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Adsorption Kinetics study
Adsorption kinetics, cyclic stability, and facile regeneration are equally 

important factors for high CO2 adsorption capacity. To evaluate the adsorption kinetics, 
here we have measured time-dependent CO2 adsorption isotherms of CAC3 using TGA 
at various temperatures 303, 313, and 323 K under atmospheric pressure (see manuscript). 
The experimental data were fitted by pseudo-first-order and pseudo-second-order models. 
Both models explain adsorption rate where pseudo-first-order depends upon the number 
of adsorption sites (Eq. S1) while pseudo-second-order assumes the square of the number 
of adsorption sites (Eq. S2). 

𝑞𝑡 = 𝑞𝑒(1 ‒ 𝑒
‒ 𝑘1𝑡)                                      (𝑆1)

𝑞𝑡 =    
1

1

𝑘2𝑞2
𝑒𝑡

+
1
𝑞𝑒

                                        (𝑆2)

here, qe and qt denote adsorption uptakes at equilibrium and time “t”, 
respectively. Additionally, k1 and k2 denote adsorption rate constants obtained by fitting 
the experimental data, with pseudo-first and pseudo-second order, respectively. Notably, 
pseudo-first-order best fits the experimental data with R2>0.99 at all temperatures, 
compared to pseudo second-order, which further indicate the physical adsorption 
mechanism of CO2 capture [1, 2]. Additionally, the activation energy was also determined 
using the following Eq. S3.
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here “A” is Arrhenius' exponential factor, “Ea” is the activation energy, “R” is 
the universal gas constant, and “T” represents absolute temperature. A linear fitting graph 
between the natural log of k1 and inverse of temperature (i.e., 1/T) was drawn (see 
manuscript). The activation energy based on obtained fitted parameters was calculated to 
be 5.36 kJ mol-1, revealing the CO2 adsorption mechanism predominantly physisorption 
[3]. 



Fig. S1. Experimental setup of the binary mixture gas adsorption (gravimetric analysis) 
and cycling measurements

Fig. S2. TG-DTA curve for coffee grounds under nitrogen atmosphere



Fig. S3 XPS survey scan for all samples. 

Fig. S4 Flue gas condition 20 cycle retention



Table S1. The initial isosteric heat of CO2 adsorption of CCG and CAC samples.
Samples Initial isosteric heat of adsorption

(kJ/mol)

CAC1 27.4

CAC2 30.6

CAC3 34.4

CAC4 30.0

CAC5 25.6

Table S2. Comparisons of biomass-derived activated carbons and their performance in 
CO2 uptakes

Table. S3 The kinetic parameters for CAC3 samples based on CO2 adsorption data fitting 

Activation 
conditions

Samples Biomass
Precursor

Activating
agents

Temp. 
(K)

Time 
(h)

Specific 
surface

area
(m2 g-1)

CO2 uptakes
at 273 K/1 

bar
(mmol g-1)

References

CAC3 Coffee 
waste

K2C2O4 1173 1 1714 6.91 This 
work

SM10 
K2C2O4

Sucrose/ 
Melamine

K2C2O4 1073 1 3318 6.0 [4]

STO Corn starch K2C2O4 1073 2 1747 6.12 [5]
300-6-
K2CO3

Pecan 
nutshell

K2CO3 648 6 842 3.3 [6]

H250-
800

Lotus stalk KOH 1073 2 2510 3.42 [7]

K3-PDC1 Bee pollen KOH 1073 2 1460 3.71 [8]
CPC-CA-
SE/ACs

Pine cone KOH 873 1 1786 6.57 [9]



using psuedo first-order and pseudo second-order models at 303, 313, and 323 K.

     Psuedo first-order Psuedo second-orderSamples Temperature 

(K) K1 (min-1) R2 K2 (mmol g-1 min-1) R2

303 1.59 0.99624 2.06 0.88603

313 1.71 0.99132 2.39 0.86849

CAC3

323 1.81 0.99712 3.02 0.90115
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