Supporting Information

Light-Driven Asymmetric Coupling of Aromatic Aldehydes and Aryl

Iodides Using Simple Amine Reductant

Tongyu Han,[‡]^a Quansheng Mou,^{‡a,} Yuyu Lv,^b Mingxin Liu^{*a}

^aState Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China

^bCollege of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East

Road, Lanzhou 730070, China

⁺These authors contributed equally to this work.

*E-mail: liumx@lzu.edu.cn

Table of Contents

1. General Information	S2
2. Optimization of the reaction conditions	S3
3. General Procedures and Characterization Data of Products	S6
4. Radical Trapping Experiments	S15
5. Secondary isotope effect	S18
6. UV-vis studies	S19
7. Comparison with previous work	S20
8. References	S21
9. Copies of NMR Spectra for the Products	S22
10. Copies of HPLC Spectra for the Products	

1. General Information

All reactions were carried out under an argon atmosphere in a flame-dried quartz tube with magnetic stirring. Petroleum ether, ethyl acetate and other solvents were dried and purified according to the procedure from "Purification of Laboratory Chemicals".¹ The reactions were monitored by TLC analysis using silica gel GF-254 thin layer plates and compounds were visualized with a UV light at 254 nm. All products were purified by flash chromatography on silica gel. The chemical yields referred are isolated products. ¹H and ¹³C NMR spectra were collected on a Bruker AVANCE III 400MHz and JEOL JNM-ECS 400M at room temperature. Chemical shifts (δ) are expressed in ppm downfield from TMS as internal standard. The letters s, d, t, q, and m are used to indicate singlet, doublet, triplet, quadruplet, and multiplet, respectively. ¹⁹F NMR spectra were collected on Bruker AVANCE III 400 MHz spectra were collected on Bruker AVANCE III 400 MHz spectra were collected on Bruker AVANCE III 400 MHz spectra were collected on Bruker AVANCE III 400 MHz spectrometers at room temperature. HRMS was performed on Bruker Apex II FT-ICR mass instrument (ESI) and Waters GCT Premier TOFMS (EI). Enantiomeric excesses (ee) values were determined by chiral HPLC with chiral AD-H, OB, OD-H, OJ, IC columns with hexane and *i*-PrOH as solvents.

The absolute configuration of the product was determined by comparing the specific optical rotation of **3h** ($[\alpha]_D^{24} = -39.00$, c = 1, CH₂Cl₂) with the literature (*R*-**3h**, $[\alpha]_D^{20} = 28.50$, c = 0.1, CH₂Cl₂).² Therefore, the product **3h** obtained via our protocol with (*S*,*S*)-BDPP as the chiral ligand is *S* configuration. The absolute configuration of other products were assigned accordingly.

The equipment of light-reaction is a multi-channel photoreactor with 10 W black LED (365–370 nm, composed of 2 LED units in series, manufacturer: Shanghai Yukang Science and Education Instrument and Equipment company, wavelength of peak intensity: 367.2 nm).

2. Optimization of Reaction Conditions^a

Table S1. The Effect of Chiral Ligand^a

Entry	Chiral Ligand	Yield (%) ^b	ee (%) ^c	
1	L1	39	95	
2	L2	trace	-	
3	L3	trace	-	
4	L4	9	94	
5	L5	23	-93	

^{*a*}Reaction condition: **1a** (0.2 mmol), **2a** (0.3 mmol) Co(NTf₂)₂ (10 mmol%), ligand (12 mmol%), *i*-Pr₂NEt (2.0 equiv.), THF (1 mL), 10 W black light, room temperature. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC.

Table S2. The Effect of Co Catalyst^a

O H	+ CF3	Co catalyst (10 L1 (12 mm <i>i</i> -Pr ₂ NEt (2.0 THF, r.t., A 10 W black light, 3	equiv.) r, 24 h 365-370 nm	CF ₃ (S,S)-BDPP L1
1a	2a			3a
Entry	(Co catalyst	Yield (%) ^b	ee (%) ^c
1		Co(NTf ₂) ₂	39	95
2		Co(OTf) ₂	23	95
3		Col ₂	27	95
4		CoBr ₂	trace	-
5		Co(acac) ₂	trace	-

^{*a*}Reaction condition: **1a** (0.2 mmol), **2a** (0.3 mmol) Co catalyst (10 mmol%), **L1** (12 mmol%), *i*-Pr₂NEt (2.0 equiv.), THF (1 mL), 10 W black light, room temperature. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC.

Table S3. The Effect of Base^a

^{*a*}Reaction condition: **1a** (0.2 mmol), **2a** (0.3 mmol) Co(NTf₂)₂ (10 mmol%), **L1** (12 mmol%), base (2.0 equiv.), THF (1 mL), 10 W black light, room temperature. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC.

Na₂CO₃

0

-

Table S4. The Effect of Solvent^a

4

Entry	Solvent	Yield (%) ^b	ee (%) ^c	
1	THF	39	95	
2	DCM	25	93	
3	Toluene	74	95	
4	<i>o</i> -Xylene	83	95	
5	Benzotrifluoride	trace	-	
6	1,4-Dioxane	48	95	
7 ^d	<i>o</i> -Xylene	96	95	

^{*a*}Reaction condition: **1a** (0.2 mmol), **2a** (0.3 mmol) Co(NTf₂)₂ (10 mmol%), **L1** (12 mmol%), *i*-Pr₂NEt (2.0 equiv.), solvent (1 mL), 10 W black light, room temperature. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC. ^{*d*}the reaction time reached 36 hours.

Table S5. The Effect of *i*-Pr₂NEt Equivalent^a

Entry	Equivalent of	Yield (%) ^b	ee (%) ^c
	<i>i</i> -Pr ₂ NEt		
1	1.5	51	95
2	2.0	83	95
3	2.5	82	94

^{*a*}Reaction condition: **1a** (0.2 mmol), **2a** (0.3 mmol) Co(NTf₂)₂ (10 mmol%), **L1** (12 mmol%), *i*-Pr₂NEt (x equiv.), *o*-xylene (1 mL), 10 W black light, room temperature. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC.

