Supporting Information

A simple and convenient strategy for the oxidation of

$\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bonds based on γ-valerolactone

Anwei Wang, ${ }^{\text {a }}$ Jiayin Huang, ${ }^{a}$ Chunsheng Zhao, ${ }^{a}$ Yu Fan, ${ }^{a}$ Junfeng Qian, ${ }^{a}$ Qun Chen, ${ }^{a}$ MingYang He*a and Weiyou Zhou*a
${ }^{\text {a }}$ Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, 213164
Changzhou, China.
*E-mail: hemy_cczu@126.com; zhouwy426@126.com

Table of Contents

Previous work for the oxidation of isochroman. 3
Experimental 4
Production and application of GVL 9
Comparative experiments of various additives 10
Optimization of reaction conditions 11
DFT calculation method 12
Determination of the HAT or SET process 13
Electron spin density 14
Experiment for capturing the GVL radical 15
Free energy profiles 16
Characterization of $\mathrm{Ni}_{2} \mathrm{Al}-\mathrm{LDH}$ 19
Computational details 20
Energies and cartesian coordinates for all structures 21
Spectrometric data for the products 26
References 51
NMR Spectra 52
GC-MS Spectra 113

Previous work for the oxidation of isochroman

Scheme S1 C-H oxidation of isochroman over organocatalysts. ${ }^{1-6}$

Experimental

General Information

All the reagents and solvents in the study were analytically pure and were all purchased from Energy or Aladdin and used as received. Column chromatography was performed using 300-400 Mesh silica gel. Visualization of spots on TLC plate was accomplished with UV light (254 nm). Isochroman derivatives were prepared from corresponding phenyl ethanol derivative and 2-methoxyethoxymethyl chloride according to the reported method. ${ }^{7}$ Benzyl ether derivatives were prepared from corresponding benzyl alcohols and haloalkanes according to the reported method. ${ }^{8}$ Isopropylbenzene derivatives were synthesized according to reported method. ${ }^{9}$ Isochromane-1,1- $\boldsymbol{d}_{2}\left(\mathbf{S 1}-\boldsymbol{d}_{2}\right)$ was synthesized according to reported method, ${ }^{10}$ and the purity of S1- \boldsymbol{d}_{2} was 98% according to ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AV 400 or Bruker AV 500. The peaks were internally referenced to TMS (0.00 ppm). The following abbreviations were used to explain multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, and $\mathrm{br}=$ broad. All products were identified by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, HRMS.

Catalytic aerobic oxidation of isochromans

Typically, a mixture of isochroman ($134 \mathrm{mg}, 1 \mathrm{mmol}$), $\mathrm{Ni}_{2} \mathrm{Al}$-LDH (100 mg) and γ-valerolactone ($2.0 \mathrm{~g}, 20$ mmol) in a carousel reaction tube (Fig. S1) were magnetically stirred at $110^{\circ} \mathrm{C}$ under 1 atm of oxygen atmosphere. The reaction was monitored by GC (Gas chromatography, the internal standard is biphenyl). The conversion of the substrate and the selectivity of 1 -isochromanone were obtained on the basis of the GC analysis. The other reactions were monitored by TLC (thin-layer chromatography, petroleum ether/ethyl acetate (5:1, v/v) and analyzed through a GC-MS (SHIMADZU, GCMS-QP2010 SE). After completion of the reaction, the reaction mixture was concentrated on a rotary evaporator under vacuum, then the residue was purified by flash column chromatography on silica gel to yield isochromanones.

Fig. S1 The photographs of the reactor and the reaction.

Catalytic aerobic oxidation of isochromans without Ni2Al-LDH

Typically, a mixture of isochroman $(1.34 \mathrm{~g}, 10 \mathrm{mmol})$ and γ-valerolactone ($20 \mathrm{~g}, 200 \mathrm{mmol}$) in reactor were magnetically stirred at $90{ }^{\circ} \mathrm{C}$ under 1 atm of oxygen atmosphere. The reaction was monitored by TLC (petroleum ether/ethyl acetate ($5: 1, \mathrm{v} / \mathrm{v}$) and analyzed through a GC-MS (SHIMADZU, GCMS-QP2010 SE). After completion of the reaction, the reaction mixture was concentrated on a rotary evaporator under vacuum, then the residue was purified by flash column chromatography on silica gel to yield 4-isochromanone.

Catalytic aerobic oxidation of ethers

Typically, a mixture of benzyl methyl ether ($122 \mathrm{mg}, 1 \mathrm{mmol}$) and γ-valerolactone ($2.0 \mathrm{~g}, 20 \mathrm{mmol}$) in a carousel reaction tube (Fig. S1) were magnetically stirred at $110^{\circ} \mathrm{C}$ under 1 atm of oxygen atmosphere. The reaction was monitored by TLC (petroleum ether/ethyl acetate ($20: 1, \mathrm{v} / \mathrm{v}$) and analyzed through a GC-MS (SHIMADZU, GCMS-QP2010 SE). After completion of the reaction, the reaction mixture was concentrated on a rotary evaporator under vacuum, then the residue was purified by flash column chromatography on silica gel to yield esters.

Catalytic aerobic oxidation of benzyl or allylic C-Hs

Typically, a mixture of benzyl or allylic C-Hs $(1 \mathrm{mmol})$ and γ-valerolactone $(2.0 \mathrm{~g}, 20 \mathrm{mmol})$ in a carousel reaction tube (Fig. S1) were magnetically stirred at $140^{\circ} \mathrm{C}$ under 1 atm of oxygen atmosphere. The reaction was monitored by TLC (petroleum ether/ethyl acetate ($20: 1$, v / v) and analyzed through a GC-MS (SHIMADZU, GCMS-QP2010 SE). After completion of the reaction, the reaction mixture was concentrated on a rotary evaporator under vacuum, then the residue was purified by flash column chromatography on silica gel to yield corresponding ketones.

Catalytic aerobic oxidation of isopropylbenzene

Typically, a mixture of cumene ($120 \mathrm{mg}, 1 \mathrm{mmol}$) and γ-valerolactone $(2.0 \mathrm{~g}, 20 \mathrm{mmol})$ in a carousel reaction tube (Fig. S1) were magnetically stirred at $140{ }^{\circ} \mathrm{C}$ under 1 atm of oxygen atmosphere. The reaction was monitored by TLC (petroleum ether/ethyl acetate ($10: 1, \mathrm{v} / \mathrm{v}$) and analyzed through a GC-MS (SHIMADZU, GCMS-QP2010 SE). After completion of the reaction, the reaction mixture was concentrated on a rotary evaporator under vacuum, then the residue was purified by flash column chromatography on silica gel to yield ketones.

Catalytic aerobic oxidation of 1-phenylethanol

Typically, a mixture of 1-phenylethanol ($122 \mathrm{mg}, 1 \mathrm{mmol}$) and γ-valerolactone ($2.0 \mathrm{~g}, 20 \mathrm{mmol}$) in a carousel reaction tube (Fig. S1) were magnetically stirred at $110{ }^{\circ} \mathrm{C}$ under 1 atm of oxygen atmosphere. The reaction was monitored by TLC (petroleum ether/ethyl acetate ($20: 1, \mathrm{v} / \mathrm{v}$) and analyzed through a GC-MS (SHIMADZU, GCMS-QP2010 SE). After completion of the reaction, the reaction mixture was concentrated on a rotary evaporator under vacuum, then the residue was purified by flash column chromatography on silica gel to yield ketones.

Catalytic aerobic oxidation of 1-benzylpiperidine

Typically, a mixture of 1-benzylpiperidine ($175 \mathrm{mg}, 1 \mathrm{mmol}$) and γ-valerolactone ($2.0 \mathrm{~g}, 20 \mathrm{mmol}$) in a carousel reaction tube (Fig. S1) were magnetically stirred at $140^{\circ} \mathrm{C}$ under 1 atm of oxygen atmosphere. The
reaction was monitored by TLC (petroleum ether/ethyl acetate (20:1, v/v) and analyzed through a GC-MS (SHIMADZU, GCMS-QP2010 SE). The reaction detected no target product amide.

Electron paramagnetic resonance (EPR) experiments

X-band continuous-wave EPR spectra were obtained using a Bruker spectrometer equipped (EPR A300$10 / 12$). The solution of isochroman (1.0 mmol), $\mathrm{Ni}_{2} \mathrm{Al}-\mathrm{LDH}(100 \mathrm{mg})$ in γ-valerolactone (2 mL) was stirred for 1 h at $110^{\circ} \mathrm{C}$ and $100 \mu \mathrm{~L}$ of the solution was sampled in EPR tube, which were cooled 5 K prior to measurements; and other contrast reactions were tested under the same conditions. EPR analysis was carried out at low temperature on EPR spectrometer operated at 9.802 GHz .

