Supplementary Information

Complexation of heavy metal cations with imidazolium ionic liquids lowers their reduction energy: implications for electrochemical separations

Shuai Tan,^a Difan Zhang,^a Ying Chen,^a Benjamin A. Helfrecht,^a Eric T. Baxter,^a Wenjin Cao,^a Xue-Bin Wang,^a Manh-Thuong Nguyen,^{a*} Grant E. Johnson,^{a*} and Venkateshkumar Prabhakaran^{a*}

¹Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States

*<u>venky@pnnl.gov</u>

*grant.johnson@pnnl.gov

*<u>manhthuong.nguyen@pnnl.gov</u>

Operando Raman Spectroscopy

An aqueous solution of 1 M EMIMCl + 10 mM PbCl₂ was filled into a glass NMR tube (5 mm diameter, Wilmad® NMR tubes, Sigma Aldrich), sealed, and mounted on an aluminum sample holder with a built-in temperature control system. Raman spectroscopy measurements were performed using an in-house spectrometer equipped with a 633 nm excitation laser and a charge-coupled device (CCD) detection system (Andor, Shamrock 303i and iDus 416). The objective lens of the Raman microscope was placed at the curved edge of the NMR tube and a laser beam with an intensity of 2 - 3 mW was focused on the sample. The presented Raman data is spatially (10 spectra in an area of 1 x 1 mm²) and temporally (integration time of 360 sec/spectra) averaged to ensure sample integrity throughout the measurements. Raman spectra were collected as a function of temperature after the set temperature was reached for 1 hour. The resolution of Raman spectra is 2 cm⁻¹

Figure S1. NIPES spectra of gas-phase doubly charged $[PbCl_3]_2[EMIMCl]_6^{2-}$ /[PbCl_3][EMIMCl]_3⁻ (a), [PbCl_3]_2[EMIMCl]_7²⁻ (b), [PbCl_3]_2[EMIMCl]_8²⁻/[PbCl_3][EMIMCl]_4⁻ (c), and [PbCl_3]_2[EMIMCl]_9²⁻ (d) complexes. Note the *m*/*z* degenerate singly and doubly charged species.

Figure S2. NIPES spectra of gas-phase doubly charged $[Pb_2Cl_5]_2[EMIMCl]_3^{2-}$ (a) and $[Pb_2Cl_5]_2[EMIMCl]_4^{2-}/[Pb_2Cl_5][EMIMCl]_2^{-}$ (b) complexes. Note the *m/z* degenerate singly and doubly charged species.

Figure S3. (A) Raman spectra in the range of $140 - 4000 \text{ cm}^{-1}$ and (B) $140 - 400 \text{ cm}^{-1}$ with deconvoluted fitting for the 1 M EMIMCl + 10 mM PbCl₂ aqueous solution. The inset of (B) is the spectrum between $140 - 200 \text{ cm}^{-1}$. (C) Change in the percent intensity of the Pb-Cl peak in PbCl₂ and Pb-Cl_b in the EMIMCl-PbCl₂ complex as a function of temperature.

Figure S4. Visualization of the calculated HOMO and LUMO for gas phase PbCl₃⁻ clusters with EMIMCl.

Figure S5. Visualization of the calculated HOMO and LUMO for gas phase Pb₂Cl₅⁻ clusters with EMIMCl.

Figure S6. Visualization of the calculated HOMO and LUMO for aqueous phase Pb-Cl clusters with EMIM⁺ cations identified by experimental NMR shifts.

Figure S7. Visualization of the calculated ESP for gas phase PbCl₃⁻ clusters with EMIMCl.

Figure S8. Visualization of the calculated ESP for gas phase Pb₂Cl₅⁻ clusters with EMIMCl.

Figure S9. Visualization of the calculated ESP for aqueous phase PbCl₄₋₅ clusters with EMIM⁺ cations identified by experimental NMR shifts.

n, x	ADE	VDE	
	expt. ^a	expt.	
$[\mathbf{PbCl}_3]_n[\mathbf{EMIMCl}]_x^{n-1}$			
2, 6	4.9	5.4	
2, 7	4.9	5.4	
2, 8	4.9	5.5	
2, 9	4.9	5.5	
$[\mathbf{Pb}_{2}\mathbf{Cl}_{5}]_{n}[\mathbf{EMIMCl}]_{x}^{n}$			
2, 3	4.8	5.5	
2,4	4.9	5.4	

Table S1. Experimentally measured ADE and VDE values (in eV) of the doubly charged $[PbCl_3]_n[EMIMCl]_x^{n-}$ and $[Pb_2Cl_5]_n[EMIMCl]_x^{n-}$ complexes.