Table S6. Control Experiment^a

Entry	Variation	Yield (%) ^b	ee (%) ^c
1	No Co(NTf ₂) ₂	0	-
2	No L1	0	-
3	No light source	0	-

^{*a*}Reaction condition: **1a** (0.2 mmol), **2a** (0.3 mmol) Co(NTf₂)₂ (10 mmol%), **L1** (12 mmol%), *i*-Pr₂NEt (2.0 equiv.), *o*-xylene (1 mL), 10 W black light, room temperature. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC.

Table S7. Other organic halogens^a

^aReaction condition: *p*-anisaldehyde (0.2 mmol), aryl halogens (0.3 mmol) Co(NTf₂)₂ (10 mmol%), (*S*,*S*)-BDPP (12 mmol%), *i*-Pr₂NEt (2.0 equiv.), *o*-xylene (1 mL), 10 W black light, room temperature. ^bN.D.: No detected.

Table S8. Unsaturated or aliphatic aldehydes^a

^{*a*}Reaction condition: unsaturated or aliphatic aldehydes (0.2 mmol), iodobenzene (0.3 mmol) Co(NTf₂)₂ (10 mmol%), (*S*,*S*)-BDPP (12 mmol%), *i*-Pr₂NEt (2.0 equiv.), *o*-xylene (1 mL), 10 W black light, room temperature. ^{*b*}N.D.: No detected.

3. General Procedures and Characterization Data of Products

In an argon-filled glovebox, a 10 mL flame-dried quartz tube with magnetic stirring was charged sequentially with Co(NTf₂)₂ (0.02 mmol, 10 mol%), **L1** (0.024 mmol, 12 mol%) and *o*-xylene (1 mL). After stirring at room temperature for 2 h, substrates **1** (0.2 mmol) and **2** (0.3 mmol), *i*-Pr₂NEt (0.4 mmol, 2.0 eq.) were sequentially added into the quartz tube. Then, the quartz tube was removed from glovebox. The mixture was stirred at room temperature under 10 W black LEDs until the reaction was completed, as monitored by TLC analysis. The reaction mixture was then concentrated in vacuo. The crude product was purified by flash column chromatography (silica gel, PE/EA) to afford the desired product. Note: The racemic products were prepared according to the known procedure by replacing the chiral ligand **L1** with DPPP.³

(R)-(4-Methoxyphenyl)(4-(trifluoromethyl)phenyl)methanol (3a)

96% (54 mg) isolated yield, white solid, $[\alpha]_D^{25}$ = 53.00 (c = 1.00 in CH₂Cl₂); 95% ee, determined by HPLC analysis (Chiralpak AD-H column, hexane/*i*-PrOH, 95:5 v/v, flow rate 1 mL/min, λ = 254

nm, 25 °C), tR (major) = 21.54 min, tR (minor) = 17.75 min; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.4 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 5.82 (s, 1H), 3.78 (s, 3H), 2.36 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.38, 147.76 (d, J_{C-F} = 1.1 Hz), 135.47,

129.48 (q, $J_{C-F} = 32.1$ Hz), 128.02, 126.52, 125.31 (q, $J_{C-F} = 3.8$ Hz), 124.15 (q, $J_{C-F} = 270.4$ Hz), 114.10, 75.27, 55.27. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.45.

(*R*)-Phenyl(*p*-tolyl)methanol (3b)

88% (35 mg) isolated yield, white solid, $[\alpha]_D^{25} = 7.50$ (c = 0.40 in CH₂Cl₂); 94% ee, determined by HPLC analysis (Chiralpak AD-H column, hexane/*i*-PrOH, 95:5 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C), tR

(major) = 14.12 min, tR (minor) = 15.29 min; ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 4H), 7.25 (d, *J* = 8.0 Hz, 3H), 7.13 (d, *J* = 8.0 Hz, 2H), 5.79 (s, 1H), 2.32 (s, 3H), 2.23 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.94, 140.95, 137.25, 129.16, 128.42, 127.42, 126.50, 126.43, 76.07, 21.08.

(R)-(4-Ethylphenyl)(phenyl)methanol (3c)

94% (40 mg) isolated yield, white solid, $[\alpha]_D^{25} = 10.00$ (c = 0.30 in CH₂Cl₂); 95% ee, determined by HPLC analysis (Chiralpak AD-H column, hexane/*i*-PrOH, 95:5 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C), tR

(major) = 14.11 min, tR (minor) = 15.67 min; ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.24 (m, 7H), 7.16 (d, *J* = 8.0 Hz, 2H), 5.80 (s, 1H), 2.62 (q, *J* = 7.6 Hz, 2H), 2.23 (br, 1H), 1.21 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.92, 143.63, 141.17, 128.41, 127.98, 127.42, 126.58, 126.44, 76.11, 28.50, 15.51.

(R)-(4-Isopropylphenyl)(phenyl)methanol (3d)

91% (41 mg) isolated yield, yellow oil, $[\alpha]_D^{22} = 7.00$ (c = 1.00 in CH₂Cl₂); 95% ee, determined by HPLC analysis (Chiralpak AD-H column, hexane/*i*-PrOH, 95:5 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C), tR (major) = 12.55 min, tR (minor) = 14.52 min; ¹H NMR (400 MHz, CDCl₃)

δ 7.39 – 7.24 (m, 7H), 7.18 (d, *J* = 8.4 Hz, 2H), 5.80 (s, 1H), 2.93 – 2.83 (m, 1H), 2.26 (br, 1H), 1.22 (d, *J* = 6.8 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 148.24, 143.87, 141.26, 128.40, 127.41, 126.55, 126.43, 76.10, 33.77, 23.95.

(R)-(4-(Tert-butyl)phenyl)(phenyl)methanol (3e)

92% (44 mg) isolated yield, white solid, $[\alpha]_D^{21} = 7.00$ (c = 1.00 in CH₂Cl₂); 96% ee, determined by HPLC analysis (Chiralpak AD-H column, hexane/*i*-PrOH, 95:5 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C), tR (major) = 11.16 min, tR (minor) = 12.98 min; ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.24 (m, 9H), 5.81 (s, 1H), 2.22 (br, 1H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 150.51, 143.87, 140.88, 128.41, 127.43, 126.46, 126.29, 125.42, 76.07, 34.49, 31.32.