${ }^{18} \mathrm{O}_{2}$ isotope experiments

Typically, a mixture of isochroman ($134 \mathrm{mg}, 1 \mathrm{mmol}$) and γ-valerolactone ($2 \mathrm{~g}, 20 \mathrm{mmol}$) in reactor were magnetically stirred at $110{ }^{\circ} \mathrm{C}$ under 1 atm of ${ }^{18} \mathrm{O}_{2}(97 \%)$ atmosphere. The reaction was analyzed through a GC-MS (SHIMADZU, GCMS-QP2010 SE).

S1
Scheme $\mathbf{S 2}{ }^{18} \mathrm{O}_{2}$ isotope experiments

Kinetic isotope effect studies

For the calculation of intramolecular isotopic value, the reaction was performed as described above except for the use of $\mathbf{S 1} \mathbf{- \boldsymbol { d } _ { \mathbf { 2 } }}$ instead of $\mathbf{S} 1$. When $\mathbf{S 1} \mathbf{- \boldsymbol { d } _ { \mathbf { 2 } }}$ was completely converted, Kinetic isotopic effects (KIE) values k_{H} / k_{D} were calculated based on the GC-MS analysis. On the other hand, for the calculation of intermolecular isotopic value, the reactions were performed as described above except for the use of the mixture of S1- $\boldsymbol{d}_{\mathbf{2}}$ and $\mathbf{S} 1$ as the substrates. When the substrates were completely converted, KIE values k_{H} / k_{D} were calculated based on the GC-MS analysis. For the calculation of KIE values, it was taken into account that substrates $\mathbf{S 1}-\boldsymbol{d}_{\mathbf{2}}$ and $\mathbf{S 1}$ were 99% and 99% pure, respectively.

Scheme S3 Comparison of reaction rates of isochromane and S1- d_{2} for isolated kinetic isotope experiments over GVL reaction system.

Experiment for capturing the GVL radical

Typically, a mixture of 1,1 -diphenylethylene ($180 \mathrm{mg}, 1 \mathrm{mmol}$) and γ-valerolactone ($2.0 \mathrm{~g}, 20 \mathrm{mmol}$) in a carousel reaction tube (Fig. S1) were magnetically stirred at $110{ }^{\circ} \mathrm{C}$ reaction 6 h under 1 atm of oxygen atmosphere. The reaction system was analyzed through a GC-MS (SHIMADZU, GCMS-QP2010 SE) (Scheme S4).

Scheme $\mathbf{S 4}$ Capturing the GVL radical.

Experiment for capturing the peroxide intermediates

At the end of the reaction, 100 mg of $\mathrm{Ph}_{3} \mathrm{P}$ was added into the reaction solution, the white solid was completely dissolved and the reaction solution was reduced to room temperature, and then the content of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ was analyzed by GC-MS.

Scheme $\mathbf{S 5}$ Capturing the peroxide intermediates.
Scale-up experiment for the aerobic oxidation of diphenylmethane
A mixture of diphenylmethane ($1.68 \mathrm{~g}, 10 \mathrm{mmol}$), γ-valerolactone ($20 \mathrm{~g}, 200 \mathrm{mmol}$) in a 50 mL round-bottom flask was magnetically stirred at $140^{\circ} \mathrm{C}$ under 1 atm of oxygen atmosphere. The reaction was monitored by GC-MS (Scheme S6).

Scheme S6 Scale-up experiment.
Scale-up experiment for the aerobic oxidation of benzenemethanol
A mixture of benzenemethanol ($2.14 \mathrm{~g}, 10 \mathrm{mmol}$), γ-valerolactone ($20 \mathrm{~g}, 200 \mathrm{mmol}$) in a 50 mL round-bottom flask was magnetically stirred at $140^{\circ} \mathrm{C}$ under 1 atm of oxygen atmosphere. The reaction was monitored by GC-MS (Scheme S7).

Scheme S7 Scale-up experiment.

Scale-up experiment for the aerobic oxidation of isochroman

A mixture of isochroman $(13.42 \mathrm{~g}, 100 \mathrm{mmol}), \mathrm{Ni}_{2} \mathrm{Al}$-LDH $(10 \mathrm{~g}), \gamma$-valerolactone $(200 \mathrm{~g}, 2 \mathrm{~mol})$ in a 500 mL round-bottom flask was magnetically stirred at $110^{\circ} \mathrm{C}$ under 1 atm of oxygen atmosphere. The reaction was monitored by GC (Scheme S8).

Scheme S8 Scale-up experiment.

Characterization of NizAl-LDH

The identification of the crystallization of the prepared samples were confirmed through Powder X-ray diffraction (XRD) using a Rigaku D/max 2500 PC X-ray diffractometers with $\mathrm{Cu}-\mathrm{K} \alpha(1.5402 \AA$) radiation. Temperature-programmed desorption of ammonia $\left(\mathrm{NH}_{3}-\mathrm{TPD}\right)$ using a Micromeritics Autochem model 2920 instrument was carried out to evaluate the total acidity of the catalysts. The samples ($\sim 100 \mathrm{mg}$) were pretreated in vacuum at $100^{\circ} \mathrm{C}$ before the samples were degassed under helium (White Martins, 99.9) flow ($30 \mathrm{~mL} \mathrm{~min}^{-1}$) for 1 h . Next, the materials were saturated with $\mathrm{NH}_{3}\left(30 \mathrm{~mL} \mathrm{~min}{ }^{-1}\right)$ by 30 min . Once saturated, the samples were purged again with helium gas ($30 \mathrm{~mL} \mathrm{~min}{ }^{-1}$) to remove physiorbed/weakly adsorbed ammonia species. the $\mathrm{NH}_{3}-\mathrm{TPD}$ was performed between 50 and $800^{\circ} \mathrm{C}$ with a heating rate of 10 $\mathrm{K} \min ^{-1}$ by using a helium flow. The evolved ammonia was analyzed by on-line GC-MS provided with a TCD detector. Fourier-transformed infrared absorption of pyridine spectra (Py-FTIR) were collected on a Tensor 27 spectrophotometer. The samples were pretreated in vacuum at $80^{\circ} \mathrm{C}$ for 2 h and then cooling the sample at $30^{\circ} \mathrm{C}$. Pyridine steam was subsequently introduced into the situ-cell for 30 min . Finally, the spectra were recorded at $50^{\circ} \mathrm{C}$.

Production and application of GVL

Fig. S2 Production and application of GVL.

Comparative experiments of various additives

Table S1 Effect of additives on the catalytic oxidation of isochroman ${ }^{\text {a }}$.

${ }^{\text {a }}$ Reaction conditions: S1 1 mmol , additive 100 mg , GVL $20 \mathrm{mmol}, \mathrm{O}_{2} 1 \mathrm{~atm}, 5 \mathrm{~h} ;{ }^{\mathrm{b}}$ Based on GC analysis using biphenyl as the internal standard substance.

Optimization of reaction conditions

Fig. $\mathbf{S 3}$ Effect of the amount of $\mathrm{Ni}_{2} \mathrm{Al}-\mathrm{LDH}$.

Fig. S4 Effect of the reaction temperature and reaction time.

Fig. S5 Effect of the isochroman concentration.

DFT calculation method

Fig. S6 Calculation of the optimized adsorption mode (a) and schematic diagram (b) of S1 on $\mathrm{Ni}_{2} \mathrm{Al}$-LDH.

Determination of the HAT or SET process

The difference in reactivity between the above two substrates can reflect the reaction pathways. For the SET (Single Electron Transfer) reactions, the relative rate of $\mathrm{C}-\mathrm{H}$ oxidation is $2^{\circ}>3^{\circ}$, whereas it is $3^{\circ}>2^{\circ}$ for HAT (Hydrogen Atom Transfer) reactions. ${ }^{11-13}$

4-isopropylanisole

Fig. S7 Catalytic oxidation of 4-ethylanisole and 4-isopropylanisole over GVL reaction system.
Reaction conditions: substrate 1 mmol , GVL $2 \mathrm{~mL}, 140^{\circ} \mathrm{C}, \mathrm{O}_{2}$ (1 atm).

Electron spin density

Fig. S8 The electron spin density of TS1- $\boldsymbol{\beta}$

Experiment for capturing the GVL radical

Fig. S9 GC-MS analysis the GVL reaction system in the presence of 1,1-diphenylethylene.
Reaction conditions: 1,1-diphenylethylene $1 \mathrm{mmol}, \mathrm{GVL} 2 \mathrm{mmol}, 110^{\circ} \mathrm{C}, 6 \mathrm{~h}, \mathrm{O}_{2}(1 \mathrm{~atm})$.

Free energy profiles

Fig. S10 Free energy profiles ($\mathrm{kcal} / \mathrm{mol}$) calculated at the M06-2x/6-31G(2df,2p) level of theory for the GVL-catalyzed oxidation of S1: (a) generation of active intermediates and (b) activation of S1 through two possible intermedia.

