Supporting Information

High-value utilization of recovered LiPF₆ from retired lithium-

ion batteries

Jie Wang^{a,b,c}, Xiaoling Cui^{a,b,c}, Linhu Song^{a,b}, Junlong Zhu^{a,b}, Yinong Wang^{a,b}, Feifei Zong^{a,b},

Ningshuang Zhang^{a,b,c}, Dongni Zhao^{a,b,c}, Shiyou Li^{a,b,c,*}

^aSchool of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050,

Gansu, China

^bKey Laboratory of Low-Carbon Energy and Chemical Engineering, Lanzhou 730050, Gansu,

China

^cGansu Engineering Laboratory of Electrolyte Material for Lithium-ion Battery, Lanzhou 730050,

Gansu, China

*E-mail: lishiyoulw@163.com.

^{*}Corresponding author.

E-mail address: lishiyoulw@163.com (Shiyou Li).

Species	Materials	Main chemical properties	Potential
			environmental
			hazards
Lithium salt	LiPF ₆	Has high corrosivity and can decompose in	Cause fluorine
		contact with water to produce HF, react with	pollution and raise
		strong oxidants, and burn to produce toxic	pH of environment
		substances such as P2O5	
	LiBF ₄	Has high corrosivity, reacts violently with	Cause fluorine
		water and acid to produce HF gas, and	pollution and raise
		produces Li ₂ O, B ₂ O ₃ and other harmful	pH of environment
		substances when burned or decomposed by	
		heat	
	LiClO ₄	Reacts with strong reducing agents,	Toxic gas
		nitromethane and hydrazine violently;	
		Combusts and produces LiCl, O2 and Cl2	
	LiAsF ₆	Soluble in water, strong hygroscopicity,	Fluorine pollution
		reacts with acid to produce toxic gases HF,	and arsenic pollution
		arsenic compounds	
	LiCF ₃ SO ₃	Combusts and produces CO, CO ₂ , SO ₂ , HF;	Fluorine pollution,
		Reacts with oxidants and strong acids to	toxic gases and acid
		produce HF	rain
	Ethylene carbonate (EC)	Reacts with acid, alkali, strong oxidant and	Aldehyde and organic
		reducing agent, combust to produce CO	acid pollution
		and CO ₂ , and hydrolyzes to produce	
		aldehyde and acid	
	Propylene carbonate	Reacts with water, air and strong oxidants,	Aldol and ketone
	(PC)	combusts to produce CO and CO ₂ ; Thermal	organic pollution
		decomposition will produce harmful gases	
		such as aldehyde des and ketones	
	Dimethyl carbonate	Interacts with water to form strong alkali and	Organic pollution
Electrolyte	(DMC)	can react with substances such as oxygen,	such as methanol
solvent		nitrogen, carbon dioxide and acids	
	Diethyl carbonate	Reacts violently with water, strong oxidants,	Organic pollution
	(DEC)	strong acids, strong alkalis and strong	such as alcohol
		reducing substances, and combusts to	
		produce CO and CO ₂	
	Ethylene glycol	Flammable and explosive; Reacts with	Organic pollution
	dimethyl ether (DME)	water, strong alkali, and strong oxidizing	such as methanol
		reducing agent, and easily forms explosive	
		peroxides when exposed to light or heat	

 Table S1. The possible hazards caused by each component of the electrolyte.

	1-ethoxy-2-(2-	Flammable and explosive, easy to form	Organic pollution
	ethoxyethoxy)ethane	explosive peroxides in the presence of fire,	such as alcohol
	(DEE)	light or heat, and react violently with strong	
_		acids and strong oxidants	
_	Ethyl Methyl Carbonate	Reacts with water, strong acid, alkali, and	Organic pollution
	(EMC)	strong oxidant, and the hydrolyzate has	such as alcohol
_		methanol, which is flammable	
_	Ethyl acetate (EA)	Reacts with chlorosulfonic acid, lithium	Organic acid
		aluminum hydride, fuming sulfuric acid and	pollution
		other substances, it will decompose in	
		contact with water or moisture, burn or	
		decompose in contact with fire and heat, and	
		produce toxic gases such as CO	
_	Gamma-butyrolactone	Reacts violently with strong oxidants, strong	Alcohol, acid organic
	(GBL)	acids and strong alkalis, and combusts to	pollution
		produce harmful gases such as CO, CO_2 , and	
		NO	

Synthesis of DTMSO

The synthesis of DTMSO needs to be carried out under anhydrous conditions, due to the fact that DTMSO is easily hydrolyzed into oxalic acid when meeting H₂O. Firstly, anhydrous oxalic acid, chlorotrimethylsilane and HMDS are dispersed in an anhydrous DMC solvent with the stoichiometric ratio of 3:2:2. After reaction at 75 °C for 6 h under the condition of air isolation, the insoluble matter is filtered off, and the filtrate is distilled by vacuum distillation to remove the solvent. Finally, white needle-shaped DTMSO crystals are obtained. The yield is more than 65%, with the purity of 99.1%. The TG – DTA, ¹¹C NMR and ¹H NMR spectra of the prepared DTMSO are shown in Fig. S1. It can be seen that the thermal decomposition temperature is 131.1 °C, the characteristic peaks of ¹¹C NMR are located at 161.40, -0.08 ppm, and the characteristic peaks of ¹H NMR are located at 0.33 ppm.

Fig. S1. Characterizations of the prepared DTMSO (a) TG - DTA curves; (b and c) ¹¹C

NMR and ¹H NMR spectroscopies.

Fig. S2. ¹⁹F NMR spectra of electrolytes obtained by different leaching agents from

retired LIBs: (a) methyl formate (MF); (b) ethyl acetate (EA); (c) methyl acetate (MA); (d) DMC.