(R)-(4-Methoxyphenyl)(phenyl)methanol (3f)

89% (38 mg) isolated yield, white solid, $[\alpha]_D^{25} = 32.00$ (c = 1.00 in CH₂Cl₂); 94% ee, determined by HPLC analysis (Chiralpak AD-H column, hexane/*i*-PrOH, 90:10 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C), tR

(major) = 12.57 min, tR (minor) = 13.66 min; ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.24 (m, 7H), 6.86 (d, J = 8.8 Hz, 2H), 5.80 (s, 1H), 3.78 (s, 3H), 2.22 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.05, 144.04, 136.20, 128.46, 127.94, 127.45, 126.42, 113.89, 75.81, 55.30.

(S)-[1,1'-Biphenyl]-4-yl(phenyl)methanol (3g)

80% (45 mg) isolated yield, white solid, $[\alpha]_D^{25} = -1.00$ (c = 1.00 in CH₂Cl₂); 96% ee, determined by HPLC analysis (Chiralpak AD-H column, hexane/*i*-PrOH, 95:5 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C), tR

(major) = 27.20 min, tR (minor) = 24.97 min; ¹**H NMR** (400 MHz, CDCl₃) δ 7.56 – 7.54 (m, 4H), 7.41 (t, *J* = 8.0 Hz, 6H), 7.36 – 7.25 (m, 4H), 5.85 (s, 1H), 2.39 (br, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.70, 142.78, 140.73, 140.44, 128.73, 128.52, 127.61, 127.26, 127.21, 127.05, 126.94, 126.51, 75.99.

(R)-(4-Fluorophenyl)(phenyl)methanol (3h)

72% (29 mg) isolated yield, yellow oil, $[\alpha]_D^{23} = 5.00$ (c = 1.00 in CH₂Cl₂); 95% ee, determined by HPLC analysis (Chiralpak OB column, hexane/*i*-PrOH, 80:20 v/v, flow rate 1 mL/min, λ = 209.8 nm, 25 °C), tR

(major) = 14.72 min, tR (minor) = 19.01 min; ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 7H), 7.01 (t, *J* = 8.4 Hz, 2H), 5.82 (s, 1H), 2.24 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.13 (d, *J*_{C-F} = 244.3 Hz), 143.61, 139.51 (d, *J*_{C-F} = 3.0 Hz), 128.57, 128.20 (d, *J*_{C-F} = 8.0 Hz), 127.72, 126.43, 115.27 (d, *J*_{C-F} = 21.2 Hz), 75.57. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.06.

(S)-(4-Chlorophenyl)(phenyl)methanol (3i)

OH

75% (33 mg) isolated yield, yellow oil, $[\alpha]_D^{23} = -10.00$ (c = 1.00 in CH₂Cl₂); 95% ee, determined by HPLC analysis (Chiralpak AD-H column, hexane/*i*-PrOH, 95:5 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C), tR (major) = 14.12 min, tR (minor) = 15.90 min; ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 4.4 Hz, 4H), 7.30 – 7.27 (m, 4H), 5.79 (s, 1H), 2.30 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.45, 142.23, 133.30, 128.66, 128.61, 127.89, 127.88, 126.54, 75.63.

(S)-(4-Bromophenyl)(phenyl)methanol (3j)

PH P2% (38 mg) isolated yield, yellow oil, $[\alpha]_D^{23} = -15.00$ (c = 1.00 in CH₂Cl₂); 96% ee, determined by HPLC analysis (Chiralpak OB column, hexane/*i*-PrOH, 80:20 v/v, flow rate 1 mL/min, λ = 209.8 nm, 25 °C), tR (major) = 8.53 min, tR (minor) = 11.28 min; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.4 Hz, 2H),

7.33 (d, *J* = 4.0 Hz, 4H), 7.24 (d, *J* = 8.4 Hz, 3H), 5.77 (s, 1H), 2.32 (br, 1H). ¹³**C NMR** (100 MHz, CDCl₃) *δ* 143.34, 142.70, 131.52, 128.63, 128.19, 127.85, 126.50, 121.39, 75.62.

(S)-Phenyl(o-tolyl)methanol (3k)

71% (28 mg) isolated yield, yellow oil, $[\alpha]_D^{23} = -15.00$ (c = 1.00 in CH₂Cl₂); 94% ee, determined by HPLC analysis (Chiralpak OB column, hexane/*i*-PrOH, 94:6 v/v, flow rate 1 mL/min, λ = 209.8 nm, 25 °C), tR (major) = 14.91 min, tR

(minor) = 18.16 min; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.2 Hz, 1H), 7.32 (d, J = 4.4 Hz, 4H), 7.28 – 7.18 (m, 3H), 7.14 (d, J = 7.6 Hz, 1H), 6.00 (s, 1H), 2.24 (s, 3H), 2.15 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.82, 141.40, 135.34, 130.51, 128.45, 127.54, 127.50, 127.08, 126.23, 126.10, 73.34, 19.36.

(S)-(3-Fluorophenyl)(phenyl)methanol (3I)

OH 77% (31 mg) isolated yield, yellow oil, $[\alpha]_D^{24} = -39.00$ (c = 1.00 in CH₂Cl₂); 95% ee, determined by HPLC analysis (Chiralpak OB column, hexane/*i*-PrOH, 80:20 v/v, flow rate 0.75 mL/min, λ = 209.8 nm, 25 °C),

tR (major) = 11.01 min, tR (minor) = 12.00 min; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 4.4 Hz, 4H), 7.30 – 7.24 (m, 2H), 7.12 (t, J = 7.6 Hz, 2H), 6.94 (t, J = 8.8 Hz, 1H), 5.79 (s, 1H), 2.38 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.00 (d, J_{C-F} = 244.6 Hz), 146.29 (d, J_{C-F} = 6.7 Hz), 143.26, 129.92 (d, J_{C-F} = 8.1 Hz), 128.63, 127.88, 126.54, 122.01 (d, J_{C-F} = 2.9 Hz), 114.32 (d, J_{C-F} = 21.1 Hz), 113.35 (d, J_{C-F} = 22.0 Hz), 75.64 (d, J_{C-F} = 1.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -112.75.