Fig. S11 Free energy profiles $(\mathrm{kcal} / \mathrm{mol})$ calculated at the M06-2x/6-31G $(2 \mathrm{df}, 2 \mathrm{p})$ level of theory for the $\cdot \mathrm{OOH}$-catalyzed oxidation of S1.

Table S2 The ICP-MS results of GVL and the mixture reaction liquid.

Sample	Ni (ppm)	Al (ppm)	Ca (ppm)	Fe (ppm)	Na (ppm)	Si (ppm)	Other metals (ppm)
GVL	0.003	0.240	0.267	0.839	0.442	0.253	<0.001
Reaction mixture	0.003	0.247	-	-	-	-	-

ICP-MS total element analysis of GVL and ICP-MS analysis the reaction mixture.

Characterization of $\mathrm{Ni}_{2} \mathrm{Al}-\mathrm{LDH}$

The XRD pattern of the $\mathrm{Ni}_{2} \mathrm{Al}$-LDH (Fig. S11a) exhibits intense typical reflections located at the angles of a hydrotalcite-like phase. The amount of acidic sites was quantified by NH_{3}-TPD. The result shown in Fig. S11b indicates that two peaks at $50-200^{\circ} \mathrm{C}$ and $250-350^{\circ} \mathrm{C}$ can be observed for $\mathrm{Ni}_{2} \mathrm{Al}-\mathrm{LDH}$, which are related to the weak and medium acidic sites, ${ }^{14}$ respectively. The type of acidic site of the catalyst was further identified by Py-FTIR analysis, as shown in Fig. S11c. The Py-FTIR spectra shows four main bands observed at $1607,1574,1490$, and $1445 \mathrm{~cm}^{-1}$. Among them, the band at 1445,1574 , and $1606 \mathrm{~cm}^{-1}$ are due to the pyridine adsorbed on Lewis acidic sites, originating from coordinatively unsaturated metal cationic sites. The band at $1490 \mathrm{~cm}^{-1}$ is attributed to a mixture of Lewis and Brønsted acidic site of pyridine adsorption. ${ }^{15}$

Fig. S12 XRD pattern of $\mathrm{Ni}_{2} \mathrm{Al}-\mathrm{LDH}(\mathrm{a}), \mathrm{NH}_{3}-\mathrm{TPD}(\mathrm{b})$ and Py-FTIR (c) analysis of $\mathrm{Ni}_{2} \mathrm{Al}-\mathrm{LDH}$.

Computational details

All reported structures were optimized and characterized to be minima or transition states at M06-2 x^{16-}
18/6-31G(2df,2p) level in the gas phase.
The free energies at 298.15 K and 1 atm were obtained through frequency calculations.
All standard DFT calculations were performed with Gaussian 09 program. ${ }^{19}$

Table S3 Calculated energies and energy corrections.

Stationary point	Zero-point correction	Thermal correction to Energy	Thermal correction to Enthalpy	Thermal correction to Gibbs Free Energy	Sum of electronic and zeropoint Energies	Sum of electronic and thermal Energies	Sum of electronic and thermal Enthalpies	Sum of electronic and thermal Free Energies
GVL	0.127135	0.133644	0.134588	0.096679	-345.557384	-345.550875	-345.549931	-345.587840
O_{2}	0.004048	0.006410	0.007354	-0.015905	-150.259906	-150.257544	-150.256599	-150.279858
TS1- γ	0.125815	0.135311	0.136255	0.089483	-495.754901	-495.745405	-495.744461	-495.791234
INT1- γ	0.113010	0.119821	0.120765	0.081426	-344.910940	-344.904129	-344.903184	-344.942524
- OOH	0.014602	0.017454	0.018398	-0.007549	-150.833095	-150.830243	-150.829299	-150.855246
S1	0.170365	0.176933	0.177877	0.138993	-423.850704	-423.844136	-423.843192	-423.882076
TS2-1	0.279613	0.294100	0.295044	0.235060	-768.745293	-768.730806	-768.729862	-768.789846
TS2-4	0.281416	0.294814	0.295758	0.239266	-768.743514	-768.730116	-768.729172	-768.785664
TS3-1	0.185179	0.192654	0.193598	0.151186	-574.604851	-574.597377	-574.596432	-574.638845
TS3-4	0.185588	0.192815	0.193759	0.151884	-574.591272	-574.584046	-574.583101	-574.624976
INT2	0.157317	0.164882	0.165826	0.124645	-423.241521	-423.233956	-423.233012	-423.274193
INT3	0.156769	0.164394	0.165338	0.123911	-423.231711	-423.224086	-423.223142	-423.264569
$\mathrm{H}_{2} \mathrm{O}_{2}$	0.026335	0.029217	0.030161	0.004885	-151.464650	-151.461768	-151.460824	-151.486100
TS1- α	0.125726	0.135115	0.136060	0.089225	-495.747405	-495.738017	-495.737072	-495.783907
TS1- β	0.125587	0.135170	0.136114	0.088216	-495.743683	-495.734100	-495.733156	-495.781054
INT1- α	0.113373	0.119867	0.120812	0.082238	-344.911066	-344.904571	-344.903627	-344.942201
INT1- β	0.112037	0.118982	0.119926	0.080177	-344.905460	-344.898515	-344.897571	-344.937320
TS4-1	0.280717	0.295320	0.296264	0.236729	-768.754667	-768.740065	-768.739121	-768.798656
TS4-4	0.281305	0.295785	0.296729	0.237595	-768.745108	-768.730628	-768.729684	-768.788818

Energies and cartesian coordinates for all structures

All energies are given in Hartree							
TS1- α				H	-0.234671	1.57776	1.456362
C	0.230383	0.831223	0.888623	H	-1.50481	0.952306	-0.030341
C	-0.077654	-0.5552	1.329688	H	0.547674	1.532911	-1.237386
C	0.636176	-1.414422	0.261031	O	1.229576	-0.343807	-0.832129
H	-1.001034	1.131333	-0.041265	C	2.213554	1.645166	0.127294
H	0.114529	1.714346	1.5055	H	2.963331	1.644749	-0.663626
H	-1.151415	-0.768549	1.372465	H	2.0102	2.675443	0.423483
H	0.327265	-0.733606	2.332555	H	2.610425	1.101793	0.987179
H	1.230106	-2.205254	0.718997	C	0.692784	-1.301513	-0.032984
O	1.575334	-0.532497	-0.388415	O	0.889669	-2.468646	-0.204813
C	-0.301398	-1.987808	-0.784719	O	-3.041826	-0.15507	-0.08224
H	0.266712	-2.505145	-1.557129	O	-2.457571	0.918218	-0.494778
H	-0.995486	-2.691592	-0.322153				
H	-0.88245	-1.192306	-1.256151	TS1- $\boldsymbol{\gamma}$			
C	1.346284	0.76873	-0.082044	C	1.209723	-1.040011	0.850258
O	1.97843	1.678658	-0.551891	C	0.022571	-0.204021	1.325087
O	-2.72264	0.313491	-0.069368	C	-0.248331	0.668542	0.11733
O	-1.944997	1.214802	-0.543864	H	1.952855	-1.270126	1.609619
				H	0.889854	-1.978214	0.389982
TS1- $\boldsymbol{\beta}$				H	0.299242	0.432291	2.174406
C	-0.151414	-0.649197	1.05432	H	-0.853635	-0.78479	1.611867
C	-0.101483	0.801559	0.709889	H	-1.164273	-0.207551	-0.659804
C	0.935126	0.983034	-0.374205	O	0.932024	0.791973	-0.603271
H	0.27604	-0.882936	2.034786	C	-1.038529	1.933064	0.208717
H	-1.158372	-1.08188	1.035333	H	-1.174699	2.378453	-0.776506