^aThe experimental ADE represents an estimate of its upper limit.

	KCl + E	EMIMC1	$PbCl_2 + KCl$	+ EMIMCl	Differ	rence
	${}^{1}\text{H T}_{1}$ (s)	${}^{1}\text{H}\text{T}_{2}(s)$	${}^{1}\text{H T}_{1}$ (s)	${}^{1}\mathrm{H}\mathrm{T}_{2}\mathrm{(s)}$	T ₁ (%)	T ₂ (%)
H1	8.2	0.27	8.6	0.31	5	15
H2	11.4	0.59	11.1	0.33	-3	-44
H3	10.9	0.85	10.6	0.78	-3	-8
H4	5.5	0.72	5.2	0.71	-5	-1
H5	4.9	2.51	4.7	2.52	-4	0
H6	5.5	1.43	5.2	1.39	-5	-3

Table S2. NMR ¹H T_1 and T_2 values of the two solutions containing EMIMCl and the difference in T_1 and T_2 values.

D (×10 ⁻¹⁰ m ² /s)	KCl + EMIMCl	$PbCl_2 + KCl + EMIMCl$
$D(H_2O)$	18.91	18.86
D(EMIM ⁺)	9.19	9.00
$D(H_2O)/D(EMIM^+)$	2.06	2.09

Table S3. Diffusion coefficients of H₂O and EMIM⁺ and their ratios measured using pulsed field gradient (PFG)-NMR.

Clusters	LUMO (eV)	HOMO (eV)	HOMO-LUMO Gap (eV)
PbCl ₃ -	1.8	-2.3	4.1
[PbCl ₃ +EMIMCl] ⁻	1.0	-1.7	2.6
[PbCl ₃ +2EMIMCl] ⁻	0.8	-2.4	3.3
[PbCl ₃ +3EMIMCl] ⁻	0.6	-2.8	3.3
[PbCl ₃ +4EMIMCl] ⁻	0.5	-2.9	3.5
Pb ₂ Cl ₅	0.8	-3.3	4.0
[Pb ₂ Cl ₅ + EMIMCl] ⁻	0.9	-3.4	4.3
$[Pb_2Cl_5 + 2EMIMCl]^-$	0.4	-2.9	3.3

Table S4. Calculated HOMO and LUMO energies and HOMO-LUMO gaps of gas-phase $PbCl_3^-$ and $Pb_2Cl_5^-$ clusters and their complexes with EMIMCl as a function of EMIMCl molecules.

Clusters	LUMO (eV)	HOMO (eV)	HOMO-LUMO Gap (eV)
PbCl ₂	-2.7	-6.7	4.0
[PbCl ₂ +1EMIMCl]	-2.7	-6.7	4.0
[PbCl ₂ +2EMIMCl]	-2.6	-6.5	3.9
[PbCl ₂ +3EMIMCl]	-2.7	-6.6	3.9
[PbCl ₂ +4EMIMCl]	-2.7	-6.5	3.8
PbCl ₃ -	-1.1	-6.0	4.9
[PbCl ₃ + 1EMIMCl] ⁻	-1.7	-6.1	4.3
[PbCl ₃ + 2EMIMCl] ⁻	-1.5	-6.1	4.5
[PbCl ₃ + 3EMIMCl] ⁻	-1.7	-6.3	4.5
[PbCl ₃ + 4EMIMCl] ⁻	-1.8	-6.4	4.5
PbCl4 ²⁻	-0.9	-5.1	4.2
$[PbCl_4 + 1EMIMCl]^{2-}$	-1.4	-5.3	3.9
$[PbCl_4 + 2EMIMCl]^{2-}$	-1.8	-5.4	3.7
$[PbCl_4 + 3EMIMCl]^{2-}$	-1.6	-5.5	3.9
$[PbCl_4 + 4EMIMCl]^{2-}$	-1.6	-5.6	3.9
PbCl5 ³⁻	-0.8	-4.8	4.1
$[PbCl_5 + 1EMIMCl]^{3-}$	-1.2	-4.9	3.8
$[PbCl_5 + 2EMIMCl]^{3-}$	-1.4	-5.0	3.6
$[PbCl_5 + 3EMIMCl]^{3-}$	-1.5	-5.1	3.6
$[PbCl_5 + 4EMIMCl]^{3-}$	-1.5	-5.3	3.7

Table S5. Calculated HOMO and LUMO energies and HOMO-LUMO gaps of solution-phase PbCl₂, PbCl₃⁻, PbCl₄²⁻ and PbCl₅³⁻ clusters and their complexes with EMIMCl as a function of EMIMCl molecules.