Supporting Information

Converting Food Waste into High-value Medium Chain Fatty Acids and Long Chain Alcohols via Chain Elongation with Internally Produced Electron Donor

Lan Wu¹, Wei Wei^{1,*}, Jin Qian³, Xueming Chen⁴, Bing-Jie Ni^{1,2*}

¹Centre for Technology in Water and Wastewater, School of Civil and Environmental

Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia

² School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia

³Research & Development Institute in Shenzhen & School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, P. R. China

⁴ Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China

*Corresponding authors:

Prof. Bing-Jie Ni, E-mail: bingjieni@gmail.com

Dr. Wei Wei, E-mail: wei.wei@uts.edu.au

Countries or regions	FW composition	FW volume	GNIs	The proportion of bioresource recovery via AD
Denmark	Carbohydrate mainly, including wheat, sugar, pasta, rice, etc. ¹	2.2 million tons. ²	65,520 US\$	10%
Canada	Carbohydrate mainly.	 12.6 million tons of FW was directly sent to landfill for final disposal. 5.8 million tons of organics FW are diverted to alternative treatment. 	 The monetary value of avoidable food loss and waste alone was US\$ 27 billion in 2010.³ Such value is slightly lower than the value of all Canadian agricultural and agri-food exports in 2007 ³ 	-
US	Carbohydrate mainly. Lipid and other carbon containing materials are also the key composition of FW.	28.8 million tons. ⁴	 53,670 US\$ Accounting for \$75 billion of the American economy annually in total.⁵ 	<3%4
China	Carbohydrate mainly. Rice and pasta contribute to up to 70.2% of FW. ⁶	82.8 million tons. ⁷	6,560 US\$	7%6
South Korea	Carbohydrate mainly.	4.2-5.5 million tons. ⁸	25,920 US\$ Only 10% of the FW was treated via AD in 2008.	10%9

 Table S1 FW composition and values in different countries.

AD: anaerobic digestion; GNI: Gross National Index.

1 Electron transfer efficiency of the various fermentative systems

The electron transfer efficiency indicated how many electrons from food waste (FW) were transferred to the fermentative products. The electron transfer efficiency in the fermentation system with or without yeast inoculation was calculated using **Eq. 1**. All the involved compounds and their electrons are: 12/ethanol, 18/propanol, 24/butanol, 30/pentanol, 36/hexanol, 2/H₂, 8/acetate, 14/propionate, 20/butyrate, 26/valerate, 32/caproate, 38/heptylate, 44/caprylate.^{10, 11} **Table S2** demonstrated the electron transfer efficiency in various fermentative systems.

$$Electron \ efficiency \ \% = \frac{Products \ (mmol \ e^{-})}{FW \ (mmol \ e^{-})}$$
(1)

Fermentation system	Electron efficiency (%)
Control	18.08
1Y	19.32
1.5Y	41.04
3Y	51.46
4Y	61.18

 Table S2 Electron transfer efficiency in various fermentative systems.

Table S3 The Standard free Gibbs energy $({}^{\Delta}f^{G^{0}}{}_{i,Ts})$ of possible substances involved in MCFAs and butanol production from FW-contained fermentation with in-situ ethanol provision. The values were adapted or calculated according to Kleerebezem and Van Loosdrecht (2010).¹²

Name	$\Delta_f G^0_{i,Ts}$ (KJ/mol)
H ₂ O	-237.2
ethanol	-181.8
n-butanol	-171.8
acetate	-369.4
propionate	-367.3
n-butyrate	-358.7
n-valerate	-350.2
n-caproate	-341.8
n-heptanoate	-333.2
n-caprylate	-324.6
H^+	0
H_2	0
CO_2	-394.4
Glucose	-910.56

Equation				
Chain elongation				
Re.1 $6CH_3CH_2OH + 5CH_3(CH_2)_4COOH \rightarrow 5CH_3(CH_2)_6COOH + 4H_2O + 2H_2 + CH_3COH_3(CH_2)_6COOH + 4H_2O + 2H_2 + CH_3COH_3(CH_2)_6COOH_3(C$	ОН -141.4			
$Re.2 6CH_3CH_2OH + 5CH_3(CH_2)_3COOH \rightarrow 5CH_3(CH_2)_5COOH + 4H_2O + 2H_2 + CH_3COH + 2H_3COH + 2H_3C$	ОН -142.4			
$Re.3 6CH_3CH_2OH + 5CH_3(CH_2)_2COOH \rightarrow 5CH_3(CH_2)_4COOH + 4H_2O + 2H_2 + CH_3COH + 2H_3COH + 2H_3C$	ОН -142.9			
Re.4 $6CH_3CH_2OH + 4CH_3COOH \rightarrow 5CH_3(CH_2)_2COOH + 4H_2O+ 2H_2$	-173.9			
Re.5 $12CH_3CH_2OH + 3CH_3COOH \rightarrow 5CH_3(CH_2)_4COOH + 8H_2O+ 4H_2$	-316.8			
Re.6 $18CH_3CH_2OH + 2CH_3COOH \rightarrow 5CH_3(CH_2)_6COOH + 12H_2O+ 6H_2$	-458.2			
$Re.7 12CH_3CH_2OH + 5CH_3CH_2COOH \rightarrow 5CH_3(CH_2)_5COOH + 8H_2O + 4H_2 + 2CH_3COH_3CH_2OH + 8H_2O + 4H_2 + 2CH_3COH_3CH_2OH + 8H_2O + 4H_2 + 2CH_3COH_3CH_2OH + 8H_2O + 4H_2 + 2CH_3COH_3CH_2OH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3C$	ОН -273.8			
Butanol production				
Re.8 $CH_3(CH_2)_2COOH + 2H_2 \rightarrow CH_3(CH_2)_2CH_2OH + H_2O$	-50.3			
In-situ ethanol production				
Re.9 $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$	-241.84			

