Supporting information

Highly transparent polyurethane thermosets with tunable properties and enzymatic degradability derived from polyols originating from hemicellulosic sugars

Nejib Kasmi,^{*a} Yosra Chebbi^a Alessandra Lorenzetti,^b Minna Hakkarainen^{*a}

^aDepartment of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden

^bDepartment of Industrial Engineering, Padova University, Via F. Marzolo 9, IT 35131 Padova, Italy

* Corresponding authors. <u>nejib@kth.se, minna@kth.se</u> ORCID: Nejib Kasmi: 0000-0003-3805-3418, Minna Hakkarainen: 0000-0002-7790-8987

This supporting information contains 14 pages with 11 Figures and 3 Tables.

Figure S1. Photos of the PU networks with different crosslinking degrees made from fully
renewable polyols based on A) 1,2,4-Butanetriol (BTO) and B) 1,2,6-Hexanetriol (HTO)S3
Figure S2. FTIR spectra of partially and fully crosslinked PUs derived 100% from renewable-
based branched polyols
Figure S3. DSC thermograms of the PU thermosets with different degree of crosslinking
derived from: <i>A</i>) SucA/HTO polyol, <i>B</i>) AdiA/HTO polyol, and <i>C</i>) AzeA/HTO polyolS5
Table S1. Quantities of branched polyol and HDI involved in the gram-scale synthesis of
polyurethane thermosets
Table S2. Thermal properties of purified the branched polyols and their corresponding
polyurethane networks with different compositionsS7
Figure S4. A) and B) Effect of the chain length of used triols (BTO and HTO), C) Effect of
diacid type into BTO-based polyols on the Tg increase of PU networksS8
Figure S5. TGA thermograms of the PU networks with different degree of crosslinking derived
from: <i>A</i>) SucA/BTO polyol, <i>B</i>) AdiA/BTO polyol, and <i>C</i>) AzeA/BTO polyolS9
Figure S6. Effect of diacid type into branched polyols on the heat resistance of PU networks
with different degree of crosslinkingS10
Figure S7. Effect of the crosslinking degree of the prepared PU networks on their thermal
stability (<i>T</i> _{<i>d</i>,5%})
Figure S8. Comparison of tensile modulus of prepared polyurethane thermosets as a function
of their crosslinking degreesS11
Table S3. Mechanical parameters of the prepared polyurethane networks
Figure S9. Highly stretchable polyurethane samples with elastomeric behavior at room
temperature: PU SucA/HTO 1/0.75 (<i>left</i>) and PU AdiA/BTO 1/0.75 (<i>right</i>)S12
Figure S10. Photographs of fully crosslinked renewable polyurethane filmsS13
Figure S11. SEM micrographs of fully crosslinked polyurethane networks before (0 days) and
after 30 days of enzymatic degradation

Figure S1. Photos of the PU networks with different crosslinking degrees made from fully renewable polyols based on *A*) 1,2,4-Butanetriol (BTO) and *B*) 1,2,6-Hexanetriol (HTO)

Figure S2. FTIR spectra of partially and fully crosslinked PUs derived 100% from renewablebased branched polyols

Figure S3. DSC thermograms of the PU thermosets with different degree of crosslinking derived from: *A*) SucA/HTO polyol, *B*) AdiA/HTO polyol, and *C*) AzeA/HTO polyol

PU sample	Amount of polyol (g)	Amount of HDI (g)
PU SucA/BTO 1/0.75	5	2.96
PU AdiA/BTO 1/0.75	5	4.09
PU AzeA/BTO 1/0.75	5	3.47
PU SucA/HTO 1/0.75	5	3.13
PU AdiA/HTO 1/0.75	5	4.60
PU AzeA/HTO 1/0.75	5	2.82
PU SucA/BTO 1/1	5	3.95
PU AdiA/BTO 1/1	5	5.45
PU AzeA/BTO 1/1	5	4.63
PU SucA/HTO 1/1	5	4.18
PU AdiA/HTO 1/1	5	6.13
PU AzeA/HTO 1/1	5	3.76

