Supporting Information

Glycerol-based Sustainably Sourced Resin for Volumetric Printing

Eduards Krumins,^{a¥} Joachim C. Lentz,^{a¥}, Ben Sutcliffe,^b Ali Sohaib,^c Philippa L. Jacob,^a Benedetta Brugnoli,^d Valentina Cuzzucoli Crucitti,^c Robert Cavanagh,^{e,b} Robert Owen,^b Cara Moloney,^e Laura Ruiz-Cantu,^c Iolanda Francolini,^d Steven M Howdle,^a Maxim Shusteff,^f Felicity R. A. J. Rose,^b Ricky D. Wildman,^c Yinfeng He^{c*} and Vincenzo Taresco^{a*}

- a. School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- b. School of Pharmacy, Nottingham Biodiscovery Institute, University of Nottingham, NG7 2RD, Nottingham, United Kingdom
- c. Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK,
- d. Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
- e. School of Medicine, University of Nottingham Biodiscovery Institute, University of Nottingham, NG7 2RD, United Kingdom
- f. Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- g. Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China

¥ Authors contributed equally.

* Corresponding authors: <u>Yinfeng.He@nottingham.ac.uk</u>,

Vincenzo.Taresco@nottingham.ac.uk

Schemes, Figures and Tables

SI Scheme 1. Synthesis of PGA-A via Steglich esterification.

SI Figure 1 Computed Axial Lithography (CAL) setup consisting of a projector, optics, and a rotary stage (based on hardware design files available from https://github.com/computed-axial-lithography).

SI Figure 2. Vial containing PG6-acrylate resin.

SI Figure 3. ¹H-NMR at Time Zero of resin synthesis. Note the presence of a -COOH signal around 12.5 ppm, and the presence of Michael addition product in the acrylic acid starting material.

SI Figure 4. ¹H-NMR at Time=3 h of resin synthesis. Inset showing the acrylate region of the spectrum. New signals corresponding to acrylate esters have formed. Conversion of acrylic acid is calculated to be approximately 63%, using the integrals of signals assigned 4+9 and 1. Some error in this estimation is a result of signal overlap between acrylic esters with the Michael addition product.

SI Table 1 Acid Values of the reaction mixture with correction applied to account for the presence of catalytic sulphuric acid (AV of batch used= 1112 mg KOH g^{-1}). Conversion was calculated following SI Equation 1.

Time (h)	$\Lambda / (m \pi / \Omega \pi^{-1} \text{ comple})$	Conversion of Acrylic Acid
	AV (mg KOH g * sample)	(%)
0	220.4	0
3	55.0	75

Conversion (%) = $100 \times (1 - \frac{AV Time zero}{AV Time X})$

SI Equation 1 Conversion of acrylic acid (%) from acid value obtained at time zero and at measured timepoint during PG6-acrylate synthesis.

SI Table SEC

	PG4	PG6	PG10	PG6 acrylate
M _n	250.0	330.0	1230.5	609.0
M _w	315.0	467.0	3270.0	1233.0
Ð	1.25	1.41	2.65	2.03
1.2 1.2 1 1 1 1 1 1 0.6 0.4 0.4 0.2 0 0				PG4 PG6 PG10 PG6 acrylate
-0.2	5000 Molar	10000 mass (g/mol)	15000 20000) 25000

SI Table and Figure SEC – Molar masses (g/mol) and Đ for PG4, PG6, PG10, and PG6 acrylate. Measured via aqueous SEC.

SI Figure 5. Viscosity of PG4-acrylate, PG6-acrylate, and PG10 at 25 °C, shear rate of 10 s⁻¹. Due to low viscosity, rapid sedimentation of the cured resin was observed with PG4-acrylate. PG10's viscosity made the resin synthesis impractical. PG6-acrylate's viscosity was found to be in the desired region.

SI Table 2. Volumetric Printing Optimisation of virgin Resin. Print result was assessed visually based on physical appearance of the print on a scale from 1 to 10, where 1 denotes a poor print and 10 an excellent print. Parts marked with an asterisk (*) were produced using two consecutive printing cycles.

Deirt	Vial size	ize Exposure per Total Exposure		Total Exposure		Rosult
Part	(mL)	frame (s)	Frames	Time (s)	Rotation per Frame ()	Result
cylindrical		0.1	120	12	2	
structures	4	0.1	120	12	3	
cylindrical	Л	0.1	40	Δ	9	2
structures	4	0.1	40	+	5	
cylindrical	Л	0.1	60	6	6	10
structures	4	0.1	00	0	0	10
Chess	Д	0.1	60	6	6	10
piece	-	0.1		Ū	Ū	
Ball in	20	0.1	60	6	6	1
cage	20	0.1	00	0	0	
Ball in	20	0.12	60	7.2	6	2
cage	20	0.12	00	7.2	Ū	2
Ball in	20	0.12	120	14.4	3	3
cage	20	0.12	120	14.4	5	
Ball in	20	0.12	210	25.2	3	1
cage	20	0.12	210	23.2	5	-
Ball in	20	0.12	160	10.2	2	6
cage	20	0.12	100	19.2	5	
Ball in	20	0.12	150	19	2	0
cage	20	0.12	150	10	5	5
Rectangle	20	0.1	60	6	3	10
Thinker*	20	0.11 + 0.11	120 + 120	26.4	3	9
Rabbit*	20	0.12 + 0.15	120 + 30	18.9	3	9
Tensile bar	20	0.12	60	7.2	6	6
Tensile bar	20	0.12	120	14.4	3	9

