Supporting Information

Heterostructure Construction of Covalent Organic

Framework/Ti₃C₂-MXene for High-efficiency Electrocatalytic

CO₂ Reduction

Liyuan Zhou,^a Qingyong Tian,^{a*} Xiaoqing Shang,^a Yanming Zhao,^a Weijing Yao,^b

Hongpo Liu,^a Qun Xu^{a*}

Supplementary Text

Figure S1. Synthetic route diagram of Por-COF-Co with the reaction solvent of 1, 2- dichlorobenzene, butanol and 6M acetic acid and reaction conditions of 120 °C for three days.

^{*}To whom correspondence should be addressed. Tel: +86-27-63886819. E-mail: tianqy@zzu.edu.cn (Q. Tian) and qunxu@zzu.edu.cn (Q. Xu).

Figure S2. Schematic diagram of in-situ growth of COF on the surface of MXene nanosheets using Schiff base condensation polymerization method.

Figure S3. SEM images of Ti_3C_2 MXene nanosheets.

Figure S4. AFM image with the measured thickness of (a) Ti_3C_2 MX ene nanosheets, (b) Por-COF.

Figure S5. SEM images of (a) MXene@Por-COF-Co-3 heterostructure, (b) MXene@Por-COF-Co-5 heterostructure, (c) MXene@Por-COF-Co-7 heterostructure.

Figure S6. SEM images of (a) MXene@Por-COF-3 heterostructure, (b) MXene@Por-COF-5 heterostructure.

Figure S7. TEM images of MXene@Por-COF-Co-7 heterostructure.

Figure S8. The EDS image of MXene@Por-COF-Co-7.

Figure S9. FTIR spectra of the (a) amino-functionalized Ti_3C_2 MXene, (b) Por-COF compared with reactants of Por-CHO and p-phenylenediamine, (c) MXene@Por-COF-Co-7 compared with reactants of Por-COF-Co and NH₂-MXene.

Figure S10. UV-vis spectra of Por- CHO, Por-CHO-Co.

Figure S11. N₂ sorption isotherms of MXene at 77 K (inset pore-size distribution profile). The N₂ sorption revealed that MXene has Brunauer-Emmer Teller (BET) surface area 10.5771 m^2g^{-1} .

Figure S12. The XPS (a) C 1s, (b) N 1s, (c) O 1s and (d) Ti 2p spectra of the NH₂-MXene; (e) XPS spectra of NH₂-MXene and MXene@Por-COF-Co-7 heterostructure.

Figure S13. PXRD patterns of MXene@Por-COF-Co-3 and MXene@Por-COF-Co-5.

Figure S14. LSV curve in the Ar-saturated and CO₂-saturated 0.5 M KHCO₃ electrolyte at a scan rate of 10 mV s⁻¹ for (a) Por-COF-Co, (b) MXene@Por-COF-Co-3, (c) MXene@Por-COF-Co-5, (d) MXene@Por-COF-Co-7.

Figure S15. ¹H NMR spectra of MXene@Por-COF-Co for the electrolyte test after CO_2RR in CO_2 -saturated 0.5 M KHCO₃.

Figure S16. FE_{H2} from -0.5 to -1 V vs RHE of MXene@Por-COF-Co-3, MXene@Por-COF-Co-5 and MXene@Por-COF-Co-7.

Figure S17. (a) PXRD patterns of MXene@Por-COF-Co-1、MXene@Por-COF-Co-9. (b) LSV curve in the Arsaturated and CO₂-saturated 0.5 M KHCO₃ electrolyte at a scan rate of 10 mV s⁻¹ for MXene@Por-COF-Co-1 and MXene@Por-COF-Co-9. (c) The FE_{CO} calculated potential ranges from -0.5 to - 1.0 V, (d) FE_{H2} from -0.5 to -1 V vs RHE of MXene@Por-COF-Co-1 and MXene@Por-COF-Co-9.

Figure S18.The FE_{CO} from –0.5 to –1 V vs RHE of MXene@Por-COF-Co-7 and physical mixing NH_{2} -MXene/Por-COF-Co.

Figure S19. LSV curve in the Ar-saturated and CO_2 -saturated 0.5 M KHCO₃ electrolyte at a scan rate of 10 mV s⁻¹ for MXene@Por-COF(2H).

Figure S20. The selectivity and activity of the MXene@Por-COF-Co-7 and MXene@Por-COF(2H) were compared at -0.9 V vs. RHE using identical conditions.

Figure S21. TOF (h⁻¹) at different potentials for Por-COF-Co and MXene@Por-COF-Co-7.