C	-1.887272	-2.474272	-0.225579	H	-3.395796	0.850111	0.260695
H	-2.467397	-3.122522	-0.876495	H	0.343028	-2.316751	-0.30658
H	-1.540158	-3.063816	0.624238	H	-1.96813	-3.168392	-0.109117
C	-0.240428	-0.856199	-1.074997	O	0.239429	2.418579	-0.018018
H	0.822903	-0.92031	-0.265628	C	1.134895	0.192749	-0.254293
H	0.114279	-0.719769	-2.092374	H	1.74974	-0.236818	0.66937
C	2.913667	0.387842	-0.949311	H	1.554996	-0.184888	-1.171249
C	2.839224	-1.054457	-0.449285	C	1.338966	1.640754	-0.215175
C	1.70131	-0.97747	0.551513	H	1.784375	1.933153	-1.155495
H	3.91561	0.758886	-1.154976	H	2.025972	1.86148	0.591388
H	2.312441	0.544858	-1.848888	C	-1.053449	2.053124	0.092206
H	3.790254	-1.349497	0.012541	H	-1.421036	2.410683	1.044603
H	2.614703	-1.784248	-1.229641	H	-1.611156	2.526159	-0.705327
O	1.677204	0.359158	1.045253	O	3.003901	-1.263526	-0.35666
C	1.423495	-2.01147	1.586494	O	2.702289	-0.786934	0.876233
H	0.497149	-1.777494	2.115971	H	3.64668	-1.968998	-0.184557
H	1.318603	-2.985959	1.105618				
H	2.231241	-2.075139	2.323922	TS3-4			
C	2.301339	1.199509	0.184801	C	2.926765	-1.100907	-0.08137
O	2.327433	2.387996	0.340549	C	2.606019	0.255792	-0.156464
				C	1.275152	0.678975	-0.039007
TS3-1				C	0.266136	-0.254553	0.154552
C	-2.836737	-1.211494	0.08714	C	0.589897	-1.621451	0.231002
C	-2.580763	0.157393	0.135926	C	1.914031	-2.043688	0.113315
C	-1.271183	0.642846	0.026387	H	3.947777	-1.418703	-0.17258
C	-0.215267	-0.24763	-0.136584	H	3.383882	0.981132	-0.304374
C	-0.476572	-1.630006	-0.183274	H	-0.192553	-2.342449	0.378433
C	-1.777896	-2.11033	-0.07218	H	2.15404	-3.088077	0.170997
H	-3.845582	-1.575125	0.172905	O	-0.305234	2.336665	-0.001777

C	-1.086732	0.11502	0.274913	H	-0.880946	2.189961	1.831393
H	-1.664781	-0.437005	-0.60438	H	-0.727299	3.420372	0.564689
H	-1.479402	-0.248299	1.206113	C	-0.400508	0.762103	-0.939776
C	-1.36526	1.522706	0.150012	H	-0.491642	1.310386	-1.88406
H	-1.883303	1.830924	1.040577	H	0.671953	-0.02091	-1.162577
H	-2.002922	1.660543	-0.708024	C	1.71624	-0.802501	-1.08378
C	0.990612	2.05534	-0.110862	C	1.629835	-1.422342	0.289075
H	1.340316	2.428204	-1.058587	C	2.344635	-0.372691	1.1574
H	1.513353	2.554994	0.686604	H	1.641628	-1.39267	-1.990966
O	-3.495737	-0.790106	0.051174	H	2.168376	-2.374897	0.328631
O	-2.412592	-1.299616	-0.546632	H	0.604652	-1.594797	0.626619
H	-4.10762	-1.540214	0.126558	H	1.617147	0.359283	1.514929
				O	3.231937	0.324376	0.261823
TS4-1				C	3.150048	-0.937334	2.305233
C	-2.795076	-2.156501	-0.416562	H	3.672998	-0.142783	2.837565
C	-1.664071	-1.452818	-0.826899	H	2.485798	-1.44874	3.005109
C	-1.572345	-0.085306	-0.577826	H	3.886264	-1.653036	1.934814
C	-2.600363	0.585041	0.103938	C	2.867141	0.142751	-1.032685
C	-3.720787	-0.128507	0.523613	O	3.422312	0.696055	-1.946281
C	-3.819434	-1.493813	0.257306				
H	-2.871765	-3.219212	-0.609004	TS4-4			
H	-0.841435	-1.96537	-1.318297	C	-3.32696	1.732697	-0.229908
H	-4.518562	0.381977	1.052162	C	-3.27093	0.420727	-0.683136
H	-4.694619	-2.04296	0.582079	C	-2.227034	-0.42395	-0.301772
O	0.024023	1.564809	0.114452	C	-1.226859	0.046157	0.562878
C	-2.403877	2.065584	0.297444	C	-1.287765	1.388761	1.01118
H	-2.582759	2.566254	-0.65989	C	-2.321759	2.219379	0.615006
H	-3.113799	2.479295	1.015415	H	-4.141743	2.377756	-0.533715
C	-0.973467	2.373989	0.758757	H	-4.042964	0.041913	-1.345228

H	-0.496843	1.784184	1.647956
H	-2.352759	3.244696	0.961546
O	-0.998048	-2.550263	-0.56139
C	-0.262033	-0.906282	1.094821
H	1.15597	-0.533627	1.15698
H	-0.236296	-0.82619	2.197756
C	-0.385963	-2.351968	0.696311
H	-0.912971	-2.912897	1.483997
H	0.608123	-2.796708	0.590306
C	-2.186739	-1.840177	-0.82237
H	-2.262881	-1.807761	-1.911813
H	-3.058088	-2.398095	-0.448121
C	2.312695	-0.229637	1.207686
C	2.246509	1.265867	0.983207
C	1.72799	1.34325	-0.470162
H	2.891669	-0.730966	1.973662
H	3.203122	1.784782	1.09028
H	1.547192	1.726018	1.675461
H	0.630944	1.381604	-0.469475
O	2.131354	0.105606	-1.089881
C	2.298711	2.486673	-1.279302
H	1.938269	2.446867	-2.306951
H	1.996752	3.441669	-0.842097
H	3.388717	2.435447	-1.287446
C	2.530641	-0.801281	-0.166635
O	2.919288	-1.900342	-0.46622

Spectrometric data for the products

1-Isochromanone (P1)

The general procedure as described above in 98% yield as colorless oil, $5 \mathrm{~h}, 145 \mathrm{mg}$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.2,139.6,133.7,130.3,127.7,127.3,125.3,67.4,27.8$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$149.0601, found 149.0597.

4-Isochromanone ($\mathbf{P}^{\prime} 1$)

The general procedure as described above in 30% yield as colorless oil, $12 \mathrm{~h}, 80^{\circ} \mathrm{C}, 450 \mathrm{mg}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 194.1, 134.2, 127.9, 126.4, 124.5, 73.6, 67.9.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$149.0601, found 149.0597.

1-Isochromanone- ${ }^{18} \mathrm{O}$

The yield was $\mathbf{4 8 \%}$ by GC-MS analysis after 2 h .
GC-MS: m/z (rel int.) $150\left[\mathrm{M}^{+}\right]$(44%), 120 (100%), 90 (89%), 63 (15%), 51 (12%).

7-Methylisochroman-1-one (P2)

The general procedure as described above in 81% yield as colorless oil, $24 \mathrm{~h}, 131 \mathrm{mg}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=8.4,2.7 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.49(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.2,158.9,131.9,128.5,126.0,121.5,113.0,67.7,55.6,27.0$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$163.0759, found 163.0754.

5-Methylisochroman-1-one (P3)

The general procedure as described above in 91% yield as colorless oil, $16 \mathrm{~h}, 147 \mathrm{mg}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,138.3,135.1,128.2,127.1,125.3,66.7,24.9,18.9$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$163.0759, found 163.0754.

7-Methoxyisochroman-1-one (P4)

The general procedure as described above in 75% yield as colorless oil, $24 \mathrm{~h}, 147 \mathrm{mg}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=8.4,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.49(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2,158.9,131.9,128.5,126.0,121.5,113.0,67.67,55.6,27.0$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$179.0708, found 179.0703.

7-Fluoroisochroman-1-one (P5)

The general procedure as described above in 90% yield as white solid, $5 \mathrm{~h}, 150 \mathrm{mg}$.
m.p. $76.0-77.1^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dt}, J=8.0,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.04(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.3,160.8,135.4,129.2,126.9,121.0,116.6,67.5,27.1$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$167.0508, found 167.0503.

7-Chloroisochroman-1-one (P6)

The general procedure as described above in 93% yield as yellow solid, $16 \mathrm{~h}, 170 \mathrm{mg}$.
m.p. $69.3-70.3^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.9,137.9,133.7,133.5,129.9,128.9,126.7,67.3,27.2$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$183.0209, found 183.0207.

7-Bromoisochroman-1-one (P7)

The general procedure as described above in 91% yield as yellow solid, $16 \mathrm{~h}, 207 \mathrm{mg}$.
m.p. $87.7-89.9^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=8.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.54(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.8,138.3,136.6,133.1,129.1,127.0,121.3,67.3,27.3$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$248.9527, found 248.9522.

8-Bromoisochroman-1-one (P8)

The general procedure as described above in 81% yield as colorless oil, $16 \mathrm{~h}, 184 \mathrm{mg}$.
${ }^{1} H$ NMR (400 MHz,$\left.\right)^{2} \boldsymbol{\delta} 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=14.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.47(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz,) $\delta 162.0,142.7,134.6,133.5,126.7,124.7,66.6,29.3$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$248.9527, found 248.9522.