Table S4 Thermodynamic information for the chain elongation reactions, butanol production andin-situ ethanol biosynthesis (Ts: temperature of standard condition)

КО	Enzyme ID	Control	1Y	4Y	Description		
Butanol production via ABE pathway							
K00248	1.3.8.1	0.0117	0.0135	0.0133	butyryl-CoA dehydrogenase		
K00100	1.1.1	0.0001	0.0005	0.0086	butanol dehydrogenase		
Butanol reduction via Butanoate mechanism							
K04073	1.2.1.10	0.0105	0.0069	0.0044	acetaldehyde dehydrogenase		
K18366	1.2.1.10	0.0037	0.0033	0.0019	acetaldehyde/propanal dehydrogenase		
Chain el	ongation						
K01961	6.4.1.2	0.0445	0.0572	0.0612	acetyl-CoA carboxylase, biotin carboxylase subunit		
K00645	2.3.1.39	0.0377	0.0459	0.0533	[acyl-carrier-protein] S-malonyltransferase		
K09458	2.3.1.179	0.0747	0.0808	0.1017	3-oxoacyl-[acyl-carrier-protein] synthase II		
K16363	4.2.1.59	0.0042	0.0114	0.0232	UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase / 3-hydroxyacyl-[acyl-carrier-protein] dehydratase		
K02371	1.3.1.9	0.0096	0.0142	0.0220	enoyl-[acyl-carrier protein] reductase II		
K01075	3.1.2.23	0.0073	0.0077	0.0058	4-hydroxybenzoyl-CoA thioesterase		
Butyrate	productio	n					
K00634	2.3.1.19	0.0037	0.0060	0.0021	phosphate butyryltransferase		
K01034	2.8.3.8	0.0019	0.0034	0.0022	acetate CoA/acetoacetate CoA-transferase alpha subunit		
K01035	2.8.3.8	0.0017	0.0028	0.0020	acetate CoA/acetoacetate CoA-transferase beta subunit		
Ethanol production via yeast							
K00128	1.2.1.3	0.0725	0.0918	0.0931	aldehyde dehydrogenase (NAD+)		
Acetyl-CoA production via ethanol reduction							
K19955	1.1.1	0.0017	0.0035	0.0065	alcohol dehydrogenase		
<i>Acetate p</i> K00625	<i>production</i> 2.3.1.8	0.0190	0.0288	0.0407	phosphate acetyltransferase		

Table S5 Abundance of genes involved in MCFAs, butanol and their key precursors production in different reactors.

Fig. S1 The flow diagram and experimental design of producing MCFAs and butanol from FW-fed fermentation systems.

Fig. S2 The accumulated H_2 concentration in the yeast-inoculated systems.

Fig. S3 The relative abundance the *Clostridium* species with the potential to produce butanol. The functions of these microbial species were proposed based on former studies.¹³⁻¹⁵

Reference

- 1. C. Cicatiello, S. Franco, B. Pancino and E. Blasi, J. Retail. Consum. Serv., 2016, **30**, 96-104.
- 2. N. B. Thi, G. Kumar and C. Y. Lin, J. Environ. Manage., 2015, 157, 220-229.
- 3. M. Gooch, A. Felfel and N. Marenick, 2010.
- 4. J. W. Levis, M. A. Barlaz, N. J. Themelis and P. Ulloa, *Waste Manag.*, 2010, **30**, 1486-1494.
- 5. M. Melikoglu, C. Lin and C. Webb, *Open Eng.*, 2013, **3**.
- 6. Y. Li, Y. Jin, A. Borrion and H. Li, *Bioresour. Technol.*, 2019, 273, 654-665.
- 7. S. K. Karmee, *Renew. Sust. Energ. Rev.*, 2016, **53**, 945-953.
- 8. D. D. Nguyen, J. S. Yeop, J. Choi, S. Kim, S. W. Chang, B. H. Jeon, W. Guo and H. H. Ngo, *Waste Manag.*, 2017, **66**, 161-168.
- 9. M. Ju, S.-J. Bae, J. Y. Kim and D.-H. Lee, *J. Mater. Cycles Waste Manag.*, 2016, **18**, 419-426.
- Q. Wu, W. Guo, S. You, X. Bao, H. Luo, H. Wang and N. Ren, *Bioresour. Technol.*, 2019, 291, 121573.
- 11. Y. Wang, W. Wei, S. L. Wu and B. J. Ni, *Environ. Sci. Technol.*, 2020, 54, 10904-10915.
- 12. R. Kleerebezem and M. C. M. Van Loosdrecht, *Crit. Rev. Environ. Sci. Technol.*, 2010, **40**, 1-54.
- 13. Y. He, P. N. L. Lens, M. C. Veiga and C. Kennes, *Front. Bioeng. Biotechnol.*, 2022, **10**, 828316.
- 14. J. Wambui, M. J. A. Stevens, N. Cernela and R. Stephan, *Front. Microbiol.*, 2022, 13, 856810.
- 15. E. E. Ziganshina, W. S. Mohammed and A. M. Ziganshin, *BMC Res. Notes*, 2020, **13**, 413.