Figure S22. Cyclic voltammertrys (CV) curves of Por-COF-Co in the region of $0.91 \sim 1.01$ V vs. RHE at various scan rate ($10 \sim 100$ mV s⁻¹).

Figure S23. Cyclic voltammertrys (CV) curves of MXene@Por-COF-Co-3 in the region of $0.91 \sim 1.01$ V vs. RHE at various scan rate ($10 \sim 100$ mV s⁻¹).

Figure S24. Cyclic voltammertrys (CV) curves of MXene@Por-COF-Co-5 in the region of $0.91 \sim 1.01$ V vs. RHE at various scan rate ($10 \sim 100$ mV s⁻¹).

Figure S25. Cyclic voltammertrys (CV) curves of MXene@Por-COF-Co-7 in the region of $0.91 \sim 1.01$ V vs. RHE at various scan rate ($10 \sim 100$ mV s⁻¹).

Figure S26. The XRD patterns before and after electrocatalytic CO₂RR reaction of MXene@Por-COF-Co-7.

Figure S27. The SEM images of MXene@Por-COF-Co-7 after electrocatalytic CO₂RR reaction.

Catalyst	Electrolyte	Applied Potential (V vs	Faradaic efficiency	Reference
		RHE)	of CO (%)	
MXene@Por-COF-Co-7	0.5 M KHCO ₃	-0.6	97.28	This work
COF-366-Co	0.5 M KHCO ₃	-0.56	~72	1
COF-367-Co	0.5 M KHCO ₃	-0.56	~68	1
TTF-Por(Co)-COF	0.5 M KHCO ₃	-0.6	90	2
CoPc-PDQ-COF	0.5 M KHCO3	-0.6	85	3
COF-300-AR	0.1 M KHCO3	-0.7	53	4
COF-366-(OMe) ₂ - Co@CNT	0.5 M KHCO ₃	-0.58	~92	5
Co-PMOF	0.5 M KHCO ₃	-0.6	~70	6
CoFPc	0.5M NaHCO ₃	-0.6	86	7
TCPP(Co)/Zr-BTB	0.5 M KHCO ₃	-0.6	~60	8
Co@Pc/C	0.5 M KHCO ₃	-0.6	~70	9
2.5-CoPc/ZIS-180	0.5 M KHCO3	-0.6	20	10

Table S1. Comparison of catalyst with other reported high efficiency CO-selective CO2 reduction electrocatalysts

References

- S. Lin, C. S. Diercks, Y. B. Zhang, N. Kornienko, E. M. Nichols, Y. B. Zhao, A. R. Paris,
 D. Kim, P. Yang, O. M. Yaghi and C. J. Chang, Science, 2015, 349, 1208-1213
- 2 Q. Wu, R. K. Xie, M. J. Mao, G. L. Chai, J. D. Yi, S. S. Zhao, Y. B. Huang and R. Cao, ACS Energy, 2020, 5, 1005-1012.
- 3 N. Huang, K. H. Lee, Y. Yue, X. Y. Xu, S. Irle, Q. H. Jiang and D. L. Jiang, Angew. Chem., Int. Ed., 2020, 59, 16587-16593.
- 4 H. Y. Liu, J. Chu, Z. L. Yin, X. Cai, L. Zhuang and H. X. Deng, Chem, 2018, 4, 1696-1709.

- 5 Y. Lu, J. Zhang, W. B. Wei, D. D. Ma, X. T. Wu and Q. L. Zhu, ACS Appl. Mater. Interfaces, 2020, 12, 37986-37992.
- 6 Y. R. Wang, Q. Huang, C. T. He, Y. F. Chen, J. Liu, F. C. Shen and Y. Q. Lan, Nat. Commun., 2018, 9, 8.
- 7 N. Morlanés, K. Takanabe and V. Rodionov, ACS Catal., 2016, 6, 3092-3095.
- 8 X. D. Zhang, S. Z. Hou, J. X. Wu and Z. Y. Gu, Chem.-Eur. J., 2020, 26, 1604-1611.
- 9 C. He, Y. Zhang, Y. F. Zhang, L. Zhao, L. P. Yuan, J. N. Zhang, J. M. Ma and J. S. Hu, Angew. Chem., Int. Ed., 2020, 59, 4914-4919.
- 10 C. J. Chen, X. F. Sun, D. X. Yang, L. Lu, H. H. Wu, L. R. Zheng, P. F. An, J. Zhang and B. X. Han, Chem. Sci., 2019, 10, 1659-1663.