 °C. Then, the reaction mixture was stirred at 10 °C and the progress of the reaction was monitored by TLC. Upon completion, the mixture was quenched by Et₃N (0.06 mmol, 8.4 μ L), concentrated under reduced pressure. The residue was purified by chromatography on silica gel (eluent: hexanes/ ethyl acetate) to give **2a** in 92% yield (331.6 mg) with 96:4 e.r. value, as well as recycled A7. The above-obtained A7 was washed with 6 M HCl and brine, dried over MgSO4 and filtered. The filtrate was concentrated under reduced pressure to deliver A7 (20.7 mg) which could be used in next 1 mmol reaction and delivered **2a** in similar yield and enantioselectivity. This experiment shows that the CPA catalyst could be recycled well.

(1*S*,6*S*)-2'-(((3*S*)-adamantan-1-yl)thio)spiro[cyclohexane-1,1'-indene]-2,4-dien-6ol (3)

To a solution of 2a (0.1 mmol, 36.0 mg) in MeOH (1.5 mL) was added CeCl₃•7H₂O

(0.12 mmol, 44.6 mg). The resulting mixture was stirred at -20 °C for 5 min before NaBH₄ (0.2 mmol, 7.6 mg) was added. Then the reaction was stirred at -20 °C for additional 4 h and the progress of the reaction was monitored by TLC. Upon completion, the mixture was diluted with water, extracted EtOAc, washed with aqueous NaHCO₃ and brine, dried over anhydrous MgSO₄, filtered and concentrated. The residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to give the desired product **3** in 90% yield (32.6 mg) with the d.r. of 11:1. Pale yellow oil. $[\alpha]_D^{20} =$ -5.0° (c = 1.0, CHCl₃). 96:4 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 8.67 min (minor), 13.24 min (major)). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 7.6 Hz, 1H), 7.22 – 7.19 (m, 2H), 7.12 – 7.08 (m, 1H), 6.77 (s, 1H), 6.20 (dd, J = 9.2, 5.2 Hz, 1H), 6.07 – 6.03 (m, 1H), 5.99 – 5.95 (m, 1H), 5.34 (d, J = 9.6 Hz, 1H), 4.71 (s, 1H), 2.12 (s, 1H), 2.10 – 2.05 (m, 9H), 1.73 -1.70 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.2, 143.8, 143.7, 131.0, 129.8, 129.3, 127.6, 125.0, 124.8, 124.1, 122.5, 119.6, 72.3, 63.0, 49.6, 43.3, 36.2, 30.0; IR (neat): 3431(bs), 2904, 2850, 2029, 1959, 1463, 1298, 1040, 745; HRESIMS Calcd for $[C_{24}H_{26}NaOS]^+$ (M + Na⁺) 385.1597, found 385.1598.

(1S,6R)-2'-(((3S)-adamantan-1-yl)thio)spiro[cyclohexane-1,1'-inden]-2-en-6-ol (4)

To a solution of **2a** (0.1 mmol, 36.0 mg) in MeOH (1.0 mL) was added NaBH₄ (0.4 mmol, 15.2 mg) at -20 °C and stirred at this temperature for 3 h. The progress of the reaction was monitored by TLC. Upon completion, the reaction was quenched with water (0.5 mL), extracted with EtOAc, washed with aqueous NaHCO₃ and brine, dried over anhydrous MgSO₄, filtered and concentrated. The residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to give the desired product **4** in 88% yield (32.1 mg) with the d.r. of 13:1. Colourless oil. $[\alpha]_D^{20} = -127.4^\circ$ (c = 1.0, CHCl₃). 96.5:3.5 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-

PrOH/hexane, 1.0 mL/min, 254nm; TR = 6.01 min (major), 11.48 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.19 (m, 3H), 7.13 – 7.08 (m, 1H), 6.86 (s, 1H), 6.04 – 6.00 (m, 1H), 5.04 (d, *J* = 10.0 Hz, 1H), 4.10 (d, *J* = 10.4 Hz, 1H), 2.55 – 2.25 (m, 3H), 2.10 – 2.07 (m, 9H), 1.99 – 1.93 (m, 1H), 1.75 – 1.72 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 144.4, 143.5, 131.7, 129.5, 127.3, 127.2, 124.7, 122.2, 119.6, 73.5, 63.7, 50.2, 43.5, 36.2, 30.0, 27.2, 24.2; IR (neat):3465(bs), 2906, 2850, 2029, 1959, 1452, 1341, 1297, 1056, 1039, 749, 733, 711; HRESIMS Calcd for [C₂₄H₂₈NaOS]⁺ (M + Na⁺) 387.1753, found 387.1751.

To a dry sealed tube equipped with a stir bar were added 4 (0.1 mmol, 36.4 mg), Pd₂(dba)₃ (0.005 mmol, 4.6 mg) and THF (1.5 mL). Then p-tol-MgBr (1 mmol, 1.0 mol/L in THF, 1.0 mL) was added dropwise at room temperature and the resulting mixture was stirred under N₂ atmosphere for 6 h. The progress of the reaction was monitored by TLC. Upon completion, the reaction was quenched with water (0.5 mL) and concentrated under reduced pressure. The residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to give the desired product 5 in 72% yield (20.7 mg). Colourless oil. $[\alpha]_D^{20} = -100.5^\circ$ (c = 1.0, CHCl₃). 96.5:3.5 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 i-PrOH/hexane, 1.0 mL/min, 254nm; TR = 5.66 min (minor), 6.93 min (major)). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.0 Hz, 2H), 7.33 - 7.26 (m, 3H), 7.20 (dd, J = 7.2, 1.2 Hz, 1H), 7.15 - 7.13 (m, 2H), 6.85 (s, 1H), 6.12 - 6.08 (m, 1H), 5.44 - 5.41 (m, 1H), 4.19 (dd, J = 11.2, 4.0 Hz, 1H), 2.36 (s, 3H), 1.80 – 1.72 (m, 2H), 1.64 – 1.54 (m, 2H), 1.41 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 151.3, 150.7, 143.6, 137.3, 136.1, 131.2, 129.5, 128.9, 128.1, 127.5, 127.5, 125.5, 122.6, 120.9, 73.9, 62.5, 26.5, 24.4, 21.2; IR (neat): 3440(bs), 3012, 1633, 1514, 1464, 1265, 819, 750, 510; HRESIMS Calcd for $[C_{21}H_{20}NaO]^+$ (M + Na⁺) 311.1406, found

311.1413.

(S)-2'-(((3R,5R,7R)-adamantan-1-yl)thio)spiro[cyclohexane-1,1'-inden]-2-one (6)

To a solution of **2a** (0.1 mmol, 36.0 mg) in MeOH (1 mL) was added Pd(OH)₂/C (10% on carbon, 0.02 mmol, 3 mg) and stirred at 50 °C under H₂ atmosphere (2 MPa) for 2 h. The progress of the reaction was monitored by TLC. Upon completion, the mixture was concentrated under vacuum and the residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 10/1) to afford the desired product **6** (35.3 mg, 97% yield). Colourless oil. $[\alpha]_D^{20} = -96.7^{\circ}$ (c = 1.0, CHCl₃). 96:4 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 6.33 min (major), 9.26 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.6 Hz, 1H), 7.27 – 7.20 (m, 2H), 7.15 – 7.10 (m, 1H), 6.90 (s, 1H), 2.85 – 2.76 (m, 1H), 2.70 – 2.65 (m, 1H), 2.58 – 2.51 (m, 1H), 2.25 – 2.15 (m, 2H), 2.07 – 1.95 (m, 12H), 1.72 – 1.69 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 207.4, 146.4, 146.1, 143.3, 133.5, 127.6, 124.3, 123.0, 120.9, 71.8, 50.0, 43.9, 40.7, 36.2, 35.9, 30.1, 25.9, 21.6; IR (neat): 2916, 2850, 2029, 1959, 1667(s), 1539, 1260, 1034, 807, 588, 542; HRESIMS Calcd for [C₂₄H₂₈NaOS]⁺ (M + Na⁺) 387.1753, found 387.1759.

(S)-2'-(((3R,5R,7R)-adamantan-1-yl)sulfonyl)spiro[cyclohexane-1,1'-indene]-2,4dien-6-one (7)

To a solution of **2a** (0.1 mmol, 36.1 mg) in DCM (2 mL) was added *m*-CPBA (0.22 mmol, 38.0 mg) and the resulting mixture was stirred at room temperature for 1 h. The

progress of the reaction was monitored by TLC. Upon completion, the reaction was quenched with saturated aqueous NaHCO₃ (0.1 mL), and directly concentrated under vacuum. The residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) to afford the desired product 7 (39.0 mg, 99% yield). Colourless oil. $[\alpha]_D^{20} = +41.3^\circ$ (c = 1.0, CHCl₃). 96:4 e.r. (determined by HPLC: Chiralpak IA Column, 30/70 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 13.14 min (major), 24.42 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.54 (d, *J* = 7.2, 1H), 7.39 – 7.35 (m, 1H), 7.32 – 7.26 (m, 2H), 7.13 (d, *J* = 7.6 Hz, 1H), 6.56 – 6.52 (m, 1H), 6.30 (d, *J* = 10.0 Hz, 1H), 6.13 (d, *J* = 9.2 Hz, 1H), 2.20 – 2.14 (m, 3H), 2.08 – 2.00 (m, 6H), 1.73 – 1.66 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 148.0, 145.4, 145.3, 142.9, 141.1, 138.9, 129.4, 128.7, 127.4, 124.8, 122.4, 122.2, 69.7, 62.7, 35.7, 34.7, 28.3; IR (neat): 2917, 2855, 2029, 1959, 1669(s), 1453, 1299, 1135, 756, 627, 546; HRESIMS Calcd for [C₂₄H₂₄NaO₃S]⁺ (M + Na⁺) 415.1338, found 415.1326.

(S)-2'-(((3R,5R,7R)-adamantan-1-yl)sulfonyl)spiro[cyclohexane-1,1'-indene]-2,4dien-6-one (8)

To a solution of **2a** (0.1 mmol, 36.1 mg) in DCM (2 mL) was added NBS (0.11 mmol, 19.0 mg) and the resulting mixture was stirred at room temperature for 4 h. The progress of the reaction was monitored by TLC. Upon completion, the reaction concentrated under vacuum, and the residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 10/1) to afford the desired product **8** (43.0 mg, 98% yield). Yellow solid (mp 128–130 °C). $[\alpha]p^{20} = +142.8^{\circ}$ (c = 1.0, CHCl₃). 95.5:4.5 e.r. (determined by HPLC: Chiralpak IA Column, 20/80 *i*-PrOH/hexane, 1.0 mL/min, 254nm; TR = 4.58 min (major), 4.96 min (minor)). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.6 Hz, 1H), 7.40 – 7.37 (m, 1H), 7.30 – 7.20 (m, 2H), 7.04 (d, *J* = 7.6 Hz, 1H), 6.25 (d, *J* = 9.6 Hz, 1H), 5.92 (d, *J* = 9.2 Hz, 1H), 2.02

-1.95 (m, 9H), 1.66 – 1.61 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 144.1, 143.3, 142.8, 139.9, 139.1, 137.5, 128.6, 128.3, 127.7, 123.5, 122.3, 122.2, 72.7, 54.3, 45.0, 35.9, 30.5; IR (neat): 2906, 2849, 2029, 1959, 1704(s), 1648, 1463, 1221, 1038, 722, 570; HRESIMS Calcd for [C₂₄H₂₃BrNaOS]⁺ (M + Na⁺) 461.0545, found 461.0545.