(S)-(3-Chlorophenyl)(phenyl)methanol (3m)

OH

75% (33 mg) isolated yield, yellow oil, $[\alpha]_D^{24} = -39.00$ (c = 1.00 in CH₂Cl₂); 96% ee, determined by HPLC analysis (Chiralpak OB column, hexane/*i*-PrOH, 90:10 v/v, flow rate 1 mL/min, λ = 209.8 nm, 25 °C), tR

(major) = 16.21 min, tR (minor) = 25.75 min; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 1H), 7.35 (d, *J* = 4.4 Hz, 4H), 7.31 - 7.25 (m, 4H), 5.80 (s, 1H), 2.26 (br, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 148.30, 145.04, 132.80, 130.03, 128.20, 126.96, 126.60, 126.21, 125.86, 124.87, 73.47.

(R)-(3,4-Dimethylphenyl)(phenyl)methanol (3n)

87% (37 mg) isolated yield, white solid, $[\alpha]_D^{22} = 28.00$ (c = 1.00 in CH₂Cl₂); 96% ee, determined by HPLC analysis (Chiralpak OB column, hexane/*i*-PrOH, 80:20 v/v, flow rate 1 mL/min, λ = 209.8 nm, 25 °C), tR

(major) = 7.52 min, tR (minor) = 11.14 min; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 7.2 Hz, 2H), 7.32 (t, *J* = 7.2 Hz, 2H), 7.26 – 7.23 (m, 1H), 7.13 (s, 1H), 7.08 (s, 2H), 5.76 (s, 1H), 2.23 (s, 7H). ¹³C NMR (100 MHz, CDCl₃) δ 143.97, 141.38, 136.70, 135.92, 129.69, 128.39, 127.78, 127.35, 126.38, 123.96, 76.08, 19.82, 19.42.

(R)-(3,4-Dimethoxyphenyl)(phenyl)methanol (30)

84% (41 mg) isolated yield, white solid, $[\alpha]_D^{23} = 6.00$ (c = 1.00 in CH₂Cl₂); 95% ee, determined by HPLC analysis (Chiralpak OB column, hexane/*i*-PrOH, 60:40 v/v, flow rate 1 mL/min, λ = 215.0 nm, 25 °C),

tR (major) = 11.24 min, tR (minor) = 19.37 min; ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.31 (m, 3H), 7.25 (t, *J* = 8.0 Hz, 1H), 6.91 – 6.80 (m, 3H), 5.77 (s, 1H), 3.85 (s, 3H), 3.83 (s, 3H), 2.35 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 149.00, 148.42, 143.84, 136.51, 128.39, 127.44, 126.37, 118.91, 110.90, 109.75, 75.92, 55.86, 55.79.

(R)-Naphthalen-2-yl(phenyl)methanol (3p)

Pi (37 mg) isolated yield, white solid, $[\alpha]_D^{25} = -2.50$ (c = 0.80 in CH₂Cl₂); 94% ee, determined by HPLC analysis (Chiralpak OB column, hexane/*i*-PrOH, 85:15 v/v, flow rate 1 mL/min, $\lambda = 234.6$ nm, 25 °C), tR (major) = 15.62 min, tR (minor) = 15.04 min; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.84 – 7.77 (m, 3H), 7.48 – 7.45 (m, 2H), 7.43 – 7.40 (m, 3H), 7.33 (t, *J* = 7.2 Hz, 2H), 7.28 – 7.24 (m, 1H), 5.98 (s, 1H), 2.36 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.62, 141.10, 133.23, 132.86, 128.53, 128.31, 128.05, 127.66, 126.69,

126.17, 125.95, 125.00, 124.75, 76.36.

(R)-Benzofuran-5-yl(phenyl)methanol (3q)

(S)-Phenyl(thiophen-2-yl)methanol (3r)

81% (31 mg) isolated yield, yellow oil, $[\alpha]_D^{24} = -7.00$ (c = 1.00 in CH₂Cl₂); 98% ee, determined by HPLC analysis (Chiralpak OB column, hexane/*i*-PrOH, 80:20 v/v, flow rate 1 mL/min, λ = 209.8 nm, 25 °C), tR (major) = 9.51 min, tR

(minor) = 8.74 min; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 7.2 Hz, 2H), 7.37 (t, J = 7.2 Hz, 2H), 7.32 – 7.29 (m, 1H), 7.26 – 7.25 (m, 1H), 6.95 – 6.93 (m, 1H), 6.88 (d, J = 3.6 Hz, 1H), 6.05 (s, 1H), 2.43 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 148.09, 143.08, 128.51, 127.98, 126.63, 126.27, 125.39, 124.87, 72.40. HRMS (ESI) m/z calcd for C₁₁H₁₀NaOS [M + Na]⁺ 213.0345, found 213.0338.

(R)-(4-Methoxyphenyl)(p-tolyl)methanol (3s)

90% (41 mg) isolated yield, white solid, $[\alpha]_D^{25} = 11.00$ (c = 1.00 in CH₂Cl₂); 92% ee, determined by HPLC analysis (Chiralpak OJ column, hexane/*i*-PrOH, 95:5 v/v, flow rate 1 mL/min, λ = 238.6 nm, 25 °C),

tR (major) = 45.11 min, tR (minor) = 53.00 min; ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, *J* = 8.8 Hz, 4H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.84 (d, *J* = 8.8 Hz, 2H), 5.75 (s, 1H), 3.77 (s, 3H), 2.32 (s, 3H), 2.23 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 158.92, 141.14, 137.05, 136.31, 129.08, 127.77, 126.34, 113.79, 75.60, 55.23, 21.06.

(R)-(4-(Tert-butyl)phenyl)(4-methoxyphenyl)methanol (3t)

NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.4 Hz, 2H), 7.29 – 7.26 (m, 4H), 6.85 (d, J = 8.8 Hz, 2H), 5.75

(s, 1H), 3.77 (s, 3H), 2.26 (br, 1H), 1.30 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.90, 150.30, 141.08, 136.22, 127.77, 126.11, 125.32, 113.76, 75.58, 55.22, 34.45, 31.31.