6-Bromoisochroman-1-one (P9)

The general procedure as described above in 95% yield as white solid, $16 \mathrm{~h}, 216 \mathrm{mg}$.
m.p. $120.9-122.1^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz},) \delta 7.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{t}, J=5.9$
$\mathrm{Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz,) $\delta 164.4,141.3,132.0,131.2,130.4,128.8,124.2,67.2,27.6$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$248.9527, found 248.9522.

8-(Trifluoromethyl)isochroman-1-one (P10)

The general procedure as described above in 0% yield, 40 h .

3-Methylisochroman-1-one (P11)

The general procedure as described above in 83% yield as colorless oil, $5 \mathrm{~h}, 134 \mathrm{mg}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.60(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.88(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 165.6,139.2,133.7,130.1,127.6,127.4,124.9,75.1,34.8,20.9$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$163.0759, found 163.0754.

1,2-Dihydro-4H-benzo[f]isochromen-4-one (P12)

The general procedure as described above in 69% yield as orange solid, $24 \mathrm{~h}, 137 \mathrm{mg}$.
m.p. $106.7-108.4^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=6.6,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.55(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.5,138.6,135.6,129.8,128.9,128.7,127.7,127.3,125.1,124.4,122.4$,
66.7, 24.2.

HRMS (ESI, m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$199.0759, found 199.0754.

4,5-Dihydro-7H-thieno[2,3-c]pyran-7-one (P13)

The general procedure as described above in 80% yield as colorless oil, $24 \mathrm{~h}, 123 \mathrm{mg}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.17 (t, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 161.3,149.0,128.1,126.9,124.0,67.7,24.6$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$155.0167, found 155.0161.

6,7-Dihydro-4H-thieno[3,2-c]pyran-4-one (P14)

The general procedure as described above in 62% yield as pale yellow solid, $24 \mathrm{~h}, 95 \mathrm{mg}$.
m.p. $86.2-87.4^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.02(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.3,147.6,134.5,126.6,122.5,68.4,21.1$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$155.0167, found 155.0161.

Isobenzofuran-1(3H)-one (P15)

The general procedure as described above in 90% yield as white solid, $16 \mathrm{~h}, 120 \mathrm{mg}$.
m.p. $72.9-74.1^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,146.6,134.0,128.9,125.4,122.3,69.7$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$135.0446, found 135.0441.

Methyl benzoate (P16) is known compound.

The yield was 75% by GC-MS analysis after 12 h .
GC-MS : m / z (rel int.) $136\left[\mathrm{M}^{+}\right]$(28\%), 105 (100\%), 77 (52\%), 51 (19\%), 43 (31\%).

Methyl 4-methylbenzoate (P17)

The general procedure as described above in 76% yield as colorless oil, $12 \mathrm{~h}, 114 \mathrm{mg}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,143.5,129.6,129.0,127.4,51.9,21.6$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$151.0758, found 151.0754.

Methyl 4-ethylbenzoate (P18)

The general procedure as described above in 66% yield as colorless oil, $8 \mathrm{~h}, 108 \mathrm{mg}$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 167.1,149.7,129.7,127.9,127.6,51.9,28.9,15.2$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$165.0915, found 165.0910.

Methyl [1,1'-biphenyl]-4-carboxylate (P19)

The general procedure as described above in 44% yield as white solid, $5 \mathrm{~h}, 93 \mathrm{mg}$.
m.p. $119.1-119.8^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{ddd}, J=$ $7.3,3.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 167.0,145.7,140.0,130.1,129.0,128.9,128.2,127.3,127.1,52.2$.

HRMS (ESI, m / z): calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$213.0915, found 213.0910.
Methyl 4-methoxybenzoate (P20)

The general procedure as described above in 61% yield as colorless oil, $5 \mathrm{~h}, 101 \mathrm{mg}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03-7.98(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.9,163.3,131.6,122.6,113.6,55.4,51.8$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$167.0708, found 167.0703.

Methyl 4-fluorobenzoate (P21)

The general procedure as described above in 54% yield as colorless oil, $12 \mathrm{~h}, 83 \mathrm{mg}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,166.1,132.0,126.4,115.4,52.1$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$155.0508, found 155.0503.

Methyl 2-chlorobenzoate (P22)

The general procedure as described above in 54% yield as colorless oil, $12 \mathrm{~h}, 51 \mathrm{mg}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dtd}, J=9.7,8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{ddd}$, $J=7.6,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,133.7,132.5,131.4,131.0,130.0,126.5,52.3$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$171.0210, found 171.0207.

Methyl 3-chlorobenzoate (P23)

The general procedure as described above in 61% yield as colorless oil, $12 \mathrm{~h}, 104 \mathrm{mg}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=8.0,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,134.5,132.9,131.8,129.7,129.6,127.7,52.3$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$171.0210, found 171.0207.

Methyl 4-chlorobenzoate (P24)

The general procedure as described above in 99% yield as colorless oil, $12 \mathrm{~h}, 168 \mathrm{mg}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.2,139.3,131.0,128.7,128.6,52.2$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$171.0210, found 171.0207.

Methyl 4-bromobenzoate (P25)

The general procedure as described above in 96% yield as white solid, $10 \mathrm{~h}, 206 \mathrm{mg}$.
m.p. $114.6-115.0^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,131.7,131.1,129.0,128.0,52.3$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$214.9707, found 214.9702.

Methyl 4-nitrobenzoate (P26)

The general procedure as described above in 89% yield as yellow solid, $40 \mathrm{~h}, 161 \mathrm{mg}$.
m.p. $96.7-97.9^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.19-8.15(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,150.5,135.4,130.7,123.5,52.8$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$182.0452, found 182.0448 .

Methyl 4-(trifluoromethyl)benzoate (P27)

The general procedure as described above in 89% yield as colorless oil, $16 \mathrm{~h}, 181 \mathrm{mg}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,133.3,129.9,125.3,124.7,52.4$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}$205.0476, found 205.0471.

Methyl 2-naphthoate (P28)

The general procedure as described above in 25% yield as white solid, $24 \mathrm{~h}, 46 \mathrm{mg}$.
m.p. $72.5-73.3^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-$ 7.89 (m, 2H), 7.60 (ddd, $J=15.0,14.1,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 167.3,135.5,132.5,131.1,129.4,128.3,128.2,127.8,127.4,126.7,125.3$, 52.3.

HRMS (ESI, m / z): calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$187.0759, found 187.0754.

Dimethyl terephthalate (P29)

The general procedure as described above in 86% yield as white solid, $12 \mathrm{~h}, 167 \mathrm{mg}$.
m.p. $142.2-143.1^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~s}, 4 \mathrm{H}), 3.94(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,133.9,129.5,52.4$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$195.0652, found 195.0652.

Butyl benzoate (P30)

The general procedure as described above in 61% yield as colorless oil, $10 \mathrm{~h}, 108 \mathrm{mg}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=10.7,4.8 \mathrm{~Hz}, 2 \mathrm{H})$,
$4.34(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,132.8,130.5,129.53,128.3,64.8,30.8,19.3,13.8$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$179.1071, found 179.1067.

Butyl 4-methoxybenzoate (P31)

The general procedure as described above in 25% yield as colorless oil, $12 \mathrm{~h}, 52 \mathrm{mg}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05-7.98(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.90(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}$, $3 \mathrm{H}), 1.76(\mathrm{dt}, J=14.5,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,163.2,131.5,123.0,113.6,64.5,55.4,30.8,19.3,13.8$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$209.1177, found 209.1172.

Decyl benzoate (P32)

The general procedure as described above in 74% yield as colorless oil, $10 \mathrm{~h}, 194 \mathrm{mg}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{dd}, J=5.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=10.3,4.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.31(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 12 \mathrm{H}), 0.88(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.7,132.8,130.5,129.5,128.3,65.2,31.9,29.6,29.3,29.3,28.7,26.1$, 22.7, 14.1 .

HRMS (ESI, m / z): calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$263.2011, found 263.2006.

Tetradecyl benzoate (P33)

The general procedure as described above in 89% yield as colorless oil, $10 \mathrm{~h}, 283 \mathrm{mg}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{dd}, J=8.5,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 20 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.7,132.8,130.6,129.6,128.3,65.2,32.0,29.7,29.7,29.6,29.6,29.4$, 29.3, 28.7, 26.1, 22.7, 14.2 .

HRMS (ESI, m / z): calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$319.2137, found 319.2632.

Acetophenone (P34, P62 and P82) is known compound.

The yield was 56% (and $>99 \%$) by GC-MS analysis after 24 h .
GC-MS : m / z (rel int.) $120\left[\mathrm{M}^{+}\right]$(30\%), 105 (88\%), 77 (64\%), 56 (37\%), 52 (22\%), 43 (100\%), 27 (12\%).

1-(\boldsymbol{p}-Tolyl)ethan-1-one (P35) is known compound.