5. References

- 1. É. Godin, J. Santandrea, A. Caron and S. K. Collins, Org. Lett., 2020, 22, 5905.
- 2. Y.-Q. Zhang, Y.-B. Chen, J.-R. Liu, S.-Q. Wu, X.-Y. Fan, Z.-X. Zhang, X. Hong and L.-W. Ye, *Nat. Chem.*, 2021, **13**, 1093.

6. Crystal data of compound 8 (CCDC Number = 2289404)

7. HPLC Chromatograms

Compound **2a:** HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound **2b:** HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

:	5.00 5.5	ο 6	.00	6.50 时	7.00 间 [min]	7.50	8.00	8.50	9.00
Integr	ation Results								
No.	Peak Name	Ret	ention Time	Area	Height	Relative Ar	ea	Relative Height	Amount
			min	mAU*min	mAU	%		%	n.a.
1			6.218	62.689	210.065	96.92		96.52	n.a.
2			7.167	1.990	7.572	3.08		3.48	n.a.
Total:				64.678	217.637	100.00		100.00	

Compound **2c:** HPLC (IC, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, λ = 254 nm)

CI

Compound **2d:** HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound **2e:** HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Me

Compound **2f:** HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254 \text{ nm}$)

MeO

Compound **2g:** HPLC (IC, *n*-hexane/2-propanol = 90/10, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound **2h:** HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound **2i:** HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound **2j:** HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Me

Compound **2k:** HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound **21:** HPLC (IC, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound **2m:** HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound **2n**: HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound **20:** HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound **2p:** HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound **2q:** HPLC (IA, *n*-hexane/2-propanol = 90/10, v = 1.0 mL/min, λ = 254 nm)

Compound **2r:** HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound **2s:** HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound **2t:** HPLC (IA, *n*-hexane/2-propanol = 95/5, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound **2u:** HPLC (IA, *n*-hexane/2-propanol = 90/10, v = 1.0 mL/min, λ = 254 nm)

SAd

名称	峰面积%	峰高	峰面积	峰宽 [min]	类型	保留时间 [min]
	96.21	121.76	1096.52	0.65	MM m	6.653
	3.79	6.49	43. 20	0.31	MM m	7.579
			1139.72	总和		

Compound **2v:** HPLC (IA, *n*-hexane/2-propanol = 95/5, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound **2w:** HPLC (IC, *n*-hexane/2-propanol = 95/5, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound **2x:** HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

S(2-Ad)

Compound **2y:** HPLC (IC, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound **2z:** HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound **2aa:** HPLC (IC, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound **2ab:** HPLC (IA, *n*-hexane/2-propanol = 70/30, v = 1.0 mL/min, λ = 254 nm)

Compound **2ac:** HPLC (IC, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound 3: HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound 4: HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound 5: HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Compound 6: HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

信号:	DAD1B, Sig=	254,4 Ref=off				
保留时间 [min]	类型	峰宽 [min]	峰面积	峰高	峰面积%	名称
6.315	MM m	1.05	4246.79	506.97	50.35	
9.209	MM m	1.02	4187.18	365.37	49.65	
		总和	8433.97			

Compound 7: HPLC (IA, *n*-hexane/2-propanol = 70/30, v = 1.0 mL/min, λ = 254 nm)

Compound 8: HPLC (IA, *n*-hexane/2-propanol = 80/20, v = 1.0 mL/min, $\lambda = 254$ nm)

Parameter	Value					
1 Title	FXY-13-194-1					
2 Origin	Bruker BioSpin GmbH					
3 Solvent	CDC13					
4 Temperature	298.0					
5 Number of Scans	11 J I I J					
6 Acquisition Time	4.0894					
7 Acquisition Date	2023-08-20T15:45:06					
8 Spectrometer Frequency	400.13					
9 Spectral Width	8012.8					

-----5. 068

ParameterValue1 TitleFXY-13-194-32 OriginBruker BioSpin GmbH3 SolventCDC134 Temperature300.05 Number of Scans486 Acquisition Time1.36317 Acquisition Date2023-08-20T15:51:398 Spectrometer Frequency100.619 Spectral Width24038.5	HO Ia	SAd		-132.14 -132.14 -132.14 -130.53 -120.130 -127.99 -127.99 -127.99 -127.99 -127.99 -127.99	
1 TitleFXY-13-194-32 OriginBruker BioSpin GmbH3 SolventCDC134 Temperature300.05 Number of Scans486 Acquisition Time1.36317 Acquisition Date2023-08-20T15:51:398 Spectrometer Frequency100.619 Spectral Width24038.5	HO Ia	SAd	, ,, ,, 		
				5 130 125 fl (ppm)	120 115
					nya a Marka kawa minya katala kata ara aka ya kata a

Т 120 110 100 f1 (ppm)

Parameter	Value
1 Title	FXY-13-194-4
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	300.0
5 Number of Scans	11
6 Acquisition Time	2.0316
7 Acquisition Date	2023-08-20T15:57:02
8 Spectrometer Frequency	100.61
9 Spectral Width	16129.0

Parameter	Value
1 Title	1d
2 Origin	
3 Solvent	CDC13
4 Temperature	295.8
5 Number of Scans	16
6 Acquisition Time	4. 0002
7 Acquisition Date	2022-01-13T15:45:57
8 Spectrometer Frequency	399.93
9 Spectral Width	8012.0

		134, 18 134, 15 134, 15 132, 15 132, 15 132, 16 132, 15 126, 67 125, 64 112, 50 1118, 20 1118, 20 1115, 14 115, 18	$<_{93.81}^{93.84}$	$-\frac{83.50}{77.32}$			
Parameter Value		F			<134.18 <134.15 >132.16 -130.87 -129.29	$^{-126.67}$	$ \begin{array}{c}120.50\\ \hline -118.43\\ \hline -118.20\\ \hline -115.97\\ \hline -115.18\\ 115.18\\ \end{array} $
1 Title1d2 Origin3 SolventCDC134 Temperature296.25 Number of Scans2006 Acquisition Time1.00007 Acquisition Date2022-01-13T158 Spectrometer Frequency100.569 Spectral Width26041.0	54:53	HO Ib	SAd				
9 Spectral width 20041.0					135 130	125 f1 (ppm)	120 115
					······································		· · · · · · · · · ·

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

Parameter	Value					
1 Title	fxy-7-120					
2 Origin	Bruker BioSpin GmbH					
3 Solvent	CDC13					
4 Temperature	298.0					
5 Number of Scans	11) // /					
6 Acquisition Time	4.0894					
7 Acquisition Date	2022-02-17T10:28:57					
8 Spectrometer Frequency	400.13					
9 Spectral Width	8012.8					

----5.024

5		
	Parameter	Value
	1 Title	fxy-7-120-C
	2 Origin	Bruker BioSpin GmbH
	3 Solvent	CDC13
	4 Temperature	300.0
	5 Number of Scans	21
	6 Acquisition Time	1.3631
	7 Acquisition Date	2022-02-17T10:30:17
	8 Spectrometer Frequency	100.61
	9 Spectral Width	24038.5

 $136.63 \\ 133.80 \\ 131.77 \\ 131.55 \\ 130.75 \\ 130.75 \\ 120.61 \\ 126.61 \\ 1$

Parameter	Value	
1 Title	1f	
2 Origin	1	1
3 Solvent	CDC13	1
4 Temperature	296.1	1
5 Number of Scans	16	
6 Acquisition Time	4.0002	
7 Acquisition Date	2022-02-24T13:51:20	
8 Spectrometer Frequency	399.93	
9 Spectral Width	8012.0	

---5.106

-----0. 000

 $\overbrace{-1.531}^{-1.957} \overbrace{-1.698}^{-1.698} \overbrace{-1.531}^{-1.604}$

			-141.93 131.11 131.11 123.66 128.69 128.63 124.68 124.16 124.16 124.16 124.17 124.16 124.17 126.63 124.17 126.63 124.17 126.63			
Parameter 1 Title 2 Origin	Value lf		CF ₃			-130.71 131.11 130.71 130.71 130.39 130.39 120.76 122.663 122.426 122.426 122.421
3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequenc 9 Spectral Width	CDC13 296.1 200 1.0000 2022-02-24T14:00:03 y 100.56 26041.0		HO Id	SAd		
		a				134 132 130 128 126 124 122 120 118 116 114 f1 (ppm)
֎֎֎֎ֈ֎֎ֈՠֈՠֈՠֈՠֈՠֈՠֈ֎֎֎ֈՠֈֈֈֈֈֈֈֈֈֈֈֈֈ	99999/http://www.org/anglowale.org/anglowale/9999/http://www.org/anglowale/9999/http://	untelando Apo <u>s</u> tipo y m	oneren Manerikan op in ^{ange} Makalan Balaka Ankan da kanan op in angen da kanan sa kanan panan da kanan sa kanan p	han daaraan waxaya daan daaraa daa	anaratan faktagan tan Propinsian	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

	Parameter	Value		
11	fitle	1b		
$\frac{2}{3}$	Solvent	CDC13		
41	ſemperature	297.5		
5 N	Number of Scans	16	· ·	ľ
о Р 7 Р	Acquisition lime Acquisition Date	4.0002 2022-02-16T15:	45:09	
8 5	Spectrometer Frequency	399.93		
9.5	Spectral Width	8012.0		

 $\underbrace{-1.955}_{1.697} \underbrace{-1.955}_{1.697} \\ \underbrace{-1.697}_{1.601} \\ \underbrace{-1.570}_{1.540} \\ \underbrace{-1.540}_{1.540} \\ \underbrace{-1.5$

	— 152. 79	137. 91 137. 91 138. 10 132. 62 133. 62 133. 62 133. 62 133. 63 133. 63 133. 64 123. 67 112. 64 115. 84		$\overbrace{77, 00}^{81. 50}$							
Value						—137.91	— 135. 19		$\bigwedge_{130.40}^{130.80}$		—123.67
.b CDC13 297.6		Me						1			
200 0000 2022-02-16T15:53:58 .00.56		HO 1e	`SAd		il James Maple	when the second		wanter	muluul	same	manne
26041. 0					140	138	136 13 ⁴	4 132 f1 (130 (ppm)	128	126 124

Parameter	Value
1 Title	1b
2 Origin	
3 Solvent	CDC13
4 Temperature	297.6
5 Number of Scans	200
6 Acquisition Time	1.0000
7 Acquisition Date	2022-02-16T15:53:58
8 Spectrometer Frequency	100.56
9 Spectral Width	26041.0

Parameter	Value						
1 Title	fxy-7-93	ſ					
2 Origin	Bruker BioSpin GmbH						
3 Solvent	CDC13						
4 Temperature	298.0						
5 Number of Scans	11 /),						
6 Acquisition Time	4.0894						
7 Acquisition Date	2022-02-11T16:25:28						
8 Spectrometer Frequency	400.13						
9 Spectral Width	8012.8						