 Table S1. Quantities of branched polyol and HDI involved in the gram-scale synthesis of the new aliphatic PU thermosets

Samples	Т _g (°С)	T _{d,5%}	R 500°C (%)
SucA/BTO polyol	-18.6	187.8	4.1
PU SucA/BTO 1/0.75	10.9	235.0	6.1
PU SucA/BTO 1/1	70.4	263.1	4.5
AdiA/BTO polyol	-52.1	168.3	4.3
PU AdiA/BTO 1/0.75	6.3	247.0	4.2
PU AdiA/BTO 1/1	45.1	265.0	4.9
AzeA/BTO polyol	-57.2	193.1	1
PU AzeA/BTO 1/0.75	18.5	267.8	0.7
PU AzeA/BTO 1/1	23.5	275.5	1.2
SucA/HTO polyol	-53.2	179.3	0.8
PU SucA/HTO 1/0.75	5.8	244.0	1.1
PU SucA/HTO 1/1	61.4	264.6	1.9
AdiA/HTO polyol	-56.7	226.3	2.9
PU AdiA/HTO 1/0.75	12.7	261.1	0.5
PU AdiA/HTO 1/1	18.0	270.5	1.2
AzeA/HTO polyol	-57.9	236.7	1.3
PU AzeA/HTO 1/0.75	3.6	266.1	0.8
PU AzeA/HTO 1/1	20.4	273.6	1.7

Table S2. Thermal properties of purified the branched polyols and their corresponding polyurethane networks with different compositions

Figure S4. A) and B) Effect of the chain length of used triols (BTO and HTO), C) Effect of diacid type into BTO-based polyols on the T_g increase of PU networks

Figure S5. TGA thermograms of the PU networks with different degree of crosslinking derived from: *A*) SucA/BTO polyol, *B*) AdiA/BTO polyol, and *C*) AzeA/BTO polyol

Figure S6. Effect of diacid type into branched polyols on the heat resistance of PU networks with different degree of crosslinking

Figure S7. Effect of the crosslinking degree of the prepared PU networks on their thermal stability ($T_{d,5\%}$)

Figure S8. Comparison of tensile modulus of prepared polyurethane thermosets as a function of their crosslinking degrees

PU networks	Tensile modulus <i>E</i> (MPa)	Tensile strength σ (MPa)	Elongation at break ε (%)
PU SucA/HTO 1/1	648.8 ± 100.9	31.1 ± 3.05	22 ± 3.8
PU SucA/HTO 1/0.75	11.2 ± 0.14	9.0 ± 1.22	188 ± 7.3
PU AdiA/HTO 1/1	45.8 ± 0.1	14.9 ± 0.7	52 ± 1.5
PU AdiA/HTO 1/0.75	19.9 ± 2.0	7.6 ± 0.4	58 ± 0.9
PU AzeA/HTO 1/1	85.2 ± 5.1	26.2 ± 0.2	52 ± 4.7
PU AzeA/HTO 1/0.75	43.7 ± 0.8	12.1 ± 1.5	62 ± 7.9
PU SucA/BTO 1/1	348.6 ± 78	25.9 ± 1.5	15 ± 1.5
PU SucA/BTO 1/0.75	6.1 ± 0.2	3.3 ± 0.04	74 ± 1.5
PU AdiA/BTO 1/1	34.9 ± 7.2	24.1 ± 2.2	130 ± 4.4
PU AdiA/BTO 1/0.75	14.4 ± 0.7	9.1 ± 1.3	170 ± 16.8
PU AzeA/BTO 1/1	56.0 ± 9.2	15.0 ± 2.2	38 ± 0.5
PU AzeA/BTO 1/0.75	84.9 ± 2.5	18.3 ± 2.9	44 ± 0.2

 Table S3. Mechanical parameters of the prepared polyurethane networks

Figure S9. Highly stretchable polyurethane samples with elastomeric behavior at room temperature: PU SucA/HTO 1/0.75 (*left*) and PU AdiA/BTO 1/0.75 (*right*)

Figure S10. Photographs of fully crosslinked renewable polyurethane films