SI Table 3. Volumetric Printing Optimisation of Recycled Resin. Print result was assessed visually based on physical appearance of the print on a scale from 1 to 10, where 1 denotes a poor print and 10 an excellent print.

Dort	Vial size	Exposure per frame	Framos	Total Exposure Time	Rotation per Frame	Decult
Part	(mL)	(s)	Frames	(s)	(°)	Result
cylindrical structures	20	0.12	120	14.4	3	10
cylindrical structures	20	0.12	140	16.8	3	7
cylindrical structures	20	0.12	120	12	3	10

SI Table 4. Volumetric Printing Optimisation of PGA-AA Doped Resin. Print result was assessed visually based on physical appearance of the print on a scale from 1 to 10, where 1 denotes a poor print and 10 an excellent print.

Part	PGA Content	Vial size	Exposure per	Framos	Total Exposure	Rotation per	Posult
rait	(wt.%)	(mL)	frame (s)	Tames	Time (sec)	Frame (°)	Result
cylindrical	5	20	0.1	120	12	3	8
structures	5	20	011	120		0	Ū
cylindrical	10	20	0.125	120	15	3	7
structures			0.220			-	-
cylindrical	20	20	0.1	100	10	3	10
structures	20	20	0.1		20	5	

SI Table 5. Volumetric Printing Optimisation of 10,12-Pentacosadyinoic Acid (PCDA) Doped Resin. Print result was assessed visually based on physical appearance of the print on a scale from 1 to 10, where 1 denotes a poor print and 10 an excellent print.

PCDA Conte		Vial size	Exposure per	Framos	Total Exposure	Rotation per	Pocult
Part	(wt.%)	(mL)	frame (s)	Frames	Time (s)	Frame (°)	Result
cylindrical	10	Д	0.12	60	7.2	6	5
structures	10	-	0.12		7.2	Ū	5
cylindrical	10	Д	0.12	80	9.6	3	5
structures	10	·	0.12		5.0	5	3
cylindrical	10	Д	0.12	40	4.8	6	8
structures	10		0.12		1.0	Ū	0
cylindrical	20	Д	0.12	40	4.8	6	8
structures	20	-	0.12		4.0	Ū	0
cylindrical	30	Δ	0.12	40	4.8	6	3
structures	30	-•	0.12				5

SI Figure 6. ¹H-NMR spectrum of PGA-A in D_2O demonstrating ~14% functionalisation of pendant OH bonds along polymer backbone of PGA.

DC -	[_{1 _}	$(A_{c=c}/A_{C=0})$ monomer	× 100
<i>D</i> C –	[1 -	$(A_{c=c/}A_{C=0})$ polymer	~ 100

Sample	DC (%)
Non-processed	58±4.0
Post-processed	99±0.4

SI Figure 7. Raman Spectroscopy to assess degree of curing (DC). Left, Stacked Raman spectra of an example of starting resin, printed resin (non-processed) and resin post curing (post-processed) in the Raman shift range between 1500-1900 cm⁻¹. Right, DC was determined by measuring the change in the ratio of peak areas associated with the C=C (\approx 1634 cm⁻¹) and C=O (\approx 1720 cm⁻¹) bonds before and after polymerisation.

SI Table 6. Storage modulus of printed cylindrical samples with increasing PGA-A loading.

PGA-A Loading (wt%)	Storage Modulus (kPa)
0	2221
5	450
20	522

SI Table 7. Size of PCDA nanosystems non-polymerised, polymerised (blue) and after thermal stimulus (red)

Sample	Hydrodynamic diameter (nm)	PDI
PCDA	152.1 ± 0.1	0.12 ± 0.10
PCDA blue	120.3 ± 0.5	0.21 ± 0.01
PCDA red	293.2 ± 0.8	0.10 ± 0.01

SI Figure 8. DLS traces of PCDA nanosystems non-polymerised (grey), polymerised (blue) and after thermal stimulus (red).

SI Figure 9. Fluorescence Intensities during microscopy, blue (top) and red (bottom) of the samples seen in Figure 4 of the main text. Data presented as mean \pm S.D; n=3.

SI Figure TGA. TGA of PG6 and PG6 acrylate