-1.951 -1.951 -1.686 -1.686 -1.629 -1.567 -1.567 -1.567

		 	130.98 130.95 130.95 130.95 127.25 124.90 124.90	111. 35 115. 73 114. 95		$\overbrace{76.68}^{81.83}$						
Parameter 1 Title	Value fxy-7-93-C		OMe	e			— 128. 95 — 127. 25				 116. 33 115. 73 114. 95 	
2 Origin 3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Freque 9 Spectral Width	Bruker BioSpin GmbH CDC13 300.0 23 1.3631 2022-02-11T16:26:59 ncy 100.61 24038.5		HO T	SAd			128 12	26 124 f1 (j	122 ppm)		3 116 1	₩ 7 14
						¢		-	I	1		
					1							
a na fara da da da ana ana ang ang ang ang ang ang ang an	lan dagan tana kilang, dagan perinta yang bahan selang mandang dikalan tanga tana tang Manana mendapat tanan pengang pengan pengan tang pengan pengan tang pengan tang pengan tang pengan pengan peng Manana mendapat tang pengan	fut for the second s			diploty and the other		neerijaliyetiiteraan bel			ąų ¹ ėptianą, impyri	Providential frequencies	ibdijitijititititi

Parameter	Value	
1 Title	1g	1
2 Origin	1	
3 Solvent	CDC13	,
4 Temperature	297.4	
5 Number of Scans	20	
6 Acquisition Time	4.0002	
7 Acquisition Date	2022-01-18T16:32:08	
8 Spectrometer Frequency	399.93	
9 Spectral Width	8012.0	

----5. 200

			131. 8 131. 0 131. 0 132. 3 130. 2 122. 3 122. 3 122. 3 122. 3 122. 3 123. 4 115. 7 115. 7		$\overbrace{76, 68}^{81. 74}$						
Parameter	Value					131.80 131.04 130.20 130.20		— 124. 89		— 118. 36	$< 115.85 \\ 115.72 \\ 115.72 \\$
1 Title 2 Origin 3 Solvent	lg CDC13		OH								
4 Temperature 5 Number of Scans 6 Acquisition Time	297. 5 300		НО	SAd							
7 Acquisition Date 8 Spectrometer Frequen 9 Spectral Width	2022-01-19T01:41: icy 100.56 26041_0	12	1g						·····		
						132 130	128	126 124 122 f1 (ppm)	120	118	116

220 210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 0 -10 -20

Parameter	Value	
1 Title	1h	
2 Origin	,	11
3 Solvent	CDC13	
4 Temperature	297.0	
5 Number of Scans	16	/ 1
6 Acquisition Time	4.0002	
7 Acquisition Date	2022-01-15T22:42:44	
8 Spectrometer Frequency	399.93	
9 Spectral Width	8012.0	

---5.014

		— 152. 53	$\overbrace{\begin{tabular}{ c c c c c } & & & & & & & & & & & & & & & & & & &$	- 93.54 $- 93.54$ $- 77.32$ 77.32 76.60		
ParameterW1 Title1h2 Origin1h3 SolventCDC134 Temperature297.05 Number of Scans3006 Acquisition Time1.00007 Acquisition Date2022-01-8 Spectrometer Frequency100.569 Spectral Width26041.0	alue 15T22:55:13		F HO HO 1h	`SAd	- 140 - 140	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

Parameter	Value
1 Title	FXY-7-149
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	3
6 Acquisition Time	4.0894
7 Acquisition Date	2022-02-25T16:55:05
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

		 -140.01 133.59 133.61 133.61 130.61 130.59 128.12 128.12 122.34 122		83. 11 $77. 32$ $77. 00$ $76. 68$			
Parameter	Value						
Title	FXY-7-149C	Cl.					
Origin	Bruker BioSpin GmbH						
Solvent	CDC13						
Temperature	300.0						
Number of Scans	12	HO	d				
Acquisition Time	1.3631						
Acquisition Date	2022-02-25T16:56:05					I	
Spectrometer Frequen	су 100.61	1i					
C 1 W: 1.1	24038 5						

	I				· 1						·		1		'	· 1							
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	С)
											fl (ppm)	1											

Parameter	Value	
1 Title	1j	
2 Origin		1
3 Solvent	CDC13	
4 lemperature	297.6	
5 Number of Scans	32	
6 Acquisition lime	4. 000Z	
Acquisition Date	2022-01-19101:11:53	
o Spectrometer Frequency	9019 0 939.99	
9 Spectral width	8012.0	

	— 152. 70	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$		$\bigwedge_{76.68}^{80.86}$	— 50.43			
Value					<138.40 138.19	-132.16 -132.16 -131.21 -130.65 -123.12 -127.75	^{120.88} ^{120.44}	
Lj 2DC13 297.8 400 1.0000 2022-01-19T01:27:42 100.56 26041.0		Me HO HO 1j	SAd			35 130 125 f1 (ppm)		

Parameter	Value
1 Title	1j
2 Origin	
3 Solvent	CDC13
4 Temperature	297.8
5 Number of Scans	400
6 Acquisition Time	1.0000
7 Acquisition Date	2022-01-19T01:27:42
8 Spectrometer Frequency	100.56
9 Spectral Width	26041.0

							1	1	I					
								ĺ	ĺ					
			!											
		2			I									
₩₩₩₩₽₽₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	hayan an a		In an	สารสร้างการการการการการการการการการการการการการก	กรุ่มแปนเขาจากเรื่องหรือไปและสมบรรณ	 านสารให้สมุณหารณารู้ในสารใหญ่ได้	human	السمع		hears and the second second	an)inethiogenesiseupideent	hannan gadwala afrasan,	លុះដែកស្នាំស្នារ្យាស្នាលាក	antariby a land

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

---5.116

	Parameter	Value	
1	Title	FXY-8-181-h	
2	Origin		-
3	Solvent	CDC13	
4	Temperature	299.6	
5	Number of Scans	16	11
6	Acquisition Time	4.0002	
7	Acquisition Date	2022-06-15T22:21:52	
8	Spectrometer Frequency	399.92	
9	Spectral Width	8012.0	

----0. 000

Parameter	Value	
1 Title	fxy7-137-2	
2 Origin	11	1
3 Solvent	CDC13	
4 Temperature	296.9	
5 Number of Scans	16	
6 Acquisition Time	4.0002	
7 Acquisition Date	2022-04-07T16:52:57	
8 Spectrometer Frequency	399.93	
9 Spectral Width	8012.0	

-----0. 000

1.522

		— 152. 60	140. 20 136. 07 130. 67 128. 55 128. 55 128. 10 128. 10 128. 10 128. 10 128. 10 128. 10 120. 62 120. 62	-110. <i>2</i> 4		$\underbrace{\leftarrow}^{77.\ 32}_{76.\ 68}$						
Parameter 1 Title 2 Origin	Value fxy7-137-2		Í	CI			—140. 20	—136.07	$\sum_{120, 155\\128, 77\\128, 77\\128, 10\\127, 12\\127, 12\\$		— 116.24	
<pre>3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequency 9 Spectral Width</pre>	CDC13 297.3 500 1.0000 2022-04-07T17:11:46 100.56 26041.0		HO	s 11	Ad			135	130 125 f1 (ppm)	120	 	
						ų.						
avalje dina stani manje di si ma dan je da koje dine poljeka je na je poljeka je na je na je na je na je na je	muyangkati tu kanyanyanya di katala di kata di			un digan filagarat nga sang ng			չույն հայիկում հայությունը Դույն	ng, ng pag-dan Afrikan pada		raamanna kanadami	Beletengiga-produksy dytorievel. John	۳۹۹۴۲۰۱۰۳۹ _۵ ۴۲۰۱۴۹۹۴۹۹۲
220 210 200 190		150	140 130 120	110 100 f1 (ppm		80	70 6) 50	40 30	20 10	0 -	10 –20

Parameter	Value	
1 Title	1m	ſ
2 Origin	(
3 Solvent	CDC13	
4 Temperature	298.8	1
5 Number of Scans	800	
6 Acquisition Time	1.0000	
7 Acquisition Date	2022-05-17T18:38:41	
8 Spectrometer Frequency	100.56	
9 Spectral Width	26041.0	

-----0. 000

 $\underbrace{-1.973}_{1.727} \underbrace{-1.973}_{1.727} \underbrace{-1.973}_{1.649} \underbrace{-1.576}_{1.576} \underbrace{-1.546}_{1.546}$

	-157.84 -155.47 <148.82 <148.80	137.16 132.21 132.21 132.23 132.23 133.23 133.23 133.23 133.23 133.03 117.04 115.61 115.61 115.33		
Parameter Value		~		- 137. 16 $- 132. 21$ $- 132. 21$ $- 132. 21$ $- 132. 23$ $- 128. 56$ $- 128. 33$ $- 128. 08$ $- 123. 73$ $- 123. 73$ $- 123. 73$ $- 123. 73$ $- 123. 73$
2 Origin 2 Origin 3 Solvent CDC13 4 Temperature 298.8 5 Number of Scans 800 6 Acquisition Time 1.0000 7 Acquisition Date 2022-05-17T1 8 Spectrometer Frequency 100.56 9 Spectral Width 26041.0	8:38:41	HO F 1m	SAd	

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

-5.050

	 136. 79 132. 28 130. 29 130. 29 129. 10 128. 53 128. 54 128. 5		$\underbrace{82.75}_{77.032}$	
Parameter Value 1 Title fxy-7-165 2 Origin				-136.79 -132.28 -132.28 -130.32 -128.53 -128.53 -123.86 -123.86 -117.37
2 of rgin3 SolventCDC134 Temperature297.55 Number of Scans166 Acquisition Time4.00027 Acquisition Date2022-03-02T10:49:298 Spectrometer Frequency 399.93	HO CI 1n	`SAd		
9 Spectral Width 8012.0				135 130 125 120 f1 (ppm)
			Î	
alden valden vielen valden i de gestellen fillet vielen valden gestelde die staten viele valdet bestaar al verse die staten voor		n		

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

Parameter	Value	
1 Title 2 Origin	10	
3 Solvent 4 Temperature	CDC13	ſ
5 Number of Scans	16 1 0000]
6 Acquisition lime 7 Acquisition Date	4.0002 2022-03-02T11:09:48	
8 Spectrometer Frequency 9 Spectral Width	399.93 8012.0	

----0.000

		— 150. 46	— 138.46	132.00 131.03 130.49 129.69	L129. 47 L127. 99 115. 85			$\bigwedge_{76.68}^{81.83}$							
Parameter	Value									QQ GQ F	132.00 131.03 129.69 129.47	₹127. 99 127. 42			— 115. 85
1 litle 2 Origin 3 Solvent 4 Temperature 5 Number of Scans	10 CDC13 297. 8 200			ł		SAC	b								
6 Acquisition Time7 Acquisition Date8 Spectrometer Frequent9 Spectral Width	1.0000 2022-03-02T11:18:51 cy 100.56 26041.0					Me 10			l						
									140	135	130 f1	125 (ppm)	5 12	20	115
								h				I			
₩₩₩₩₽₽₩₩₩₽₩₽₩₩₽₩₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	₩₩₩₽₽₽₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	լնուլյունունունունունուն	panetaumpeaganteenpena			neteradolegan palatina contrologan	Stations and Stationard		8×4463×450×450×4505×4505×4500×4500×4500×4500×			decision of the system of the second	۰۳۰,449,000,000,000,000,000,000,000,000	¢kagangkali yang kang kang kang kang kang kang kang k	Yhytelaisyteleisen yhdyn yhdynastel
	- $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	 150	140		1 · · · · · · · · · · · · · · · · · · ·	0 100	90	80	70 60	50			10		-10 -20