The yield was 76% by GC-MS analysis after 24 h .
GC-MS : m / z (rel int.) $134\left[\mathrm{M}^{+}\right](30 \%), 119$ (100\%), 91 (72\%), 65 (21\%), 39 (10\%).

1-(4-Methoxyphenyl)ethan-1-one (P36 and P63) is known compound.

The yield was 48% and 92% by GC-MS analysis after 24 h .
GC-MS : m / z (rel int.) $150\left[\mathrm{M}^{+}\right](35 \%), 135$ (100\%), 107 (24\%), 92 (18\%), 77 (32\%), 64 (11\%), 43 (11\%).

1-([1,1'-Biphenyl]-4-yl)ethan-1-one (P37 and P66)

The general procedure as described above in 63% (and 80%) yield as white solid, $24 \mathrm{~h}, 123 \mathrm{mg}$ (and 157 mg).
m.p. $119.1-119.8^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 197.8,145.8,139.9,135.8,129.9,128.9,128.3,127.3$ 127.2, 26.7.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$197.0966, found 197.0961.

1-(4-Bromophenyl)ethan-1-one (P38 and P67)

The general procedure as described above in 76% (and 94\%) yield as yellow solid, $24 \mathrm{~h}, 151 \mathrm{mg}$ (and 187 mg).
m.p. $117.3-118.5^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 197.1,135.8,131.9,129.9,128.3,26.6$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{OBr}[\mathrm{M}+\mathrm{H}]^{+}$198.9758, found 198.9753.

1-(4-Iodophenyl)ethan-1-one (P39 and P76)

The general procedure as described above in 32% (and 72%) yield as yellow solid, $12 \mathrm{~h}, 79 \mathrm{mg}$ (and 177 mg). m.p. $81.5-83.4^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 197.4,137.9,136.3,129.7,101.1,26.5$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{OI}[\mathrm{M}+\mathrm{H}]^{+} 246.9618$, found 246.9614 .

Methyl 4-nitrobenzoate ($\mathbf{P 4 0)}$ is known compound.

The yield was 53% by GC-MS analysis after 24 h .
GC-MS : m / z (rel int.) $165\left[\mathrm{M}^{+}\right](23 \%), 150$ (100\%), 120 (18\%), 104 (42\%), 92 (22\%), 76 (22\%), 50 (14\%), 43 (35\%).

1-(m-tolyl)ethan-1-one ($\mathbf{P} 41$) is known compound.

The yield was 69% by GC-MS analysis after 24 h .
GC-MS : m / z (rel int.) $134\left[\mathrm{M}^{+}\right]$(37\%), 122 (34\%), 119 (100\%), 105 (48%), 91 (97\%), 77 (31\%), 65 (27\%), 57 (21\%), 51 (19\%), 39 (19\%).

1-(2-Methoxyphenyl)ethan-1-one (P42 and P71) is known compound.

The yield was 31% (and 17\%) by GC-MS analysis after 40 h (24 h).
GC-MS : m / z (rel int.) $150\left[\mathrm{M}^{+}\right]$(18\%), 135 (100\%), 92 (16\%), 77 (42\%), 43 (12\%).

1-(2-Nitrophenyl)ethan-1-one ($\mathbf{P} 43$) is known compound.

The yield was 76% by GC-MS analysis after 24 h .
GC-MS : m / z (rel int.) $165\left[\mathrm{M}^{+}\right]$(1.5\%), 150 (100\%), 123 (20\%), 76 (26\%), 51 (48\%), 43 (58\%).

1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethan-1-one (P44)

The yield was only 6% after 48 h .
GC-MS : m / z (rel int.) $246\left[\mathrm{M}^{+}\right]$(21\%), 231 (100\%), 160 (29\%), 147 (67\%), 131 (16\%), 103 (15\%), 85 (17\%), 58 (12\%), 43 (35\%).

4-Acetylbenzoic acid ($\mathbf{P 4 5 \text {) is known compound. }}$

The yield was 55% by GC-MS analysis after 24 h .
GC-MS : m / z (rel int.) $164\left[\mathrm{M}^{+}\right]$(19\%), 149 (100\%), 121 (36\%), 65 (36\%), 50 (11\%), 43 (16\%).
1-(Naphthalen-2-yl)ethan-1-one (P46 and P86) is known compound.

The yield was 47% (and 9\%) by GC-MS analysis after 5 h (and 24 h).
GC-MS : m / z (rel int.) $170\left[\mathrm{M}^{+}\right]$(47\%), 155 (90\%), 127 (100\%), 101 (9\%), 77 (16\%), 63 (17\%).

Propiophenone ($\mathbf{P 4 7}$ and $\mathbf{P 8 3}$) is known compound.

The yield was 59% (and 98\%) by GC-MS analysis after $24 \mathrm{~h}(24 \mathrm{~h})$.
GC-MS : m / z (rel int.) $134\left[\mathrm{M}^{+}\right]$(17\%), 105 (100\%), 77 (50\%), 51 (17\%).

3,4-Dihydronaphthalen- $\mathbf{1 (2 H)}$-one ($\mathbf{(4 8)}$) is known compound.

The yield was 44% by GC-MS analysis after 24 h .
GC-MS : m / z (rel int.) $146\left[\mathrm{M}^{+}\right](68 \%), 131$ (13\%), 118 (100\%), 115 (15\%), 90 (71\%), 63 (12\%).

Benzil (P49) is known compound.

The yield was 44% by GC-MS analysis after 12 h .
GC-MS : m / z (rel int.) $210\left[\mathrm{M}^{+}\right]$(3\%), 105 (100\%), 77 (37\%), 51 (11\%).

Benzophenone (P50)

The general procedure as described above in 90% yield as white solid, $24 \mathrm{~h}, 164 \mathrm{mg}$.
m.p. $48.3-50.4^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 196.8,137.6,132.5,130.1,128.3$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$183.0806, found 183.0804.

Bis(4-Fluorophenyl)methanone (P51).

The general procedure as described above in 94% yield as white solid, $24 \mathrm{~h}, 205 \mathrm{mg}$. m.p. $107.8-108.8^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.7$, 166.4, 164.4, 133.7, 132.5, 115.6, 115.5.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{OF}_{2}[\mathrm{M}+\mathrm{H}]^{+}$219.0619, found 219.0616.

(4-Chlorophenyl)(phenyl)methanone (P52)

The general procedure as described above in 96% yield as white solid, $24 \mathrm{~h}, 149 \mathrm{mg}$.
m.p. $108.1-109.4^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.4,138.9,137.2,135.9,132.7,131.45,129.9,128.6,128.4$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+}$217.0418, found 217.0415.

Phenyl(pyridin-2-yl)methanone (P53)

The general procedure as described above in 51% yield as colorless oil, $24 \mathrm{~h}, 93 \mathrm{mg}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.75-8.67(\mathrm{~m}, 1 \mathrm{H}), 8.10-7.97(\mathrm{~m}, 3 \mathrm{H}), 7.88(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (ddd, $J=6.5,4.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (ddd, $J=8.4,3.8,0.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.9,155.1,148.6,137.1,136.3,132.9,131.0,128.2,126.2,124.6$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$184.0759, found 184.0757.

Phenyl(pyridin-4-yl)methanone (P54)

The general procedure as described above in 96% yield as yellow solid, $24 \mathrm{~h}, 176 \mathrm{mg}$.
m.p. $70.4-72.4^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.83(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.89-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{dd}$, $J=4.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.2,150.3,144.4,135.9,133.6,130.2,128.7$, 122.9.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$184.0759, found 184.0757.

(4-Chlorophenyl)(pyridin-4-yl)methanone (P55)

The general procedure as described above in 97% yield as white solid, $24 \mathrm{~h}, 211 \mathrm{mg}$.
m.p. $76.0-77.1^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.77(\mathrm{dd}, J=4.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{dd}, J=4.3,1.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 193.8,150.4,143.9,140.1,134.1,131.5,129.0,122.7$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ONCl}[\mathrm{M}+\mathrm{H}]^{+}$218.0370, found 218.0367.

9H-fluoren-9-one (P56)

The general procedure as described above in 98% yield as yellow solid, $24 \mathrm{~h}, 176 \mathrm{mg}$.
m.p. $83.9-84.4^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.0,144.4,134.7,134.1,129.1,124.3,120.3$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$181.0651, found 181.0648.

2-Bromo-9H-fluoren-9-one (P57)

The general procedure as described above in 91% yield as yellow solid, $24 \mathrm{~h}, 236 \mathrm{mg}$.
m.p. $144.7-147.0^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=7.9,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45$ (ddd, $J=16.6,11.5,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ (ddd, $J=8.6,5.2,1.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.3,143.6,142.9,137.0,135.7$, 135.0, 133.6, 129.4, 127.4, 124.5, 122.9, 121.7, 120.4 .

HRMS (ESI, m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{OBr}[\mathrm{M}+\mathrm{H}]^{+}$258.9758, found 258.9753.

