Thermoplastic, Redox Recyclable Silicone-Lipoamide Elastomers

Muhammad Ebad Noman, Sijia Zheng, ^bHaiyan Xue and Michael A. Brook*

Supporting Information

TABLE S1. SYNTHESIS OF LIPOAMIDE SILICONE COPOLYMERS	<u>)</u>
TABLE S2. DSC TRACES OF LPA-APS ELASTOMERS. ^A	3
TABLE S3. TIME FOR ELASTOMERS TO REFORM WHEN DISPLAYING THERMOPLASTIC BEHAVIOR.	5
TABLE S4. REDUCTIVE ELASTOMER DEGRADATION WITH 1,4-DITHIOTHERITOL. 5	5
FIGURE S1. GPC RESULTS OF LPA+BUTYLAMINE ELASTOMER BUL-P IN THF.	5
FIGURE S2. CONFIRMS THE COMPLETE REACTION OF LPA + BUTYLAMINE: (A) ¹ H NMR OF LPA STARTING MATERIAL, (B) ¹ H NMR OF LPA	
+ BUTYLAMINE PRODUCT BUL	ŝ
FIGURE S3. ¹ H NMR COMPARISON OF LPA (A), APS(B) AND LPA-APS COPOLYMER(C)	1
FIGURE S4. NMR OF T8L, LIQUID VS ELASTOMER	7
FIGURE S5. NMR OF PENDENT LPA-APS CO-POLYMER (BEFORE AN ELASTOMER HAD FORMED, WITHIN 10 MINUTES OF REACTION) 8	3
FIGURE S6. NMR OF TELECHELIC LPA-APS CO-POLYMER (BEFORE AN ELASTOMER HAD FORMED, WITHIN 10 MINUTES OF REACTION) S)
FIGURE S7. NMR OF SIMPLE SILANES LPA-APS CO-POLYMER (BEFORE AN ELASTOMER HAD FORMED, WITHIN 10 MINUTES OF REACTION).)
FIGURE S8. IR OF LPA VS LPA-APS ELASTOMER DISPLAYS THE SHIFT IN THE CARBONYL PEAK.)
FIGURE S9. TGA OF PENDENT LPA-APS ELASTOMERS)
FIGURE S10. TGA OF TELECHELIC LPA-APS ELASTOMERS	L
FIGURE S11. SHORE HARDNESS OF LINEAR LPA-APS ELASTOMERS; HEATING AT MELTING POINT FOR 10 MIN	L
FIGURE S12. SHORE HARDNESS OF PENDENT LPA-APS ELASTOMERS; HEATING AT MELTING POINT FOR 10 MIN)
FIGURE S13. NMR OF A LINEAR TELECHELIC LPA-APS COPOLYMER (T8L, BEFORE IT FORMS AN ELASTOMER) BEFORE AND AFTER HEATING.	
)
FIGURE S14. COMPARISON OF THE TGA OF LPA-APS (P10L) BEFORE AND AFTER HEATING	3
FIGURE S15. COMPARISON OF THE TGA OF A TELECHELIC LPA-APS (T8L) BEFORE AND AFTER HEATING	3
FIGURE S16. A: ELONGATION AT BREAK AND YOUNG'S MODULUS (TENSILE) OF T8L BEFORE AND AFTER HEATING AT THE MELTING POINT	
(187 °C) FOR 10 MIN	ł
FIGURE S17. NMR OF DTT, LPA-APS (TELECHELIC) ELASTOMER AND ELASTOMER + DTT NMR	5
FIGURE S18. GPC RESULTS OF LPA-APS (TELECHELIC) ELASTOMER + DTT PRODUCT	5
FIGURE S19. COMPARISON OF LPA-APS ELASTOMER BEFORE AND AFTER DEGRADATION WITH DTT.	5
FIGURE S20. TGA RESULTS OF T8L ELASTOMER VS T8L +DTT ELASTOMER	1