110 100 90 f1 (ppm)

30 20 10

5	0	90	80		
~	5	6.	6.		
_	_	_	_		

----0. 000

Parameter	Value	
1 Title	fxy-8-137-H /	
2 Origin		r
3 Solvent	CDC13	
4 Temperature	299.5	
5 Number of Scans	16)
6 Acquisition Time	4.0002	
7 Acquisition Date	2022-05-26T20:06:19	
8 Spectrometer Frequency	399.92	
9 Spectral Width	8012.0	

10.0

$\frac{ \mathbf{P}_{array} }{ \mathbf{P}_{array} } = \frac{ \mathbf{P}_{array} }{ \mathbf{P}_{arr$			-94.75 -94.75 -94.75 -94.75 -77.32 -77.60		— 15. 71
2 Origin 3 Solvent (DC13 4 Tomperature 299. 2 5 Number of Scens 400 6 Acquisition Time 1.0000 7 Acquisition Date 2 2022-05-26120:21:58 9 Spectral Width 26041. 0	Parameter Value 1 Title fxy-8-137-C				- 130.56 $- 129.92$ $- 127.99$ $- 127.46$ $- 127.46$
9 Spectral Width 26041.0	2 Origin3 SolventCDC134 Temperature299.25 Number of Scans4006 Acquisition Time1.00007 Acquisition Date2022-05-26T20:21:588 Spectrometer Frequency100.56	HO HO 1p	SAd		
	9 Spectral Width 26041.0			142 140 138 136 134 132 f1 (130 128 126 124 122 opm)

fl (ppm)

Parameter	Value					
1 Title	1t					
2 Origin	(
3 Solvent	CDC13					
4 Temperature	295.6					
5 Number of Scans	16	,,				
6 Acquisition Time	4.0002					
7 Acquisition Date	2022-04-19T19:00:40					
8 Spectrometer Frequency	399.93					
9 Spectral Width	8012.0					

----5. 187

-0. 000

 $-\frac{2}{11}, \frac{2}{717}, \frac{1}{717}, \frac{1}{714}, \frac{1}{714}, \frac{1}{714}, \frac{1}{672}, \frac{1}{672}, \frac{1}{672}, \frac{1}{681}, \frac{1}{561}, \frac{1}{561}, \frac{1}{550}, \frac{1}{550}$

	—153. 49	136.87 131.45 131.156 131.56 130.42 130.42 130.42 128.40 128.27 128.27 128.27 116.41		
Parameter Value 1 Title 1t 2 Origin]			136.87 134.45 131.56 130.42 128.13 126.27 123.99 120.76 116.41
3 SolventCDC134 Temperature295.95 Number of Scans4006 Acquisition Time1.00007 Acquisition Date2022-04-19T19:16:108 Spectrometer Frequency 100.569 Spectral Width26041.0		HO CI 1q	SAd	
				fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

Parameter	Value	
1 Title	1r /	
2 Origin		
3 Solvent	CDC13	
4 Temperature	297.2	
5 Number of Scans	16	
6 Acquisition Time	4.0002	
/ Acquisition Date	2022-03-28118:14:18	
8 Spectrometer Frequency	399.93 9012 0	
a spectrar width	0012.0	

----5.023

--0.000

		139. 28 131. 96 131. 96 130. 62 130. 62 127. 94 127. 81 127. 81 127. 81 127. 81 127. 31 123. 96 116. 58		$ \begin{array}{c} 81.83 \\ 77.32 \\ 77.20 \\ 77.668 \end{array} $	 		
ParameterValue1 Title1r2 Origin1r3 SolventCDC134 Temperature297.15 Number of Scans3006 Acquisition Time1.00007 Acquisition Date2022-03-28T18:26:28 Spectrometer Frequency100.569 Spectral Width26041.0	7	HO Me 1r	SAd				

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

Value Parameter 1 Title 1s2 Origin CDC13 3 Solvent 4 Temperature 297.8 5 Number of Scans 16 6 Acquisition Time 4.0002 7 Acquisition Date 2022-04-01T18:13:14 8 Spectrometer Frequency 399.93 9 Spectral Width 8012.0

-3.789

-5.115

--0.000

744738652621584553

	— 160. 62	 $\begin{array}{c} & 1.121.33\\ 1.32.10\\ 1.31.31\\ 1.32.05\\ 1.27.81\\ 1.27.81\\ 1.27.81\\ 1.22.29\\ 1.20.29\\ \end{array}$		$\overbrace{77.\ 68}^{81.\ 90}$			
Parameter 1 Title 2 Origin	Value 1s	Ć			—137. 93	$\begin{array}{c} & 132. \ 10 \\ & 131. \ 31 \\ & 130. \ 81 \\ & 130. \ 81 \\ & 127. \ 81 \end{array}$	
 3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Freque 9 Spectral Width 	CDC13 297.8 600 1.0000 2022-04-01T18:35:36 ncy 100.56 26041.0	HO	SAd Me 1s	~			
				_	140 135	130 f1 (ppm)	125 120
				ł			
							₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

Parameter	Value	
1 Title	fxy-8-74-HH	
2 Origin	Bruker BioSpin GmbH	
3 Solvent	CDC13	
4 Temperature	298.0	
5 Number of Scans	3	
6 Acquisition Time	4.0894	
7 Acquisition Date	2022-05-05T16:19:25	
8 Spectrometer Frequency	400.13	
9 Spectral Width	8012.8	

-1.973 -1.706 -1.700 -1.700 -1.651 -1.619 -1.563 -1.563

----0. 000

		 138. 32 131. 95 130. 06 129. 99 129. 99 127. 91 127. 91 127. 61 127. 61 120. 51		$\overbrace{776,68}^{81.\ 17}$				
Parameter 1 Title	Value FXY-8-74-cc				—131.95	$\begin{array}{c} & 130.06 \\ & 129.99 \\ & 129.28 \\ & 128.63 \\ & 127.91 \\ & 127.61 \end{array}$		~ 120.67 120.51
2 Origin 3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequent 9 Spectral Width	CDC13 299.0 300 1.0000 2022-05-05T17:24:06 cy 100.56 26041.0	HO CI 1t	SAd		134 132		 124	
				ì		fl (ppr	n)	

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

Parameter	Value	
1 Title	fxy-8-43	
2 Origin	Bruker BioSpin GmbH	
3 Solvent	CDC13	
4 Temperature	298.0	
5 Number of Scans	5 / / //	1
6 Acquisition Time	4.0894	
7 Acquisition Date	2022-04-14T08:40:26	
8 Spectrometer Frequency	400.13	
9 Spectral Width	8012.8	

-1.931 -1.674 -1.667 -1.667 -1.588 -1.588 -1.588 -1.535

	 138. 45 132. 01 132. 01 130. 56 130. 47 128. 22 128. 22 127. 12 127. 12 119. 91		$\int_{76.68}^{81.92} 77.00$	
ParameterValue1 Titlefxy-8-43C2 OriginBruker BioSpin GmbH2 ColumnGDC10			—138. 56	-132. 13 $-132. 13$ $-132. 13$ $-130. 68$ $-130. 58$ $-124. 08$ $-124. 08$ $-124. 08$ $-120. 03$
4 Temperature300.05 Number of Scans146 Acquisition Time1.36317 Acquisition Date2022-04-14T08:41:418 Spectrometer Frequency 100.619 Spectral Width24038.5	HO Me 1u	1	140 136	132 128 124 120 f1 (ppm)
220 210 200 190 180 170 160	 140 130 120 110			<u></u>

120 110 100 f1 (ppm)

	1
Parameter	Value
1 Title	fxy-8-200 / /
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	4
6 Acquisition Time	4.0894
7 Acquisition Date	2022-06-22T22:39:52
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

		— 152. 66	138. 16 132. 15 130. 71 130. 71 130. 71 129. 27 129. 01 127. 95 127. 95 123. 87 116. 04		$\overbrace{77.00}^{81.99}$	$\begin{array}{c} & \begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	
Parameter 1 Title 2 Origin	Value fxy-8-200-C Bruker BioSpin GmbH					$ \begin{array}{c} & 132. \ 15 \\ & 130. \ 71 \\ & 130. \ 52 \\ & 123. \ 57 \\ & 127. \ 95 \\ & 127. \ 60 \\ & 127. \ 60 \\ & 127. \ 60 \\ & 123. \ 87 \\ & 120. \ 45 \end{array} $	— 116.04
<pre>3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequency 9 Spectral Width</pre>	CDC13 300.0 18 1.3631 2022-06-22T22:40:49 100.61 24038.5		HO S(3-Me- 1v	Ad)		35 130 125 120 f1 (ppm)	

f1 (ppm)

Parameter	Value /	
1 Title	FXY-8-186	
2 Origin		1
3 Solvent	CDC13	
4 Temperature	299.8	
5 Number of Scans	16	1
6 Acquisition Time	4.0002	
7 Acquisition Date	2022-06-15T22:45:26	
8 Spectrometer Frequency	399.92	
9 Spectral Width	8012.0	

2. 008 1. 976 1. 848 1. 817 1. 791 1. 791 1. 703 1. 703 1. 491 1. 491 1. 458 ----0. 000

		— 152. 65	138. 33 131. 74 130. 72 130. 42 130. 42 127. 47 127. 47 127. 42 127. 42 127. 42 127. 42 126. 35		84. 63 $77. 32$ $-77. 00$			$\bigvee_{27.50}^{33.50}$	^ 27. 19		
Parameter	Value					—138. 39		-131.80 -131.80 -130.78 -120.35 -122.35 -127.50			— 115.95
1 Title 2 Origin	FXY-8-186										
3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequer 9 Spectral Width	CDC13 299.5 200 1.0000 2022-06-15T23:54:31 ncy 100.56 26041_0		HO 1x	S(2-Ad)							
9 Spectral Width	26041.0					,	135	130 f1 (125 ppm)	120	115

Parameter	Value	
1 Title 2 Origin	FXY-1y	
3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequency 9 Spectral Width	CDC13 300.3 / / / / 16 4.0002 2023-08-10T23:01:12 399.90 8012.0	

----5. 062

--0.000

		—152.67	138.08 131.89 131.89 130.74 129.31 129.31 128.02 128.02 123.88 123.88 115.99		- 83.54 $- 77.32$ 77.00 $- 76.68$		
Parameter 1 Title	Value FXY-1y					-138.08 -138.08 -138.74 -129.31 -127.46 -123.88 -123.88 -123.88 -123.88	
2 Origin 3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequence 9 Spectral Width	CDC13 300.6 200 1.0000 2023-08-10T23:10:37 cy 100.56 26041.0		HO 1y	S ^t Bu			110
						f1 (ppm)	

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

 $<^{1.197}_{1.180}$

 $\sum_{2.957}^{3.058} 024$

Parameter	Value
1 Title	FXY-13-182
2 Origin	Bruker BioSpin GmbH/
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	5
6 Acquisition Time	4.0894
7 Acquisition Date	2023-08-18T17:50:00
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