2,7-Dibromo-9H-fluoren-9-one (P58)

The general procedure as described above in 95% yield as yellow solid, $24 \mathrm{~h}, 321 \mathrm{mg}$.
m.p. $202.2-203.2^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40-7.36(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.0,142.3,137.5,135.3,127.9,123.3,121.9$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{OBr}_{2}[\mathrm{M}+\mathrm{H}]^{+} 338.8839$, found 338.8838 .

2-Acetyl-9H-fluoren-9-one (P59)

The general procedure as described above in 98% yield as yellow solid, $24 \mathrm{~h}, 217 \mathrm{mg}$.
m.p. $162.3-163.0^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{td}$, $J=7.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 196.5,192.6,148.4,143.2,137.7,135.0,134.9,134.8,134.2,130.2,124.6$, 124.0, 121.3, 120.4, 26.7.

HRMS (ESI, m / z): calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$223.0758, found 223.0754.

Anthracene-9,10-dione (P60)

The general procedure as described above in 98% yield as yellow solid, $24 \mathrm{~h}, 204 \mathrm{mg}$.
m.p. $286.0-287.8^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{dd}, J=5.3,3.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.81(\mathrm{dd}, J=5.4,3.2 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.2,134.2,133.5,127.3$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$209.0599, found 209.0597.

9H-Xanthen-9-one (P61)

The general procedure as described above in 95% yield as white solid, $186 \mathrm{mg}, 24 \mathrm{~h}$.
m.p. $176.8-177.5^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ -7.32 (m, 2H).
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.2,156.1,134.8,126.7,123.9,121.8,118.0$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$197.0599, found 197.0597.

1-(4-Butoxyphenyl)ethan-1-one ($\mathbf{P 6 4}$) is known compound.

The yield was only 14% after 24 h .
GC-MS : m/z (rel int.) $192\left[\mathrm{M}^{+}\right](20 \%), 177$ (10\%), 121 (100\%), 93 (9\%), 43 (9\%), 29 (12\%).

1-(4-Phenoxyphenyl)ethan-1-one ($\mathbf{P 6 5)}$) is known compound.

The yield was only 7% after 24 h .
GC-MS : m / z (rel int.) $212\left[\mathrm{M}^{+}\right](47 \%), 197$ (100\%), 141 (22\%), 115 (22\%), 77 (15\%), 51 (12\%).

1-(3-Bromophenyl)ethan-1-one (P68)

The general procedure as described above in 91% yield as colorless oil, $34 \mathrm{~h}, 181 \mathrm{mg}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{ddd}, J=7.9,2.0,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 196.8,138.7,136.0,131.3,130.2,126.9,122.9,26.6$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{OBr}[\mathrm{M}+\mathrm{H}]^{+}$198.9758, found 198.9753.
4-Acetylphenyl acetate ($\mathbf{P} 70$) is known compound.

The yield was 75% by GC-MS analysis after 24 h .
GC-MS : m / z (rel int.) $178\left[\mathrm{M}^{+}\right]$(9\%), 136 (31\%), 121 (100\%), 93 (16\%), 65 (12\%), 43 (29\%).

1-(2-Bromophenyl)ethan-1-one ($\mathbf{P} 72$) is known compound.

The yield was 12% by GC-MS analysis after 24 h .
GC-MS : m / z (rel int.) $200\left[\mathrm{M}^{+}\right](26 \%), 197$ (26\%), 185 (98\%), 183 (100\%), 155 (35\%), 77 (13%), 76 (30\%), 75 (29\%), 50 (31\%), 43 (46\%),

1,1',1"-(Benzene-1,3,5-triyl)tris(ethan-1-one) (P73)

The general procedure as described above in 81% yield as white solid, $48 \mathrm{~h}, 165 \mathrm{mg}$.
m.p. $164.1-164.7^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.7, 137.9, 131.7, 26.8.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$205.0863, found 205.0859.

1-(6-Isopropylnaphthalen-2-yl)ethan-1-one (P74)

The general procedure as described above in 47% yield as yellow solid, $5 \mathrm{~h}, 100 \mathrm{mg}$.
m.p. $70.5-71.7^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dt}, J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H})$, $1.34(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 198.1,149.5,136.0,133.9,131.1,130.0,129.6,128.1,126.8,124.1,124.0$, 34.4, 26.7, 23.8.

HRMS (ESI, m / z): calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$213.1279, found 213.1274.

Cyclohex-2-en-1-one (P75) is known compound.

The yield was 64% by GC-MS analysis after 24 h .
GC-MS : m / z (rel int.) $96\left[\mathrm{M}^{+}\right](40 \%), 68$ (100\%), 40 (19\%), 39 (22\%).

3-Methylcyclohex-2-en-1-one (P76) is known compound.

The yield was 46% by GC-MS analysis after 20 h .
GC-MS : m / z (rel int.) $110\left[\mathrm{M}^{+}\right]$(43\%), 82 (100\%), 54 (34\%), 39 (31\%).
(1R,5R)-4,6,6-Trimethylbicyclo[3.1.1]hept-3-en-2-one (P77)

The general procedure as described above in 62% yield as colorless oil, $20 \mathrm{~h}, 93 \mathrm{mg}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.74(\mathrm{dd}, J=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dt}, J=9.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{td}, J=6.1$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}$, $3 H)$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 204.5,170.6,121.1,57.5,54.3,49.7,40.9,26.6,23.6,22.0$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$151.1119, found 151.1117.

Benzene ($\mathbf{P 7 8 \text {) is known compound. }}$

The yield was 97% by GC-MS analysis after 10 h .
GC-MS : m / z (rel int.) $78\left[\mathrm{M}^{+}\right]$(100\%), 77 (24\%), 52 (17\%), 51 (15\%), 50 (13\%), 39 (11\%).
p-Cymene (P79) is known compound.

The yield was 90% by GC-MS analysis after 3 h .
GC-MS : m / z (rel int.) $134\left[\mathrm{M}^{+}\right]$(27\%), 119 (100\%), 117 (14\%), 91 (26\%).

Naphthalene (P80)

The general procedure as described above in 88% yield as white solid, $24 \mathrm{~h}, 113 \mathrm{mg}$.
m.p. $84.1-85.2^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.6,128.0,125.9$.
GC-MS : m / z (rel int.) $128\left[\mathrm{M}^{+}\right](100 \%), 127$ (13\%), 102 (10\%), 64 (10\%).

Anthracene (P81)

The general procedure as described above in 89% yield as white solid, $10 \mathrm{~h}, 158 \mathrm{mg}$.
m.p. $219.5-220.4^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42(\mathrm{~s}, 2 \mathrm{H}), 8.00(\mathrm{dd}, J=6.4,3.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.45(\mathrm{dd}, J=6.6,3.2 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 131.7,128.2,126.3,125.4$.
GC-MS : m/z (rel int.) 178[M $\left.{ }^{+}\right]$(100\%), 176 (18\%), 89 (21\%), 76 (16\%).

Ethyl 2-oxo-2-phenylacetate (P84)

The general procedure as described above in 89% yield as colorless oil, $24 \mathrm{~h}, 158 \mathrm{mg}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.45$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.5,163.9,135.0,130.0,128.9,62.4,14.1$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$179.0708, found 179.0703.

2-Phenoxy-1-phenylethan-1-one (P85)

The general procedure as described above in 60% yield as white solid, $24 \mathrm{~h}, 127 \mathrm{mg}$.
m.p. $72.5-74.4^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=10.7,4.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.33-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.87(\mathrm{~m}, 3 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) δ 194.6, 158.0, 134.6, 134.0, 129.6, 128.9, 128.2, 121.7, 114.8, 70.7.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$213.0912, found 213.0910.

1-Phenylpropan-2-one (P87) is known compound.

The yield was 69% by GC-MS analysis after 34 h .
GC-MS : m / z (rel int.) $134\left[\mathrm{M}^{+}\right]$(16\%), 105 (100\%), 77 (49\%), 51 (15\%).

2,6,8-Trimethylnonan-4-one (P88) is known compound.

The yield was 86% by GC-MS analysis after 34 h .
GC-MS : m / z (rel int.) $184\left[\mathrm{M}^{+}\right](3 \%) 127$ (35\%), 109, (41\%), 101 (21%), 100 (18\%), 85 (68%), 84 (21%), 83 (32\%), 69 (13\%), 57 (100\%), 43 (38\%), 41 (35\%), 29 (16\%).

Pentan-2-one (P89) is known compound.

The yield was 75% by GC-MS analysis after 24 h .
GC-MS : m / z (rel int.) $86\left[\mathrm{M}^{+}\right](21 \%), 58$ (10\%), 43 (100\%), 41 (12\%), 27 (15\%).