(R)-(4-chlorophenyl)(4-methoxyphenyl)methanol (3u)

96% (48 mg) isolated yield, white solid, $[\alpha]_D^{25} = 42.00$ (c = 1.00 in CH₂Cl₂); 94% ee, determined by HPLC analysis (Chiralpak OB column, hexane/*i*-PrOH, 90:10 v/v, flow rate 1 mL/min, λ = 209.8

nm, 25 °C), tR (major) = 28.76 min, tR (minor) = 26.33 min; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (s, 4H), 7.23 (d, *J* = 8.8 Hz, 2H), 6.85 (d, *J* = 8.4 Hz, 2H), 5.74 (s, 1H), 3.78 (s, 3H), 2.30 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.20, 142.42, 135.75, 133.06, 128.49, 127.88, 127.72, 113.97, 75.13, 55.26.

(R)-(4-Bromophenyl)(4-methoxyphenyl)methanol (3v)

96% (56 mg) isolated yield, white solid, $[\alpha]_D^{25} = 30.00$ (c = 1.00 in CH₂Cl₂); 94% ee, determined by HPLC analysis (Chiralpak OB column, hexane/*i*-PrOH, 90:10 v/v, flow rate 1 mL/min, λ = 209.8

nm, 25 °C), tR (major) = 28.76 min, tR (minor) = 26.33 min; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 4H), 6.85 (d, J = 8.8 Hz, 2H), 5.72 (s, 1H), 3.78 (s, 3H), 2.31 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.19, 142.92, 135.66, 131.42, 128.06, 127.89, 121.19, 113.97, 75.15, 55.26.

(R)-(4-Methoxyphenyl)(o-tolyl)methanol (3w)

61% (28 mg) isolated yield, yellow oil, $[α]_D^{25} = 15.00$ (c = 1.00 in CH₂Cl₂); 84% ee, determined by HPLC analysis (Chiralpak IC column, hexane/*i*-PrOH, 95:5 v/v, flow rate 1 mL/min, λ = 237.1 nm, 25 °C), tR

(major) = 13.13 min, tR (minor) = 16.26 min; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.2 Hz, 1H), 7.27 – 7.11 (m, 5H), 6.84 (d, *J* = 8.8 Hz, 2H), 5.93 (s, 1H), 3.77 (s, 3H), 2.20 (s, 3H), 2.15 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.00, 141.58, 135.14, 135.04, 130.44, 128.47, 127.34, 126.04, 125.85, 113.81, 72.91, 55.23, 19.31.

(R)-(4-Methoxyphenyl)(m-tolyl)methanol (3x)

88% (40 mg) isolated yield, yellow oil, $[\alpha]_D^{25}$ = 16.00 (c = 1.00 in CH₂Cl₂); 94% ee, determined by HPLC analysis (Chiralpak IC column,

hexane/*i*-PrOH, 95:5 v/v, flow rate 1 mL/min, λ = 209.8 nm, 25 °C), tR (major) = 17.91 min, tR (minor) = 20.05 min; ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 8.4 Hz, 2H), 7.21 – 7.13 (m, 3H), 7.06 (d, *J* = 7.2 Hz, 1H), 6.85 (d, *J* = 8.8 Hz, 2H), 5.74 (s, 1H), 3.77 (s, 3H), 2.32 (s, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 158.92, 143.95, 138.05, 136.20, 128.29, 128.15, 127.82, 127.00, 123.43, 113.79, 75.76, 55.22, 21.44.

(R)-(3-Chlorophenyl)(4-methoxyphenyl)methanol (3y)

94% (47 mg) isolated yield, colorless oil, $[\alpha]_D^{25} = 53.00$ (c = 1.00 in CH₂Cl₂); 97% ee, determined by HPLC analysis (Chiralpak OB column, hexane/*i*-PrOH, 85:15 v/v, flow rate 1 mL/min, λ = 248.6

nm, 25 °C), tR (major) = 19.55 min, tR (minor) = 17.36 min; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H), 7.25 – 7.21 (m, 5H), 6.87 – 6.84 (m, 2H), 5.72 (s, 1H), 3.78 (s, 3H), 2.39 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.21, 145.96, 135.51, 134.27, 129.63, 127.93, 127.43, 126.41, 124.46, 113.98, 75.15, 55.24.

(R)-3-(Hydroxy(4-methoxyphenyl)methyl)benzonitrile (3z)

81% (39 mg) isolated yield, colorless oil, $[\alpha]_D^{25} = 78.00$ (c = 1.00 in CH₂Cl₂); 93% ee, determined by HPLC analysis (Chiralpak IC column, hexane/*i*-PrOH, 90:10 v/v, flow rate 1 mL/min, $\lambda = 254$

nm, 25 °C), tR (major) = 25.26 min, tR (minor) = 23.13 min; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.23 (d, *J* = 8.8 Hz, 2H), 6.90 - 6.86 (m, 2H), 5.79 (s, 1H), 3.79 (s, 3H), 2.51 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.45, 145.37, 135.09, 130.88, 130.76, 129.85, 129.07, 128.00, 118.85, 114.18, 112.28, 74.80, 55.28.

(R)-(3,5-Dimethylphenyl)(4-methoxyphenyl)methanol (3aa)

87% (42 mg) isolated yield, white solid, $[\alpha]_D^{25} = 14.00$ (c = 1.00 in CH₂Cl₂); 94% ee, determined by HPLC analysis (Chiralpak OB column, hexane/*i*-PrOH, 80:20 v/v, flow rate 1 mL/min, λ = 237.0 nm, 25 °C), tR (major) = 12.33 min, tR (minor) = 8.30 min; ¹H NMR (400 MHz,

CDCl₃) δ 7.26 (d, *J* = 8.8 Hz, 2H), 6.96 (s, 2H), 6.88 – 6.83 (m, 3H), 5.69 (s, 1H), 3.76 (s, 3H), 2.28 (s, 7H). ¹³C NMR (100 MHz, CDCl₃) δ 158.86, 143.96, 137.92, 136.26, 129.03, 127.77, 124.12, 113.74, 75.76, 55.19, 21.30. HRMS (ESI): m/z calcd for C₁₆H₁₈NaO₂ [M + Na]⁺ 265.1199, found 265.1194.