	— 152. 69	-138. 31 $131. 87$ $131. 87$ $130. 79$ $130. 79$ $129. 37$ $128. 12$		$- 83.23 \\ - 77.32 \\ 77.00 \\ 76.68 $				
ParameterValue1 TitleFXY-13-182-c2 OriginBruker BioSpin GmbH					$\sum_{i=1}^{i=1} \frac{131.87}{130.79}$ $\sum_{i=1}^{i=1} \frac{130.44}{128.12}$ $\sum_{i=1}^{i=2} \frac{128.12}{128.01}$	— 123. 76	— 120. 45	—115.97
3 SolventCDC134 Temperature300.05 Number of Scans286 Acquisition Time1.36317 Acquisition Date2023-08-18T17:51:348 Spectrometer Frequency 100.619 Spectral Width24038.5		HO Iz		Agarbonangkologgerunangy 		quession and the second	undighed a solution of the	mybegawiay (Teamoged, Johney
				134	132 130 128 12 f	26 124 1 1 (ppm)		3 116
e og konstel støret el betilvertog to og to bete bese bosent bogt ensetterere byte på titetore berøg i stoke stø	a bet to a state state state		hereiten af helfen af de ben komme	abdeco dello in des	han the set of the set	not colore a fine dada la fine dada la fine	htterstak, berekstak, berekstak	fann aktiven útsterne aktiveter
		140 130 120 110 1	00 00 1 - 1				30 20	1000

fl (ppm)

727 691 682 654	$\begin{array}{c} 777\\775\\763\\669\\6679\\6656\\6566666666666666666666666$	

Parameter	Value /				
1 Title	fxy-SCy-Sub				
2 Origin	Bruker BioSpin GmbH				
3 Solvent	CDC13				
4 Temperature	298.0				
5 Number of Scans	5				
6 Acquisition Time	4.0894				
7 Acquisition Date	2023-08-20T12:09:08				
8 Spectrometer Frequency	400.13				
9 Spectral Width	8012.8				

----5. 063

	 131.79 131.79 130.75 130.75 130.75 130.75 130.75 130.75 130.75 127.98 127.98 127.98 127.98 115.92 115.92	 		-32.76 -26.10 25.12
ParameterValue1 Titlefxy-SCy-Sub-C2 OriginBruker BioSpin GmbH		— 138. 26	$\begin{array}{c} 131.79\\ \hline 130.75\\ 130.44\\ \hline 128.02\\ 128.02\\ 127.98\\ \hline 127.48\\ 127.48\end{array}$	
3 SolventCDC134 Temperature300.05 Number of Scans216 Acquisition Time1.36317 Acquisition Date2023-08-20T12:10:038 Spectrometer Frequency100.619 Spectral Width24038.5	HO SCy 1aa	 140 135	130 f1 (ppm)	125 120 115
220 210 200 190 180 170 160	 140 130 120 110 100	 		

f1 (ppm)

屾

---5.128

----3. 716

000	

Parameter	Value	
1 Title	FXY-1z	
2 Origin		
3 Solvent	CDC13	ſľ
4 Temperature	300.5	
5 Number of Scans	100	
6 Acquisition Time	1.0000	
7 Acquisition Date	2023-08-10T22:55	:38
8 Spectrometer Frequency	100.56	
9 Spectral Width	26041.0	

	— 152. 6	138. 3 138. 3 130. 3 12 12 12 12 12 12 12 12 12 12 12 12 12		83.85 77.32 77.00 76.68				
Parameter Value					 131.88 130.88 130.88 130.88 128.46 128.44 127.85 127.82 127.54	— 123. 29	— 120. 35	
. Title FXY-1z 2 Origin								
Solvent CDC13 Temperature 300.5 Number of Scans 100 Acquisition Time 1.0000 Acquisition Date 2023-08-10T22:55:3 Spectrometer Frequency 100.56 Spectral Width 26041.0	3	HO 1ab	`SBn				190	

110 100 f1 (ppm) -10 -20

---5.016

--0.000

138.37 132.13 132.13 132.13 130.79 130.79 132.15 133.48 133.48 132.15 129.61 126.24 126.24 126.23 127.16 126.23 127.16 126.24 126.25 126.24 12		$\overbrace{76.68}^{79.46}$
	1	אר ר

Parameter	Value
1 Title	FXY-13-206-C
2 Origin	
3 Solvent	CDC13
4 Temperature	299.2
5 Number of Scans	1024
6 Acquisition Time	1.0000
7 Acquisition Date	2023-08-22T18:38:36
8 Spectrometer Frequency	100.56
9 Spectral Width	26041.0

110 100 f1 (ppm) 170 160 0 -10 -20

Parameter	Value	
1 Title	fxy-13-2a	
2 Origin	Bruker BioSpin GmbH	
3 Solvent	CDC13	
4 Temperature	298.0	
5 Number of Scans	3	
6 Acquisition Time	4.0894	
7 Acquisition Date	2023-08-21T10:29:22	
8 Spectrometer Frequency	400.13	
9 Spectral Width	8012.8	

2a

-----0. 000

 $\overbrace{-1.675}^{-2.063} \overbrace{-1.975}^{-2.063} \overbrace{-1.675}^{-2.009} \overbrace{-1.685}^{-1.692} \overbrace{-1.679}^{-1.679}$

- 196.90		$\underbrace{}^{145.17}_{143.61}$	$\overbrace{\begin{tabular}{c} 128, 06\\ 127, 33\\ 125, 33\\ 125, 33\\ 122, 89\\ 120, 56$		$\overbrace{77.72}^{77.32}$					
Parameter 1 Title 2 Origin 3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequency 9 Spectral Width	Value fxy-13-2a-C Bruker BioSpin GmbH CDC13 300.0 6 1.3631 2023-08-21T10:30:23 7 100.61 24038.5		O SA 2a	Ad						
ede a finne still fill i fill and for fill a die die Anthese die active i and and an erste 14 web geweinigen and finne interpropriet geweinigen and geweinigen geweinigen auf	nda 🖡 alanda uzamenteken ken kuruturak sek kata 16. A semelikana penya kenera da mangangan kenya tang tang ang kata semelikan kenya kata sejar kenya 19. Kenya 19. Kenya 19. Kenya 19. Kenya 19.			s, king dan seking ting terpentaking se segan seking se		part & A. Let 10 And L. Leave, the A. Let a graphicant processing spectrum and spectrum and			ante d'alabidi a des colorianos generales en estatuto de la colorianos	
220 210 200 19	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	130 120 110			- 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1	40	 	- <u>1</u> - 10	0 1

-142. 64 -142. 64 -135. 37 -135. 37 -135. 37 -128. 05 -122. 88 -122. 88 -122. 88 -122. 88 -122. 88

Parameter 1 Title 2 Origin 3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequen 9 Spectroal Width	Value fxy-13-2a-dept Bruker BioSpin GmbH CDC13 300.0 4 1.3631 2023-08-21T10:31:16 cy 100.61 24038 5		Za SAd				
					1		

· 1 · · · 120 110 100 90 f1 (ppm) -10

	Parameter	Value				
	1 Title	fxy-7-65	1			F
	2 Origin	Bruker BioSpin GmbH				
	3 Solvent	CDC13	-			
	4 Temperature	298.0		ſſ	ſ	SAd
	5 Number of Scans	5	<i>, ,</i> ,	J	J	
	6 Acquisition Time	4.0894				Ĺ
	7 Acquisition Date	2022-02-11T10:15:41				2h
	8 Spectrometer Frequency	400.13				20
	9 Spectral Width	8012.8				
- 8			10			

-1.703

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

Parameter	Value	
1 Title	2e	
2 Origin	Bruker BioSpin GmbH	
3 Solvent	CDC13	
4 Temperature	298.0	
5 Number of Scans	3	
6 Acquisition Time	4.0894	
7 Acquisition Date	2022-02-26T09:12:42	
8 Spectrometer Frequency	400.13	
9 Spectral Width	8012.8	

----0. 000

 $\sum_{1.981}^{2.080} \frac{2.080}{2.016}$

— 196. 44	$\begin{array}{c c} 147. 04 \\ 144. 71 \\ 144. 71 \\ 144. 71 \\ 133. 01 \\ 127. 40 \\ 123. 02 \\ 123. 02 \\ 120. 64 \end{array}$	- 50.48 $- 50.48$ $- 36.02$ $- 29.98$
Parameter Value 1 Title 2e 2 Origin	CI	$ \begin{array}{c} & \overbrace{141, 71} \\ & \overbrace{141, 71} \\ & \overbrace{133, 86} \\ & \overbrace{133, 01} \\ & \overbrace{133, 01} \\ & \overbrace{123, 01} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
3 SolventCDC134 Temperature296.65 Number of Scans2006 Acquisition Time1.00007 Acquisition Date2022-02-26T04:28:578 Spectrometer Frequency100.569 Spectral Width26041.0	2c SAd	
220 210 200 190 180 170 160	150 140 130 120 110 100 90 f1 (ppm)	80 70 60 50 40 30 20 10 0 -10 -20

089 034 998	711
~; ~; -;	-i
$\langle \rangle$	

Parameter	Value	
1 Title	FXY-7-143	
2 Origin		
3 Solvent	CDC13	
4 Temperature	299.9	
5 Number of Scans	16	
6 Acquisition Time	4.0002	
7 Acquisition Date	2023-08-17T21:46:08	
8 Spectrometer Frequency	399.90	
9 Spectral Width	8012.0	

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

	$\begin{array}{c}145.40\\142.69\\141.97\\141.97\\133.03\\135.94\\135.41\\127.41\\121.47\\121.47\end{array}$	$\sum_{72.51}^{77.32} 00$	
Parameter Value 1 Title 2b	Мо		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2 Origin3 SolventCDC134 Temperature299.55 Number of Scans3006 Acquisition Time1.00007 Acquisition Date2023-08-17T00:23:068 Spectrometer Frequency100.569 Spectral Width26041.0	Nie O O Ze		
		 150	145 140 135 130 125 120 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

Parameter	Value		
1 Title	2g		НО
2 Origin			
3 Solvent	CDC13	ſ	
4 Temperature	297.1		SAd
5 Number of Scans	16		
6 Acquisition Time	4.0002		
7 Acquisition Date	2022-01-20T17:30:15		2a
8 Spectrometer Frequency	399.93		-9
9 Spectral Width	8012.0		

1.97 1.967 1.967 1.933 1.901 -1.619

----0.000

Parameter	Value					
1 Title	2h					
2 Origin	ſ	1				
3 Solvent	CDC13		ſ	~	,	F
4 Temperature	297.5			1	1	o SAd
5 Number of Scans	32		3	,	3	Ύ]
6 Acquisition Time	4.0002					
7 Acquisition Date	2022-01-19T01:05:47					2h
8 Spectrometer Frequency	399.93					
9 Spectral Width	8012.0					

----0. 000

-1.620

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

075 045	696 969	696
12 is 12 is	1.12	Ï

Parameter	Value
1 Title	2i
2 Origin	ſ
3 Solvent	CDC13
4 Temperature	299.6
5 Number of Scans	16
6 Acquisition Time	4.0002
7 Acquisition Date	2023-08-17T21:12:11
8 Spectrometer Frequency	399.90
9 Spectral Width	8012.0