4-Methylpentan-2-one ($\mathbf{P 9 0}$) is known compound.

The yield was 81% by GC-MS analysis after 40 h .
GC-MS : m / z (rel int.) $100\left[\mathrm{M}^{+}\right](18 \%), 85$ (20\%), 58 (53\%), 57 (31\%), 43 (100\%), 41 (23\%), 29 (16%).

Oxepan-2-one (P 91) is known compound.

The yield was 71% by GC-MS analysis after 24 h .
GC-MS : m / z (rel int.) $114\left[\mathrm{M}^{+}\right]$(11\%), 84 (25\%), 70 (12\%), 56 (40\%), 55 (100\%), 42 (67\%), 41 (34\%), 39 (16\%), 29 (15\%), 28 (23\%), 27 (18\%).

7H-Dibenzo[c,e]oxepin-5-one (P92)

The general procedure as described above in 80% yield as white solid, $28 \mathrm{~h}, 168 \mathrm{mg}$.
m.p. $102.6-105.0^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dtd}, J=16.2,7.8,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.54-$ 7.49 (m, 2H), 7.43 (dtd, $J=8.5,7.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.01$ (d, $J=26.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,139.0,137.3,134.9,132.7,131.9,130.7,130.2,128.8,128.7,128.6$, 128.5, 69.2.

HRMS (ESI, m / z): calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$233.0573, found 233.0570.

Menthone ($\mathbf{P 9 3}$) is known compound.

The yield was 71% by GC-MS analysis after 40 h
GC-MS : m / z (rel int.) $154\left[\mathrm{M}^{+}\right]$(24\%), 139 (36\%), 112 (100\%), 111 (28\%), 98 (10\%), 97 (35\%), 95 (21\%),

70 (32\%), 69 (73\%), 55 (51\%), 39 (20\%), 27 (15\%).

(-)-Menthyl benzoate ($\mathbf{P 9 4}$)

The general procedure as described above in 81% yield as colorless oil, $6 \mathrm{~h}, 211 \mathrm{mg}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.85$ $(\mathrm{td}, J=10.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.43(\mathrm{~m}$, $2 \mathrm{H}), 1.04(\mathrm{dd}, J=19.3,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.83(\mathrm{dd}, J=6.8,3.2 \mathrm{~Hz}, 7 \mathrm{H}), 0.71(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.0,131.6,129.8,128.5,127.2,73.7,46.2,39.9,33.3,30.4,25.4,22.6$, 21.0, 19.7, 15.5.

HRMS (ESI, m / z): calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$283.1669, found 283.1670.

Androst-5-en-3-ol-7,17-dione acetate (P95)

The general procedure as described above in 71% yield as white solid, $5 \mathrm{~h}, 245 \mathrm{mg}$.
m.p. $142.2-149.7^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.74(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.66(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{dd}$, $J=5.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.41(\mathrm{~m}, 3 \mathrm{H}), 2.19-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 4 \mathrm{H}), 1.84-1.58(\mathrm{~m}, 8 \mathrm{H}), 1.36-1.29$ $(\mathrm{m}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 200.5,170.0,164.8,126.3,71.8,49.8,47.7,45.5,44.2,38.3,37.7,35.8,35.4$, 30.6, 27.2, 24.0, 21.1, 20.4, 17.2, 14.1, 13.6.

HRMS (ESI, m / z): calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$367.1880, found 367.1887.

7-Keto-dehydroepiandrosterone acetate (P96)

The general procedure as described above in 79% yield as white solid, $5 \mathrm{~h}, 294 \mathrm{mg}$. m.p. $122.2-126.7^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.71(\mathrm{~s}, 1 \mathrm{H}), 4.76-4.67(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{ddd}, J=9.1,4.9,2.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.27$ $(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 4 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 6 \mathrm{H}), 1.72(\mathrm{dd}, J=10.2,5.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 2 \mathrm{H})$, $1.49-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 0.66(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 209.6, 201.1, 170.2, 164.3, 126.4, 72.0, 62.2, 49.9, 49.5, 45.1, 44.3, 38.3, $37.7,37.6,35.9,31.6,27.2,26.4,23.5,21.2,21.0,17.2,13.2$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$395.2193, found 395.2190.

7-Ketocholesterol acetate (P97)

The general procedure as described above in 55% yield as yellow solid, $12 \mathrm{~h}, 243 \mathrm{mg}$.
m.p. $139.9-144.1^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.70(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.79-4.65(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.37(\mathrm{~m}, 3 \mathrm{H}), 2.23(\mathrm{t}, J$ $=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.96(\mathrm{~m}, 6 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{dd}$, $J=7.4,4.2 \mathrm{~Hz}, 7 \mathrm{H}), 1.26(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-1.07(\mathrm{~m}, 5 \mathrm{H}), 1.01(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}), 0.86(\mathrm{dd}, J=6.6,1.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.68(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 201.9,170.3,163.8,126.7,72.2,54.8,49.9,49.8,45.4,43.1,39.5,38.7,38.3$, $37.7,36.2,36.0,35.7,28.5,28.0,27.4,26.3,23.8,22.8,22.6,21.3,21.2,18.9,17.3,12.0$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 443.3520$, found 443.3519.

Isochromane-1,1- $\boldsymbol{d}_{\mathbf{2}}\left(\mathbf{S} 1-\boldsymbol{d}_{2}\right)$

The general procedure as described above in 60% yield colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.01-6.91(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J$ $=5.7 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 134.8,133.3,129.0,126.4,126.0,124.5,65.4,28.4$.
HRMS (ESI, m / z): calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{OD}_{2}[\mathrm{M}+\mathrm{H}]^{+}$137.0934, found 137.0930.

References

1 Z. Zhang, Y. Gao, Y. Liu, J. Li, H. Xie, H. Li and W. Wang, Org. Lett., 2015, 17, 5492-5495.
2 F. Rusch, J.-C. Schober and M. Brasholz, ChemCatChem, 2016, 8, 2881-2884.
3 L. C. Finney, L. J. Mitchell and C. J. Moody, Green Chem., 2018, 20, 2242-2249.
4 T. Thatikonda, S. K. Deepake, P. Kumar and U. Das, Org. Biomol. Chem., 2020, 18, 4046-4050.
5 P. Thapa, S. Hazoor, B. Chouhan, T. T. Vuong and F. W. Foss, J. Org. Chem., 2020, 85, 9096-9105.
6 Q. Zhang, J. Zhang, H. Qian and S. Ma, Org. Chem. Front., 2023, 10, 1505-1511.
7 Q. Xia, Q. Wang, C. Yan, J. Dong, H. Song, L. Li, Y. Liu, Q. Wang, X. Liu and H. Song, Chem. Eur. J., 2017, 23, 10871-10877.

8 J. Baggerman, D. C. Jagesar, R. A. L. Vallée, J. Hofkens, F. C. D. Schryver, F. Schelhase, F. Vçgtle and A. M. Brouwer, Chem. Eur. J., 2007, 13, 1291-1299.

9 J. Zhao, T. Shen, Z. Sun, N. Wang, L. Yang, J. Wu, H. You and Z.-Q. Liu, Org. Lett., 2021, 23, 40574061.

10 M. Xiang, Q.-Y. Meng, X.-W. Gao, T. Lei, B. Chen, C.-H. Tung and L.-Z. Wu, Org. Chem. Front., 2016, 3, 486-490.

11 A. Wang, W. Zhou, Z. Sun, Z. Zhang, Z. Zhang, M. He and Q. Chen, Mol. Catal., 2021, 499, 111276.
12 A. M. Khenkin, L. Weiner, Y. Wang and R. Neumann, J. Am. Chem. Soc., 2001, 123, 8531-8542.
13 S. Nakai, T. Uematsu, Y. Ogasawara, K. Suzuki, K. Yamaguchi and N. Mizuno, ChemCatChem, 2018, 10, 1096-1106.

14 X. Wu, C. Ci, Y. Du, X. Liu, X. Li and X. Xie, Mater. Chem. Phys., 2018, 211, 72-78.
15 Q. Zhu, C. Shen, J. Wang and T. Tan, ACS Sustainable Chem. Eng., 2017, 5, 8181-8191.
16 F. L. Ortiz, J. G. Lopez, M. Casimiro and M. J. Iglesias, J. Org. Chem., 2016, 81, 11095-11103.
17 Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2007, 120, 215-241.
18 M. H. Almatarneh, A. Alnajajrah, M. Altarawneh, Y. Zhao and M. A. Halim, Sci. Rep., 2020, 10, 15025.
19 M. J. Frisch, G. W. Trucks, J. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, H. B. Schlegel, G. Scalmani, V. Barone and B. Mennucci, Gaussian, Inc., 2010.

NMR Spectra

P18

P33

P52

P57

P74

$\xrightarrow[\sim]{\circ}$

P97

MS Spectra