	LPA g (mmol)	CDI g (mmol)	APS g (mmol)	Functional group equivalents [LPA]/[APS]	% Yield
S1	0.4992 (2.42)	0.4048 (2.5)	0.4353 (2.42)	1:1	90
S3	0.5027 (2.42)	0.4045 (2.5)	0.8610 (2.42)	1:1	79
Т0	0.5043 (2.42)	0.4063 (2.5)	0.3022 (1.21)	1:1	86
Т8	0.5003 (2.42)	0.4047 (2.5)	1.0911 (1.21)	1:1	86
Т9	0.5028 (2.42)	0.4041 (2.5)	1.2163 (1.21)	1:1	86
Т37	0.5030 (2.42)	0.4049 (2.5)	3.6300 (1.21)	1:1	75
P2	0.2522 (1.22)	0.2012 (1.25)	6.6685 (1.21)	1:1	88
P4	0.5017 (2.42)	0.4043 (2.5)	5.1630 (2.42)	1:1	79
P10	0.5000 (2.42)	0.4045 (2.5)	2.2301 (2.42)	1:1	92
P20	0.4997 (2.42)	0.4063 (2.5)	0.9920 (2.42)	1:1	96

Table S1. Synthesis of Lipoamide Silicone Copolymers.

Table S2. DSC traces of LPA-APS elastomers.^a

^a DSC analyses were not performed on **T37** and **P2** since they did not form elastomers.

LPA-APS elastomer	Melting Temperature (°C)	Time to reform Elastomer
S1L	165	3 days
S3L	197	1 day
TOL	186	1 days
T8L	188	10 min
T9L	197	2-5 days
T37L ^a	-	-
P2L ^a	-	-
P4L	254	10 min
P10L	216	2 hrs
P20L	160	4 hrs

Table S3. Time for elastomers to reform when displaying thermoplastic behavior.

^a **T37L** and **P2L** were not tested for thermoplastic behaviour since they did not form elastomers.

Table S4. Reductive elastomer degradation with 1,4-dithiotheritol.

	LPA-APS elastomer mg (mmol)	DTT mg (mmol)	Functional group equivalents [LPA]/[APS]
S1L	98.2 (0.26)	98.2 (0.26)	1:1
S3L	100.0 (0.18)	27.6 (0.18)	1:1
TOL	97.2 (0.21)	33.1 (0.21)	1:1
T8L	101.9 (0.16)	24.0 (0.16)	1:1
T9L	99.7 (0.14)	21.9 (0.14)	1:1
T37L ^a	-	-	-
P2L ^a	-	-	-
P4L	100.2 (0.04)	6.8 (0.04)	1:1
P10L	100.1 (0.09)	13.8 (0.09)	1:1
P20L	101.0 (0.17)	26.0 (0.17)	1:1

^a **T37L** and **P2L** did not form elastomers; no change was observed during this experiment.

Figure S1. GPC results of LPA+butylamine elastomer **BuL-P** in THF.

Figure S2. Confirms the complete reaction of LPA + butylamine: (A) 1 H NMR of LPA starting material, (B) 1 H NMR of LPA + butylamine product **BuL**.

Figure S3. ¹H NMR comparison of LPA (A), APS(B) and LPA-APS copolymer(C).

Figure S4. NMR of **T8L**, liquid vs elastomer.

Figure S5. NMR of pendent LPA-APS co-polymer (before an elastomer had formed, within 10 minutes of reaction).

Figure S6. NMR of telechelic LPA-APS co-polymer (before an elastomer had formed, within 10 minutes of reaction).

Figure S7. NMR of simple silanes LPA-APS co-polymer (before an elastomer had formed, within 10 minutes of reaction).

Figure S8. IR of LPA vs LPA-APS elastomer displays the shift in the carbonyl peak.

Figure S9. TGA of pendent LPA-APS elastomers.

Figure S10. TGA of telechelic LPA-APS elastomers.

Figure S11. Shore hardness of linear LPA-APS elastomers; heating at melting point for 10 min.

Figure S12. Shore hardness of pendent LPA-APS elastomers; heating at melting point for 10 min.

Figure S13. NMR of a linear telechelic LPA-APS copolymer (**T8L**, before it forms an elastomer) before and after heating.

Figure S14. Comparison of the TGA of LPA-APS (P10L) before and after heating.

Figure S15. Comparison of the TGA of a telechelic LPA-APS (T8L) before and after heating.

Figure S16. A: Elongation at break and Young's modulus (tensile) of **T8L** before and after heating at the melting point (187 °C) for 10 min.

Figure S17. NMR of DTT, LPA-APS (telechelic) elastomer and Elastomer + DTT NMR.

Figure S18. GPC results of LPA-APS (telechelic) elastomer + DTT product.

Figure S19. Comparison of LPA-APS elastomer before and after degradation with DTT.

Figure S20. TGA results of **T8L** elastomer vs **T8L**+DTT elastomer.