— 196. 26		$\begin{array}{c} 145.10\\ 142.83\\ 143.83\\ 142.86\\ 133.966\\ 133.966\\ 133.966\\ 127.47\\ 121.23\\ 127.25\\ 122.35\\ 122.25\\ 122.$	$\overbrace{72.51}^{77.32}$		50.40 43.51					
Parameter	Value			$\int_{-142.80}^{-145.10}$			— 133.96			→123.44 →122.75 →121.25
1 Title 2 Origin 3 Solvent	2i	CI								
4 Temperature 5 Number of Scans	299. 6 100	O SAd		I	I		I		Į I	11 İ
6 Acquisition Time 7 Acquisition Date	1.0000 2023-08-17T21:32:12	2i								
8 Spectrometer Frequer	ncy 100.56		ayahasa	mandundul		₩₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽		umbun		
	20011.0		-	145	140		135 f1 (pj	- 13 pm)	0	125 120

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

-2.28352.062-2.024-1.990-1.684 ----0.000

		$\overbrace{\begin{array}{c}} 144. 17\\ 142. 56\\ 142. 56\\ 1445. 56\\ 1446. 97\\ 135. 56\\ 123. 86\\ 127. 49\\ 120. 46\\ 120. 46\end{array}}$	$\overbrace{772.75}^{77.32}$					
				 144. 17 142. 77 142. 56 140. 45 140. 45 		-128.86 -127.49	 123. 09 122. 85 120. 46 	
Parameter	Value			() ())			Y I	
1 Title 2 Origin	2j							
3 Solvent	CDC13	Me						
4 Temperature	299.6	O SAU						
5 Number of Scans	200							
6 Acquisition Time	1.0000	2i						
7 Acquisition Date	2023-08-19102:05:49							
9 Spectral Width	26041_0							
						ppm)		
งกรูสถึงเขาสรีเหมาะสารีเ _{ป็น} อาร์กรูสุขน _า งกังจากสรี _ส กรู้และสุร ^โ รกาสรีเป็นโปรสุขาง	ามที่ แปรแห่งสำหรับของระที่จะแล้งของของของของของของของไหรเป็นเสอไป	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	oarostologioticidatelar ¹ indonesialansiste	งรามในปีสาราชสุดที่มากราชได้แบบรายังได้ได้ได้เป็	ng ng mang Ang ng mga ng Mang n Ng ng ng mga n	anandhabalanananananan	fafletigerigen generation of the second	สถามที่มีไทรรัฐไม่ได้เห็นได้เรื่องเห็นได้ได้ได้ได้

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

— 197. 32		$\overbrace{137.43}^{145.97}$	~ 127. 48 ~ 122. 97 121. 37			$\overbrace{77.266}^{77.32}$		
Parameter Value 1 Title FXY-2k 2 Origin							-145.97 142.78 142.78 142.78 133.50 133.607 137.43 -127.48 -127.48	
2 Origin3 SolventCDC134 Temperature300.35 Number of Scans3006 Acquisition Time1.00007 Acquisition Date2023-08-09T228 Spectrometer Frequency100.569 Spectral Width26041.0	:05:01		MeO	2k	SAd	 160	150 140 130 f1 (ppm)	120 110
						1		
		<u> </u>	1, , 1 30, 120			80 70 (10 0 -10 -20

246 230 230 221 2221 014 014 014 014 014 016	510 501 233 215 215	930 907
6.6.6.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7		20. V

Parameter	Value				
1 Title	FXY-7-136-h				
2 Origin					
3 Solvent	CDC13				
4 Temperature	297.1	r	/	Ş	
5 Number of Scans	16		1))
6 Acquisition Time	4.0002				
7 Acquisition Date	2022-02-26T15:50:52				
8 Spectrometer Frequency	399.93				
9 Spectral Width	8012.0				

— 196. 20		144, 86 144, 10 142, 18 139, 73 131, 46 131, 46 131, 46 132, 51 125, 51 125, 51 123, 22 22 22 22 22 22 22 22 22 22 22 22 22	^ 120.46	$\overbrace{73.33}^{77.32}$	— 50.52					
Parameter 1 Title F	Value FXY-7-136-c		CI		144. 86 144. 10 143. 68 142. 78	—139. 73				
2 Origin3 Solvent4 Temperature5 Number of Scans6 Acquisition Time7 Acquisition Date8 Spectrometer Frequency	CDC13 297.1 300 1.0000 2022-02-26T16:03:10 100.56		SAd 21	quives		and a second	nythenessyngur	, mart and a second of		Jawashinggaranteranger
9 Spectral Width 2	26041.0				145	40	135 f1	130 (ppm)	125	120
				ņ I						