(R)-(3,5-Dimethoxyphenyl)(4-methoxyphenyl)methanol (3ab)

91% (50 mg) isolated yield, yellow oil, $[\alpha]_D^{25}$ = 29.00 (c = 1.00 in CH₂Cl₂); 94% ee, determined by HPLC analysis (Chiralpak IC column, hexane/*i*-PrOH, 80:20 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C), tR (major) = 13.30 min, tR (minor) = 22.22 min; ¹H

NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 6.53 (d, J = 2.0 Hz, 2H), 6.36 – 6.34 (m, 1H), 5.69 (s, 1H), 3.77 (s, 3H), 3.75 (s, 6H), 2.31 (br, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 160.77, 159.01, 146.51, 135.85, 127.84, 113.81, 104.32, 99.24, 75.71, 55.27, 55.22.

(*R*)-(3,4-Difluorophenyl)(4-methoxyphenyl)methanol (3ac)

90% (45 mg) isolated yield, colorless oil, $[\alpha]_D^{25} = 51.00$ (c = 1.00 in CH₂Cl₂); 96% ee, determined by HPLC analysis (Chiralpak OJ column, hexane/*i*-PrOH, 95:5 v/v, flow rate 1 mL/min, λ = 235.0 nm, 25 °C),

tR (major) = 53.38 min, tR (minor) = 50.69 min; ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.16 (m, 3H), 7.12 – 7.03 (m, 2H), 6.86 (d, *J* = 8.4 Hz, 2H), 5.71 (s, 1H), 3.78 (s, 3H), 2.41 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.31, 151.06 (dd, *J*_{C-F} = 74.7, 12.8 Hz), 148.60 (dd, *J*_{C-F} = 74.1, 12.7 Hz), 140.98 (t, *J*_{C-F} = 4.7 Hz), 135.42, 127.87, 122.20 (dd, *J*_{C-F} = 6.3, 3.5 Hz), 116.99 (d, *J*_{C-F} = 17.1 Hz), 115.32 (d, *J*_{C-F} = 17.8 Hz), 114.04, 74.68 (d, *J*_{C-F} = 1.2 Hz), 55.25. ¹⁹F NMR (376 MHz, CDCl₃) δ -137.51 (d, *J* = 21.1 Hz), -140.01 (d, *J* = 21.4 Hz).

(R)-(4-Methoxyphenyl)(3,4,5-trifluorophenyl)methanol (3ac)

86% (46 mg) isolated yield, colorless oil, $[\alpha]_D^{25} = 66.00$ (c = 1.00 in CH₂Cl₂); 96% ee, determined by HPLC analysis (Chiralpak OJ column, hexane/*i*-PrOH, 90:10 v/v, flow rate 1 mL/min, λ = 209.8 nm, 25 °C), tR (major) = 13.20 min, tR (minor) = 11.34 min; ¹H NMR (400 MHz,

CDCl₃) δ 7.23 – 7.19 (m, 2H), 7.00 – 6.97 (m, 2H), 6.89 – 6.86 (m, 2H), 5.68 (s, 1H), 3.79 (s, 3H), 2.37 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.57, 151.11 (ddd, J_{C-F} = 248.4, 10.0, 3.9 Hz), 140.27 – 139.80 (m), 137.46 (t, J_{C-F} = 15.2 Hz), 134.84, 127.96, 114.21, 110.24 (dd, J_{C-F} = 16.0, 5.9 Hz), 74.44, 55.29. ¹⁹F NMR (376 MHz, CDCl₃) δ -134.06 (d, J = 20.3 Hz), -162.41 (t, J = 20.7 Hz).

4. Radical Trapping Experiments

In an argon-filled glovebox, a 10 mL flame-dried quartz tube with magnetic stirring was charged sequentially with Co(NTf₂)₂ (0.02 mmol, 10 mol%), **L1** (0.024 mmol, 12 mol%) and *o*-xylene (1 mL). After stirring at room temperature for 2 h, *p*-anisaldehyde (0.2 mmol) and iodobenzene (0.3 mmol), *i*-Pr₂NEt (0.4 mmol, 2.0 eq.) and TEMPO (1.5eq, 0.3 mmol) were sequentially added into the quartz tube. Then, the quartz tube was removed from glovebox. The mixture was stirred at room temperature under 10 W black LEDs for 24 h. The reductive coupling of *p*-anisaldehyde and iodobenzene was inhibited completely by the addition of 1.5 equiv. of 2,2,6,6-tetramethylpiperidinooxy (TEMPO) as a radical scavenger. Moreover, the ketyl radical addition product and *α*-amino radical addition product were detected by HRMS. HRMS (ESI) of ketyl radical addition product: m/z calcd for C₁₇H₂₈NO₃ [M + H]⁺ 294.2064, found 294.2073. HRMS (ESI) of *α*-amino radical addition: m/z calcd for C₁₇H₃₇N₂O [M + H]⁺ 285.2900, found 285.2894.

HRMS (ESI) of ketyl radical addition product

HRMS (ESI) of α -amino radical addition

In an argon-filled glovebox, a 10 mL flame-dried quartz tube with magnetic stirring was charged sequentially with *p*-anisaldehyde (0.2 mmol), iodobenzene (0.3 mmol), *i*-Pr₂NEt (0.4 mmol, 2.0 eq.), TEMPO (1.5eq, 0.3 mmol) and *o*-xylene (1 mL). Then, the quartz tube was removed from glovebox. The mixture was stirred at room temperature under 10 W black LEDs for 24 h. This indicated that the generation of ketyl radical and α -amino radical was not affected by the cobalt catalyst and ligand. The ketyl radical addition product and α -amino radical addition product was detected by HRMS. HRMS (ESI) of ketyl radical addition product: m/z calcd for C₁₇H₂₇NO₃Na [M + Na]⁺ 316.1883, found 316.1875. HRMS (ESI) of α -amino radical addition product: m/z calcd for C₁₇H₃₇N₂O [M + H]⁺ 285.2900, found 285.2896.