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

079 005 998	990 961 698
~~~	
4	

----0. 000

Parameter	Value
1 Title	FXY-8-119-H
2 Origin	1
3 Solvent	CDC13
4 Temperature	298.4
5 Number of Scans	16
6 Acquisition Time	4.0002
7 Acquisition Date	2022-05-18T19:00:38
8 Spectrometer Frequency	399.92
9 Spectral Width	8012.0









20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

$\begin{array}{c} 276\\ 269\\ 266\\ 1114\\ 082\\ 082\\ 037\\ 008\\ 008\\ 008\\ 008\\ 008\\ 008\\ 008\\ 00$	235 210	944 938
	9.9 V	ن ک

Parameter	Value
1 Title	2n
2 Origin	1 1
3 Solvent	CDC13
4 Temperature	297.6
5 Number of Scans	16
6 Acquisition Time	4.0002
7 Acquisition Date	2022-03-03T21:13:54
8 Spectrometer Frequency	399.93
9 Spectral Width	8012.0



2.073 2.027 1.991-1.690







44	57	98	00
50.	43.	35.	30.

Parameter	Value
1 Title	2n
2 Origin	
3 Solvent	CDC13
4 Temperature	297.6
5 Number of Scans	100
6 Acquisition Time	1.0000
7 Acquisition Date	2022-03-03T21:19:39
8 Spectrometer Frequency	100.56
9 Spectral Width	26041.0



|--|--|--|--|--|--|--|--|--|

110 100 90 f1 (ppm) 200 190 180 170 160 150 140 0 -10 -20

$\begin{array}{c} 271 \\ 251 \\ 251 \\ 211 \\ 063 \\ 058 \\ 058 \\ 036 \\ 002 \\ 002 \\ 086 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\ 002 \\$	201 176	605
6.77.77.77.77.77.77.77.77.77.77.77.77.77	6.	5.
	$\mathbf{Y}$	

ſ

Parameter	Value
1 Title	20
2 Origin	
3 Solvent	CDC13
4 Temperature	297.2
5 Number of Scans	16
6 Acquisition Time	4.0002
7 Acquisition Date	2022-03-03T21:00:24
8 Spectrometer Frequency	399.93
9 Spectral Width	8012.0



--0.000

 $\overbrace{-1.973}{2.010} \xrightarrow{2.068}{2.010} 1.973$ 



197. 23		$\begin{array}{c} 147, 11\\ 145, 10\\ 142, 77\\ 142, 77\\ 1334, 12\\ 1334, 12\\ 1334, 12\\ 1334, 12\\ 127, 07\\ 127, 07\\ 122, 11\\ 120, 56\end{array}$	- 50.02
Parameter 1 Title 2 Origin	Value 20		-147.11 -145.10 -144.40 -142.77 -133.14.93 -133.74 -133.74 -127.98 -127.98 -127.07 -127.07 -127.07
3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequency 9 Spectral Width	CDC13 297.4 200 1.0000 2022-03-03T21:09:19 y 100.56 26041.0	20 Me	

				·					'	· I	'	· .						'	·		1 1			
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20
											İ	fl (ppm	1)											

280 262 234 234 237 237 237 101 101 101 101 062 062 062 062 999 9999 9910 971 193	
$\begin{array}{c} -7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.$	

354 335 335 335 335 335 335 335 335 335	692	154 135
	- T	

----0. 000

Parameter	Value
1 Title	FXY-8-138-1
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	5 11 17 .
6 Acquisition Time	4.0894
7 Acquisition Date	2022-06-03T15:42:14
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8



---5. 583



— 197. 53	$\begin{array}{c c} 146.45 \\ 145.17 \\ 145.17 \\ 142.88 \\ 142.88 \\ 122.26 \\ 122.137 \\ 122.137 \\ 120.63 \end{array}$	$\sum_{72.12}^{77.32} \sum_{72.12}^{77.32}$		
ParameterValue1 TitleFXY-8-138-1-c2 OriginBruker BioSpin GmbH		¹⁴⁶ , 45 ¹⁴⁵ , 17 ¹⁴⁵ , 17 ¹⁴⁵ , 17 ¹⁴⁴ , 10 ¹¹⁴² , 88	-136.59 $-135.26$ $-132.80$ $-127.27$ $-125.37$ $-122.15$ $-120.63$	
3 Solvent CDC13 4 Temperature 300.0 5 Number of Scans 27 6 Acquisition Time 1.3631 7 Acquisition Date 2022-06-03T15:43:15 8 Spectrometer Frequency 100.61 9 Spectral Width 24038.5	SAd Et		) 135 130 125 120 f1 (ppm)	
ets stillet wir sitz, meiner is steden och da, an steden och di mer antiel och sitzet först dette stidenet bekomberktit soch at det en det ette Fra stillet och stillet och steden steden och de steden steden steden steden steden steden steden steden steden Fra stillet och stelet och steden steden steden steden steden steden steden steden steden steden steden steden		Alter de Jack de segues de segues de segues de la gradie de la gradie de la gradie de la gradie de la gradie de		10010001000
220 210 200 190 180 170 16	0 150 140 130 120 110 100	90 80 70 60	50 40 30 20 10 0	


Parameter	Value	
1 Title	FXY-2t-rac	
2 Origin	1 (	
3 Solvent	CDC13	
4 Temperature	300. 5	
5 Number of Scans	16	, , ,
6 Acquisition Time	4.0002	
7 Acquisition Date	2023-08-08T23:08:19	
8 Spectrometer Frequency	399.90	
9 Spectral Width	8012.0	



2.078 2.040 2.004 1.971-1.698





 $\begin{array}{c} 7.281\\ \hline 7.263\\ 7.256\\ 7.236\\ \hline 7.236\\ 7.057\\ \hline 7.016\\ 6.990\\ 6.991\end{array}$  $\overbrace{-5.923}^{6.391}$ 

Parameter	Value	
1 Title	FXY-2r	
2 Origin	1	
3 Solvent	CDC13	
4 Temperature	300.1	
5 Number of Scans	300	
6 Acquisition Time	1.0000	
7 Acquisition Date	2023-08-09T22:23:38	
8 Spectrometer Frequency	100.56	
9 Spectral Width	26041.0	



-1.695

----0.000





291 273 243 226	2224 089 070 067 049 049 035 035 017	998 392 387 367 363	964 939	664 660
		0.0.0.0 0.0.0	in in V	<u>ы</u> . У

{

Parameter	Value	
1 Title	2s	
2 Origin		
3 Solvent	CDC13	
4 Temperature	298.2	
5 Number of Scans	16	
6 Acquisition Time	4.0002	
7 Acquisition Date	2022-05-17T13:24:58	
8 Spectrometer Frequency	399.92	
9 Spectral Width	8012.0	



 $\sum_{1.996}^{2.067}$ 

----0.000







ſ

Parameter	Value
1 Title	fxy-13-203
2 Origin	1
3 Solvent	CDC13
4 Temperature	299.8
5 Number of Scans	16
6 Acquisition Time	4.0002
7 Acquisition Date	2023-08-22T07:50:02
8 Spectrometer Frequency	399.90
9 Spectral Width	8012.0





$ \begin{array}{c} 189.73 \\ 133.44 \\ 131.95 \\ 122.65 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.26 \\ 122.$		$\underbrace{\sum_{77.00}^{77.32}}_{73.89}$	 			
Parameter 1 Title 2 Origin 3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequen 9 Spectral Width	Value fxy-13-203 CDC13 299.4 100 1.0000 2023-08-22T07:55:50 cy 100.56 26041.0	CI Zt				
	ήρους ή δελολογιατικής μετρολογιατικής της μαζός μαριβαρικής αριστικής της της αλιστικής της της αλιστικής της			(mar manager)	المنسبها	



Parameter	Value	
1 Title	fxy-2v	
2 Origin	1	
3 Solvent	CDC13	
4 Temperature	300. 5	
5 Number of Scans	16	
6 Acquisition Time	4.0002	
7 Acquisition Date	2023-08-09T22:53:26	
8 Spectrometer Frequency	399.90	
9 Spectral Width	8012.0	



-2.071 -2.009 -1.923-1.696 -----0. 000



— 197. 11		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<ul><li>✓ 120. 57</li></ul>	77.32 76.68 76.68	<b>~</b> 72. 55								
Parameter 1 Title 2 Origin	Value fxy-2v								~135.11	— 127. 99		$\sum_{i=1}^{123.32}$	
<ul> <li>3 Solvent</li> <li>4 Temperature</li> <li>5 Number of Scans</li> <li>6 Acquisition Time</li> <li>7 Acquisition Date</li> <li>8 Spectrometer Frequence</li> <li>9 Spectral Width</li> </ul>	CDC13 300.3 500 1.0000 2023-08-09T23:13:16 ncy 100.56 26041.0		Me 2u			_ll			 	ware and the second second second second second second second second second second second second second second			
					14	5	140	1	35 f1	130 (ppm)	125	12	0











— 197. 04		$\begin{array}{c} 145.28\\ 142.67\\ 142.71\\ 142.25\\ 142.25\\ 125.42\\ 122.95\\ 122.95\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\ 122.65\\$	$\overbrace{77.00}^{77.32}$	$\bigwedge_{50.23}^{50.55}$	21 25 25 25 25 25 25 25 25 25 25 26 20 20 20 20 20 20 20 20 20 20 20 20 20	
Parameter 1 Title 2 Origin	Value 2ac			- 145. 28 - 143. 67 - 142. 71 - 142. 22 - 140. 69	—135.25	
2 Origin 3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Freques 9 Spectral Width	CDC13 299.1 300 1.0000 2023-08-17T00:41:16 ncy 100.56 26041.0	S(3-Me-Ad 2v	d) 	145 140	135 f1 (pp	L30 125 120 115
220 210 200 10	- $        -$	<u></u>			40 30	-1 $-10$ $-20$



- 196.95	$\begin{array}{c c} 145.26\\ 142.51\\ 142.41\\ 142.41\\ 144.75\\ 124.73\\ 127.42\\ 122.89\\ 122.89\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.64\\ 122.6$	$\overbrace{77.00}^{77.32}$			
Parameter Value 1 Title FXY-2ad-P 2 Origin			-145.26 $-143.58$ $-142.66$ $-142.41$ $-140.75$		<ul> <li>128.17</li> <li>127.42</li> <li>125.36</li> <li>125.39</li> <li>122.09</li> <li>120.64</li> </ul>
3 SolventCDC134 Temperature300.55 Number of Scans5006 Acquisition Time1.00007 Acquisition Date2023-08-09T22:47:58 Spectrometer Frequency100.569 Spectral Width26041.0	3 S(3,5,7-Me)	₃ Ad)  150	145 140	135 f1 (ppm	130 125 120 115 n)
			an an the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se		



*S[]* 

$\begin{array}{c} 154 \\ 154 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015 \\ 0015$	200
	i

-----0. 000

Parameter	Value
1 Title	fxy-8-188
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	6
6 Acquisition Time	4.0894
7 Acquisition Date	2022-06-22T22:44:53
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8





— 196. 71	$\overbrace{\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$rac{77.32}{77.668}$ - 71.52 - 71.52 - 71.52 - 54.13 - 53.58	$\begin{array}{c} 38.53\\ 37.48\\ 32.57\\ 32.27\\ 32.27\\ 27.46\\ 27.25\\ 57\\ 27.25\\ 57\\ 77\\ 77\\ 77\\ 77\\ 77\\ 77\\ 77\\ 76\\ 77\\ 76\\ 77\\ 76\\ 76$
Parameter Value 1 Title fxy-8-188-C		147.23 $145.23$ $142.63$ $141.28$	$ \begin{array}{c} & 128. \ 20 \\ \hline & 127. \ 25 \\ \hline & 127. \ 16 \\ \hline & 124. \ 54 \\ \hline & 122. \ 59 \\ \hline & 119. \ 91 \\ \hline \end{array} $
2 OriginBruker BioSpin GmbH3 SolventCDC134 Temperature300.05 Number of Scans1136 Acquisition Time1.36317 Acquisition Date2022-06-22T22:45:528 Spectrometer Frequency100.619 Spectral Width24038.5	2x		
		145 140 135 f1	130 125 120 (ppm)
		ų.	
- $        -$	- $        -$		

f1 (ppm)

208 174 156 156 134 005 987 987 929 888	427 419 136 912 889 889
6.6.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	

/ / /

Parameter	Value
1 Title	fxy-StBu-P
2 Origin	1
3 Solvent	CDC13
4 Temperature	299.2
5 Number of Scans	16
 6 Acquisition Time	4.0002
7 Acquisition Date	2023-08-14T10:39:05
8 Spectrometer Frequency	399.90
9 Spectral Width	8012.0



**—**1.404





	$\begin{array}{c} 145 \\ 147 \\ 147 \\ 148 \\ 144 \\ 144 \\ 134 \\ 134 \\ 134 \\ 134 \\ 128 \\ 133 \\ 134 \\ 134 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 120 \\ 120 \\ 120 \\ 128 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\$	$\overbrace{722.58}^{77.32}$		
Parameter Value				-133.20 $-128.23$ $-127.43$ $-125.28$ $-122.82$ $-122.82$ $-120.53$
1 Titlefxy-StBu-P2 Origin3 Solvent4 Temperature298.8	O S'Bu			
5 Number of Scans2006 Acquisition Time1.00007 Acquisition Date2023-08-14T11:05:168 Spectrometer Frequency 100.569 Superior 1 Wiltig20041.0	2y	alan berna yang ma		
9 Spectral Width 26041.0		150	145 140	135 130 125 120 fl (ppm)
		ľ		
	11 . 11 ! !! !			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			una de fa de fancier de ser de fancier de ser de fancier de ser de fancier de ser de fancier de ser de fancier	


000	
o.	

02:11:19

— 196. 67		$\overbrace{\begin{subarray}{c} 146, 28\\ 145, 07\\ 143, 22\\ 142, 69\\ 141, 00\\ 141, 00\\ \end{subarray}$	$ \begin{array}{c} 128.26 \\ 128.17 \\ 127.15 \\ 127.15 \\ 122.61 \\ 120.00 \\ 120.00 \\ \end{array} $	$\underbrace{_{77.\ 32}^{77.\ 32}}_{71.\ 33}$		< 22.80 22.60