HRMS (ESI) of ketyl radical addition product

HRMS

HRMS

In an argon-filled glovebox, a 10 mL flame-dried quartz tube with magnetic stirring was charged sequentially with p-anisaldehyde (0.2 mmol), i-Pr₂NEt (0.4 mmol, 2.0 eq.), TEMPO (1.5eq, 0.3 mmol) and o-xylene (1 mL). Then, the quartz tube was removed from glovebox. The mixture was stirred at room temperature under 10 W black LEDs for 24 h. This result suggest that irradiation of a mixture of *p*-anisaldehyde and *i*-Pr₂NEt leads to ketyl radical through a process of the traditional photoinduced sequential electron transfer and proton transfer. The ketyl radical addition product and α -amino radical addition product was detected by HRMS. HRMS (ESI) of ketyl radical addition product: m/z calcd for C₁₇H₂₇NO₃Na [M + Na]⁺ 316.1883, found 316.1885. HRMS (ESI) of α -amino radical addition product: m/z calcd for C₁₇H₃₇N₂O [M + H]⁺ 285.2900, found 285.2897.

HRMS (ESI) of ketyl radical addition product

HRMS (ESI) of α -amino radical addition

5. Secondary isotope effect

In an argon-filled glovebox, a 10 mL flame-dried quartz tube with magnetic stirring was charged sequentially with Co(NTf₂)₂ (0.02 mmol, 10 mol%), L1 (0.024 mmol, 12 mol%) and *o*-xylene (1 mL). After stirring at room temperature for 2 h, substrates 1b (0.1 mmol), 1b-D (0.1 mmol), 2 (0.3 mmol) and *i*-Pr₂NEt (0.4 mmol, 2.0 eq.) were sequentially added into the quartz tube. Then, the quartz tube was removed from glovebox. The mixture was stirred at room temperature under 10 W black LEDs until the reaction was completed, as monitored by TLC analysis. The reaction mixture was then concentrated in vacuo. The crude product was purified by flash column

chromatography (silica gel, PE/EA) to afford the desired product.

6. UV-vis studies

6.1 UV-vis Absorption Spectrum of cobalt catalytic system

Curve a: in an argon-filled glovebox, a flame-dried glass tube with magnetic stirring was charged sequentially with $Co(NTf_2)_2$ (0.1 mmol, 62 mg) , (*S*,*S*)-BDPP (0.12 mmol, 53 mg) and MeCN (10 mL). After stirring at room temperature for 2 h, the glass tube was placed in the UV-Vis and a wavelength scan from 800 nm to 300 nm.

Curve b: in an argon-filled glovebox, a flame-dried glass tube with magnetic stirring was charged sequentially with $Co(NTf_2)_2$ (0.1 mmol, 62 mg), (*S*,*S*)-BDPP (0.12 mmol, 53 mg) and MeCN (10 mL). After stirring at room temperature for 2 h, *i*-Pr₂NEt (2.0 mmol, 348 µL) was added into the glass tube. Then, this solution was allowed to stir for 8 h inside the glovebox. Finally, the glass tube was placed in the UV-Vis and a wavelength scan from 800 nm to 300 nm.

Curve c: in an argon-filled glovebox, a flame-dried glass tube with magnetic stirring was charged sequentially with Co(NTf₂)₂ (0.1 mmol, 62 mg) , (*S*,*S*)-BDPP (0.12 mmol, 53 mg) and MeCN (10 mL). After stirring at room temperature for 2 h, *i*-Pr₂NEt (2.0 mmol, 348 μ L) was added into the glass tube. Then, this solution was allowed to stir for 8 h inside the glovebox. Afterward, *p*-anisaldehyde (0.1 mmol, 12 μ L) was added into this solution. Finally, the glass tube was placed in the UV-Vis and a wavelength scan from 800 nm to 300 nm.

Figure S1. UV-vis absorption spectrum of a, b and c in MeCN (10⁻² mmol/mL)

6.2 UV-vis Absorption Spectrum of *p*-Anisaldehyde and *i*-Pr₂NEt

In a glass tube, *p*-anisaldehyde (0.1 mmol, 12 μ L), *i*-Pr₂NEt (0.1 mmol, 18 μ L) and its mixture into EtOH (10 mL). The glass tube was placed in the UV-Vis and a wavelength scan from 380 nm to 340 nm.

7. Comparison with previous work

Table S9. Comparison of this work with previous work

	Reaction	enantiosel	reductant	additives	reference
		ectivity			
Previous	$ \begin{array}{c} \text{JS} \\ \text{Ar} - \text{I} + \bigcup_{\substack{R \\ P}} \begin{array}{c} \text{NiBr}_2 \text{-diglyme (5 mol%)} \\ (P^{\circ N} N^{ArCF3})_2 (12 mol%) \\ \hline \text{TMP (2 equiv.)} \\ 1 \text{-phenylethanol (3 equiv.)} \\ \text{PhMe, 16 h, 0.2 M, 75 °C} \end{array} \begin{array}{c} \text{OH} \\ \text{Ar} \\ \end{array} $	No	1-phenyle	ТМР	J. Am. Chem.
work			thanol		Soc., 2021, 143 ,
					14646-14656.
	NiBr₂(dne) (10 mol%) CN	Yes	Zn	Nal	Angew. Chem.
	Ar-I + Nal (2 equiv.) R Zn (2 equiv.) Tutr 10 80 49 h				Int. Ed., 2022,
	וחד, -וט־ט, אט אין אין דאר Ph L				61 , e202201370.
	$Ar-I + R \xrightarrow{V} IIBr_2 \bullet diglyme (10 mol%) \\ Ar-I + R \xrightarrow{V} II (1.5 equiv.) \\ TBABPh_4 (25 mol%) \\ 2-MeTHF, 24 h, -30 °C \\ Ar = R$	Yes	Zn	TBABPh ₄	Angew. Chem.
					Int. Ed., 2022,
					61,
					e202117843.
	4CzIPN (2 mol%) Col₂ (10 mol%) Ar−I + R → HE (1.4 equiv.) Pr ₂ NEt (2.0 equiv.) DCM or THE, blue LEDs	Yes	HE	<i>i</i> -Pr ₂ NEt	J. Am. Chem.
					Soc., 2022, 144 ,
					8347-8354.
This Work	Ar H + Ar - (S,S)-BDPP (12 m0%) amine reducing agent up to 96% yield event when y more y to 96% yield amine reducing agent up to 96% yield	Yes	<i>i-</i> Pr ₂ NEt	No	
	┿ IU W black light				

8. References

- (1) W. L. F. Armarego and C. C. L. Chai, Purification of Laboratory Chemicals, 5th ed., Butterworth-Heinemann, **2003**.
- (2) J. Chen, S. Yang, Z. Chen, C. Song and Y. Ma, *Tetrahedron: Asymmetry*, 2015, **26**, 288–385.
- (3) X. Jiang, H. Jiang, Q. Yang, Y. Cheng, L.-Q. Lu, J. Tunge and W.-J. Xiao, J. Am. Chem. Soc., 2022, **144**, 8347–8354.

9. Copies of NMR Spectra for the Products

 1 H NMR spectrum of compound **3a** (400 MHz) in CDCl₃

 ^{13}C NMR spectrum of compound 3j (100 MHz) in CDCl_3

^{19}F NMR spectrum of compound **3ad** (376 MHz) in CDCl_3

-162.359 -162.414 -162.468

<134.033</pre>

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

10. Copies of HPLC Spectra for the Products

Chiral HPLC spectrum of compound 3a

Chiral HPLC spectrum of compound 3b

2

15.294

	RT (min)	Height [mAU]	Area [Mau*S]	Area%
1	13.997	1149.92651	3.91717e4	48.0597
2	15.178	1092.19092	4.23347e4	51.9403

2325.42188

3.1361

Chiral HPLC spectrum of compound 3c

2

15.674

2067.75659

2.5750

Chiral HPLC spectrum of compound 3d

14.504

856.20819

2.62240e4

Chiral HPLC spectrum of compound 3e

	RT (min)	Height [mAU]	Area [Mau*S]	Area%
1	11.203	1160.31628	3.42560e4	52.0714
2	12.995	1010.29730	3.15305e4	47.9286

Chiral HPLC spectrum of compound 3f

Chiral HPLC spectrum of compound 3g

Chiral HPLC spectrum of compound 3h

Chiral HPLC spectrum of compound 3i

2

2

15.897

15.885

2.66299e4

2134.05493

49.2636

2.7379

762.46222

Chiral HPLC spectrum of compound 3j

Chiral HPLC spectrum of compound 3k

Chiral HPLC spectrum of compound 3I

Chiral HPLC spectrum of compound 3m

2

25.621

1.40-	-				#				
1.20-					f				
1.00-	-								
R ^{0.80-}	-								
0.60-	-								
0.40	-							0	
0.20-	-	~						25.75(
0.00-									
0.	.00 2.00 4.00	6.00 8.0	0 10.00 12	2.00 14.00	16.00 18.0	00 20.00	22.00	24.00 26.00	28.00

19294786

49.81

271615

	RT (min)	Height [µV]	Area [µV*S]	Area%
1	16.211	1472582	58850536	98.13
2	25.750	18078	1118508	1.87

Chiral HPLC spectrum of compound 3n

2

11.057

2.00	-		1590 1		
1.50					
₽ 1.00 [.]	-				
0.50	-			139	
0.00	-			£	Δ
0	.00	2.00 4.0	6.00	8.00 10.00	12.00 14.00
		RT (min)	Height [µV]	Area [µV*S]	Area%
	1	7.520	2133862	54861667	98.12
	2	11.139	24104	1051727	1.88

29994167

49.92

636202

Chiral HPLC spectrum of compound 30

Chiral HPLC spectrum of compound 3p

	RT (min)	Height [µV]	Area [µV*S]	Area%
1	15.038	58245	1340171	1.85
2	15.623	1519411	71139782	98.15

Chiral HPLC spectrum of compound 3q

2

22.465

901913

57312856

Chiral HPLC spectrum of compound 3r

2

9.721

10804198

50.41

536648

	RT (min)	Height [µV]	Area [µV*S]	Area%
1	8.744	18981	300225	0.98
2	9.509	1454124	30370532	99.02
Chiral HPLC spectrum of compound 3s

	RT (min)	Height [µV]	Area [µV*S]	Area%
1	44.047	310755	35258815	50.19
2	50.369	311933	34986504	49.81

Chiral HPLC spectrum of compound 3t

Chiral HPLC spectrum of compound 3u

Chiral HPLC spectrum of compound 3v

Chiral HPLC spectrum of compound 3w

2

16.612

29497997

50.75

1004778

Chiral HPLC spectrum of compound 3x

	RT (min)	Height [mAU]	Area [Mau*S]	Area%
1	17.926	221.53233	7092.17432	49.5021
2	19.673	187.93378	7234.84033	50.4979

	RT (min)	Height [mAU]	Area [Mau*S]	Area%
1	17.905	379.44431	1.37276e4	96.8522
2	20.048	11.57677	446.15497	3.1478

Chiral HPLC spectrum of compound 3y

	RT (min)	Height [µV]	Area [µV*S]	Area%
1	17.356	5532	185483	1.75
2	19.554	203545	10425632	98.25

Chiral HPLC spectrum of compound 3z

2

25.419

mAU -	WD1 A, Wavelength=254 nm (HTY\HTY-500.D)	25,263
80 -		
60 -		
40 -		
20 -	ž.	
0 -		

3381.94531

50.2409

67.91109

	RT (min)	Height [mAU]	Area [Mau*S]	Area%
1	23.134	2.93562	179.79250	3.5153
2	25.263	96.07359	4934.76514	96.4847

Chiral HPLC spectrum of compound 3aa

S81

Chiral HPLC spectrum of compound **3ab**

Chiral HPLC spectrum of compound **3ac**

Chiral HPLC spectrum of compound 3ad