Parameter	Value					$ \begin{array}{c} \overbrace{\begin{subarray}{c} 128.26\\ $-128.17\\ $-128.17\\ $-127.15\\ $-127.15\\ $-124.69\\ $-121.81\\ $-120.00\\ \end{subarray} $
<pre>2 Origin 2 Origin 3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequence</pre>	CDC13 299.5 100 1.0000 2023-08-19T02:17:11 cy 100.56		o 2z			
9 Spectral Width	26041.0			145 140	135 f1	130 125 120 (ppm)
					!	
ng shipen by na mini bing ang bi gang pan di kang na pang pang pang pang pang pang pan	amen ya na dina mangang samilih fili sina daga da di ana ay ka ka mara				consequences of the second second second second second second second second second second second second second	and a fight in a supply a supply and a supply a supply a supply a supply a supply a supply a supply a supply a

— 196. 71	$ \begin{array}{c} 146. \ 09 \\ 145. \ 17 \\ 141. \ 11 \\ 141. \ 11 \\ 127. \ 26 \\ 122. \ 26 \\ 119. \ 99 \\ 119. \ 99 \\ \end{array} $	$\frac{\sqrt{77.32}}{76.68}$						
Parameter Value 1 Title fxy-2x-SCy			▶ 145.17 ▶ 143.26 ▶ 142.65 ▶ 141.11	$ \begin{array}{c} & \begin{array}{c} 128. \ 21 \\ 128. \ 09 \\ 127. \ 26 \\ 119. \ 99 \end{array} $				
2 Origin 3 Solvent CDC13 4 Temperature 300.8 5 Number of Scans 200 6 Acquisition Time 1.0000 7 Acquisition Date 2023-08-08T23:51:58 8 Spectrometer Frequency 100.56 9 Spectral Width 26041.0	SCy 2aa		45 140	135 130 125 120 f1 (ppm)				
1								

fl (ppm)

----0. 000

— 196. 69		$\begin{array}{c} 146.64\\ 144.91\\ 142.78\\ 144.97\\ 144.97\\ 128.61\\ 128.61\\ 128.04\\ 128.04\\ 128.04\\ 121.28\\ 128.04\\ 122.75\\ 129.23\\ 120.23\\$	$\underbrace{^{77.32}_{76.68}}_{71.28}$			
Parameter	Value			× 141. 22 × 140. 97		$\begin{array}{c} 128.86 \\ 128.61 \\ 128.61 \\ 128.29 \\ 127.51 \\ 127.51 \\ 127.24 \\ 122.17 \\ 121.23 \\ 77 \\ 120.23 \\ 120.$
1 Title 2 Origin	fxy-SBn-P					li
3 Solvent	CDC13	OSBn				
5 Number of Scans	16					
6 Acquisition Time	4.0002	~		1	I	
7 Acquisition Date	2023-08-14T11:10:41	2ab				
8 Spectrometer Freque	ncy 399.90		manna	have been have been a second		
9 Spectral Width	8012.0					
			150 14	45 140	. 1 135 f1	130 125 120 115 I (ppm)

1	ĺ	
		 Laggingson Dirac Jacobias Lagington Rockstanged and the Starford Starford Starford Starford Starford Starford

$\begin{array}{c} 7.561\\ 7.557\\ 7.548\\ 7.548\\ 7.548\\ 7.548\\ 7.5333\\ 7.239\\ 7.163\\ 7.163\\ 7.163\\ 7.163\\ 7.019\\ 6.999\\ 6.999\\ 6.429\\ 6.429\\ 6.429\\ 6.429\\ 6.429\\ 6.429\\ 6.429\\ 6.429\\ 6.429\\ 6.429\\ 6.429\\ 6.429\\ 6.6429$

— 196. 42		$146.85 \\ 144.54 \\ 144.54 \\ 143.90 \\ 131.71 \\ 123.71 \\ 128.71 \\ 128.71 \\ 128.71 \\ 128.72 \\ 122.77 \\ 122.77 \\ 122.23 \\ 120.66 \\ 1$	$\underbrace{}_{77.00}^{77.32}$		
Parameter	Value			146.85 144.54 144.54 142.60 140.47	$ \begin{array}{c} -134, 07 \\ 131, 71 \\ 131, 71 \\ 131, 71 \\ 129, 22 \\ 128, 71 \\ 127, 36 \\ -125, 23 \\ -122, 23 \\ -122, 23 \\ -122, 23 \\ -120, 66 \\ \end{array} $
1 Title 2 Origin	fxy-2aa-SPh				
3 Solvent 4 Temperature 5 Number of Seere	CDC13 300.8	O SPh			
6 Acquisition Time 7 Acquisition Date	1.0000 2023-08-09T00:34:04	2ac			
8 Spectrometer Freque	ncy 100.56				
9 Spectral Width	26041.0		-	150 145 140	135 130 125 120 f1 (ppm)

				122.57 125.57 125.01 124.79 124.79 112.48 112.48 112.62							40.95						
Parameter 1 Title 2 Origin 3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequen 9 Spectral Width	Valu fxy-13-28-c Bruker BioS CDC13 300.0 6 1.3631 2023-06-297 ncy 100.61 24038.5	lept Spin GmbH			3	SAd											
יעלאלו ביותר ביותר אלוי איז איז איז איז איז איז איז איז איז אי	ĸĸĸĔĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	s (¹ a 1 her a 2 a 1 her an 2 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a	i ol sala seda subary sa sa fa a ta' fa s		, fan fan gerin de gerin de fan fan fan fan fan fan fan fan fan fan	stift all on transformed see to be a generative to be provided in the property of the provided of the property of the provided	fillen in the second	al di seri da fa da da di seri da di seri da di seri da di seri da di seri da di seri da di seri da di seri da	an Albah a Majaran in	all fallosit for dente and an and n an	64 poyletsidese verved video poy		internet to the state of the st	्मी व विच्छ कि स्वे कि स्वे कि स्वित	nanis II., de sun f., district, gener des nij de for for forgen	ang ang ang ang ang ang ang ang ang ang	n kat pol pol de ti de ti ka katoren ja Neve de general de tier de tier de tier de tier de tier de tier de tier de tier de tier de tier de tier de tier
210 200 190			0 140 13	30 120		100 1100 11 (ppm)	90	80	70	60	50	40	30	20		0	-10

 $< \frac{4.116}{24.090}$

----0. 000

Parameter	Value	
1 Title	FXY-13-73	
2 Origin		(
3 Solvent	CDC13	
4 Temperature	302.1	11
5 Number of Scans	16	, ,
6 Acquisition Time	4.0002	
7 Acquisition Date	2023-07-11T23	:50:58
8 Spectrometer Frequenc	y 399.90	
9 Spectral Width	8012.0	

	-149.84 -144.41 -143.53	131.69 129.51 127.34 127.21 122.70 119.55	$\overbrace{77}^{77.32}$	- 63. 70				
Parameter Value			—131.69	— 129. 51	~ 127.34 ~ 127.21		— 122. 20	— 119. 55
1 Titlefxy-13-73-C2 OriginBruker BioSpin GmbH3 SolventCDC134 Temperature300.05 Number of Scans46 Acquisition Time1.36317 Acquisition Date2023-07-12T08:45:528 Spectrometer Frequency100.619 Spectral Width24038.5		HO 4		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		26 124 (ppm)	, , , , , , , , , , , , , , , , , , ,	аулагийн араал Г
	1 1							
				1.00. [10. [10.]10. [10.	m, Arrandolfu, Fille, ed. bra (inc	n e se a kita langa kaka ata		y hit webbery between be

f1 (ppm)

 Parameter	Value
 1 Title	fxy-13-73-dept
 2 Origin	Bruker BioSpin GmbH
 3 Solvent	CDC13
 4 Temperature	300.0
 5 Number of Scans	8
 6 Acquisition Time	1.3631
 7 Acquisition Date	2023-07-12T08:47:00
 8 Spectrometer Frequency	100.61
 9 Spectral Width	24038.5

 $\overbrace{\begin{subarray}{c} 131.70\\ 121.33\\ 127.21\\ 127.21\\ 122.20\\ 119.54 \end{subarray}$

1	
1	
1	
1	
1	
1	
1	
1	
1	
1	

f1 (ppm) -10

		131. 26 131. 26 128. 92 127. 53 127. 53 127. 54 120. 91			
Parameter	Value				
1 Title	fxy-5-dept	-			
2 Origin	Bruker BioSpin GmbH				
3 Solvent	CDC13				
4 Temperature	300.0	HŐ			
5 Number of Scans	48				
6 Acquisition Time	1.3631				
7 Acquisition Date	2023-07-12T21:33:39	5			
8 Spectrometer Freque	ncy 100.61				
en sen til by a by a son and den son y talk site by day sing at a son a son a son a son a son a son a son a so	sande and by changes of both produces and scheme of the same of		a od dia kilo ak. ang jili ing yak kilo ak ki jina nak ki jina nak kilo ak kilo ak kilo ak kilo ak kilo ak kilo	ه کانه به او او و مار مدیر کانه و مربور وند تا ، ذاکرند ، ذاکرند ، زار وی می روند ، مراور در او دارد ، واقد او م ه کانه به او او و مار مدیر کانه و مربور وند تا ، ذاکرند ، ذاکرند کار او مربور ، و	difect this station of
նկայի Գրաննեն (հետություն) տերք այդ հատությունը տեղել Դեն այդ հատությունը հետությունը հետությունը հետությունը հետությունը հետությունը հետությունը հետությունը հետությ	վիս յին ամեն դալիս է ններին հինարդ ապետել անչակնացի,	ղժըթենին հետ լեւ դում իչվեր իրքիշ չ ^{քետ} ին ու ընդայիցում դետարենի մի քնվուն է հետև առրվել դունդու	«աղդրում քրական» «գեղենի բնչութերութնուն» ու նունց հանձկան աղթախութ	Чарарданын түйллэллэгэл адаа үй бүлүүн бүс бүр түйл бүл бүлүү бүлүн түй бүлүн түйлэг. Тараадаа бүлүү бүлүү бүлүү бүлүү бүл бүл бүл бүл	1190-090 (1841 - F

f1 (ppm) -10

///

----0. 000

Parameter	Value
1 Title	fxy-13-78_H
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	4
6 Acquisition Time	4.0894
7 Acquisition Date	2023-07-13T20:50:04
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

207. 40	$\bigwedge_{\substack{146.85\\146.10}}^{146.38} \\ 143.32\\133.52\\127.62\\121.36\\123.01\\120.85$	$\underbrace{\int_{76}^{77} .32}_{76.68}$	-50.01 -50.01 -43.92 -443.92 -443.92 -535.89 -255.89 -251.61
ParameterValue1 Titlefxy-13-78_C2 OriginBruker BioSpin GmbH3 SolventCDC134 Temperature300.05 Number of Scans216 Acquisition Time1.36317 Acquisition Date2023-07-13T20:52:178 Spectrometer Frequency 100.619 Spectral Width24038.5	SAd 6		
9 Spectral with 24036.5			
, 스타니스, 도도, 그는 11 Mation Frances and Institutions & Institution Institution Institution Institution Institution Mation Theorem (11 Mation Science Science & Theory (11 Mation Science & Science		, a shi sang da yang fa da yang da na kang da yang bi akung da na gang da na gang da na gang da na gang da na g	
- $ -$			- $ -$

f1 (ppm)

110 100 f1 (ppm)

92 67 89	$ \begin{array}{c} 08\\ 89\\ 61 \end{array} $
$^{43.}_{35.}$	30. 25.
114	$\langle \rangle$

-10

Parameter	Value
1 Title	fxy-13-78_dept
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	300.0
5 Number of Scans	13
6 Acquisition Time	1.3631
7 Acquisition Date	2023-07-13T20:50:52
8 Spectrometer Frequency	y 100.61
9 Spectral Width	24038.5

— 193. 67	$\overbrace{\begin{array}{c}122\\147\\145\\145\\145\\145\\138\\0\\138\\0\\122\\128\\128\\128\\128\\128\\128\\128\\128\\128$	$ \underbrace{\sum_{77.00}^{77.32}}_{-69.66} $ -69.66	$7 \\ 7 \\ 35, 66 \\ 128, 26 \\ 2$
ParameterValue1 Title72 Origin73 SolventCDC134 Temperature299.85 Number of Scans6006 Acquisition Time1.00007 Acquisition Date2022-07-05T21:54:078 Spectrometer Frequency100.569 Spectral Width26041.0	SO ₂ Ad		

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

95	87	90	22240
17.	12.	38.	22.24.25.29.
Ĩ	Ĩ	Ï	
			YLEY

→ 35.66 → 34.68 → 28.26

Parameter	Value
1 Title	7
2 Origin	
3 Solvent	CDC13
4 Temperature	299.6
5 Number of Scans	256
6 Acquisition Time	1.0001
8 Spectrometer Frequency	2022-07-05122:09:43 v 100 56
9 Spectral Width	18028.0
· ·	
ĸġĸġġġħĂĸĸĬĸĸijĸĸĬĬĬĬĬŢĬĸĸĬţġĬĸĸĸĬ ^ĸ ĸġġġĬĸĸĮkĸĬĬĸĄĸŢ [®] ĬţġĸĸġĸġĸĸĬ ^ĸ ĬŴŖĸĸĸġħĸĬĸţĸĸ	արտանությունը, թվերներությունը թութնությունը հարտանությունը հարտանությունը հարտանությունը հարտանությունը հարտան Դուրջնությունը հարտանությունը հարտանությունը հարտանությունը հարտանությունը հարտանությունը հարտանությունը հարտանո Դուրջնությունը հարտանությունը հարտանությունը հարտանությունը հարտանությունը հարտանությունը հարտանությունը հարտանո

Parameter	Value			
1 Title	NBS			
2 Origin	I			
3 Solvent	CDC13			
4 Temperature	299.6	1	5	ſ
5 Number of Scans	50	/	J	L
6 Acquisition Time	4.0002			
7 Acquisition Date	2022-08-17T13:02:31			
8 Spectrometer Frequency	399.92			
9 Spectral Width	8012.0			

 $\overbrace{-1.638}^{2.020}$ 1.984

f1 (ppm) -10-20

81 90	$\begin{array}{c} 56 \\ 23 \\ 22 \\ 31 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22$
42. 39.	222. 223. 222.

Parameter	Value
1 Title	NBS
2 Origin	
3 Solvent	CDC13
4 Temperature	299.8
5 Number of Scans	25
6 Acquisition Time	1.0001
7 Acquisition Date	2022-08-17T13:55:12
8 Spectrometer Frequency	100.56
9 Spectral Width	18028.0

ny harden and a many and phase has a burger and prove the state of the	ungiorente dage extension del monte de la desentación de la compactó de la conservación de la conservación de s	a the share as we have been a set to refer any share in the art of the set of	nhansanya ^I nadanananananananananananananananananan
--	---	--	--

-10