Electronic Supporting Information

Weakening fibril-fibril interactions via on-demand regulation of hemicellulose phase towards facile disassembly of lignocellulose heterostructure into approaching native-state elementary fibrils

Yan Jiang, ‡^a Xinyi Wang, ‡^a Zhiqian Meng,^a Mengyang Zhang,^a Shuangfei Wang,^a

Xiuyu Liu, *b, c,d

^a College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P.R. China.

^b School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, P.R. China.

^c Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, P.R. China.

^d Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning 530006, P.R. China.

*Corresponding Author E-mail: xiuyu.liu@gxun.edu.cn (Xiuyu Liu).

‡ Y. Jiang and X. Wang contributed equally.

Number of pages: 13

Number of tables: 7

Number of figures: 5

Fig. S1 Optical micrograph of spruce holocellulose fibers.

Fig. S2 TEM images of (a) HCNF-24%IL-W, and (b) HCNF-50%IL-W.

Fig. S3 TEM images and TEM-based length and diameter distributions of (a) TEMPO-CNF, (b) Enz-CNF, and (c) Mech-CNF.

Fig. S4 The recovery rate of IL/water cosolvent and IL at 1st~10th cycles.

Fig. S5 (a) Kamlet Taft hydrogen bond basicity β and hydrogen bond acidity α values of the recovered IL/water cosolvent; (b) ATR-FTIR spectra of the ILs from the recovered IL/water cosolvent.

Fig. S6 (a) TEM images and (b) TEM-based diameter distributions of the HCNF produced by using the 10-times recycled IL.

Fig. S7 (a) N_2 adsorption-desorption isotherms and (b) BJH pore size distribution derived from N_2 adsorption for HCNF, TEMPO-CNF and Enz-CNF nanopapers.

IL	KT-parameter at 25°C				
(wt%)	β	π^*	α	β-α	
0	0.142	1.330	1.121	-0.979	
24	0.316	1.318	0.787	-0.471	
50	0.492	1.306	0.636	-0.144	
100	1.107	1.039	0.474	0.633	

 Table S1. Kamlet Taft parameter of IL/water cosolvent at different IL concentration.

•	11.00	•
11s1no	different	strateoles
using	uniterent	strategies.
0		0

Precursor fibers	Protocol	Length (µm)	Diameter	Aspect	DP	References
			(nm)	ratio		
Bleached	DES (ZnAc/ChCl)					Lingst
bamboo pulp	treatment and subsequent	14.3	16.2	882	\	
fibers	homogenization					al. ¹¹
Disseled approa	Carboxymethylation and		3.9	1000		7hou ot
Bleached spruce	subsequent mechanical	3.8			1300	
pulp libers	blending					al. ^[2]
Bleached sulfite	Maleic anhydride					Zhang at
softwood pulp	esterification followed by	~1.3	~3.2	390	\	
fibers	mechanical blending					al. ^[5]
Spruce						Variat
holocellulose	Mechanical blending	~2.1	~5.0	530	3460	Yang et
fibers						al. ^[+]
Softwood	TT' 1					
holocellulose	Hign-pressure	~3.0	~5.0	600	3800	Galland et
fibers	microfluidization					al. ^[3]
Spruce						N 7 (
holocellulose	Mechanical blending	~2.0	~3.4	580	3400	Y ang et
fibers						al. ¹⁰

 Table S3. Estimated costs of materials and unities per ton of HCNF.

	Categories	Consumption	Price	Cost	Sources
		$(ton/kW \cdot h)$	(CNY [.] ton ⁻¹)	(CNY)	
Matariala	Spruce holocellulose	1	13400	13400	Guangxi Jianing
Materials	fibers	1			Pulp Co., Ltd.
	1 Etheral 2				Guangzhou
	I-Euryi-3-	0	50000	400000	Ruishi
		8			Biotechnology
	acetate (99.5%)				Co., Ltd.
					Xixiangtang
Utilities	Water	75	5.59	420	District, Nanning,
					China
					Xixiangtang
	Electricity	3293	0.83	2733	District, Nanning,
					China

 Table S4. Estimated costs of materials and unities per ton of TEMPO-CNF.

	Categories	Consumption	Price	Cost	Sources
		(ton/kW·h)	(CNY [.] ton ⁻¹)	(CNY)	
	Placehod nine				Qingdao Junuo
Materials	pulp	1	7750	7750	International Trade Co.,
	puip				Ltd.
	TEMDO (089/)	0.016	2516000	40256	Shanghai Aladdin Reagent
	1 EMFO (9876)	0.010	2310000	40230	Co., Ltd.
	$N_{2}D_{2}(0.00/)$	0.1	200000	20000	Shanghai Aladdin Reagent
	Nabi (9976)	0.1		20000	Co., Ltd.
	$N_{-}C(0)(50/)$	1.12	34000	38080	Shanghai Aladdin Reagent
	NaCIO (370)				Co., Ltd.
		2	4000	8000	Maoming Xiongda
	NaOH (99%)	2			Chemical Co. Ltd.
Utilities	W /-4	0.40	5.50	5255	Xixiangtang District,
	water	940	5.59		Nanning, China
	Electricity	251(9	0.82	29189	Xixiangtang District,
		33108	0.83		Nanning, China

Table S5. Main technical data of the equipment used for producing TEMPO-CNF andHCNF.

Equipment	Model		Manufacturers		
		Speed (rpm)	Capacity (t)	Power (kW)	Anhui
Electric blender	ZXY-90				Shuangjie
		30000	3.3	6~7	Manufacturing
					Co., Ltd.
	MKZB20-100J	Speed (rpm)	Capacity	Downer (1-W/)	Masuko
Supermasscolloider			(Kg/h)	Power (KW)	Sangyo
		1500	1200~6000	38~76	Co.,Ltd.
Centrifugal machine	- 4-5KL	Speed (rpm)	Capacity (Kg)	Power (kW)	KingHwa
					Medical
		13500	3	1.2	Scientific
					Co.,Ltd.
Circulating water vacuum pump	SHB-III	Maximum	Air volume per	Derror (I-W/)	Nanning Boyu
		vacuum (MPa)	head (L/min)	Power (Kw)	Instrument
		0.098	10	0.18	Co.,Ltd.

References

- 1. Z. Ling, J. Y. Zhao, Y. Xie, L. X. Dai, L. Feng, J. F. Ma and Q. Yong, Ind. Crop. Prod., 2022, 187.
- 2. J. Zhou, Z. Q. Fang, K. H. Chen, J. Y. Cui, D. J. Yang and X. Q. Qiu, Carbohyd. Polym., 2022, 296.
- D. Zhang, K. X. Jin, K. H. Lim, S. Y. Jie, W. J. Wang and X. Yang, *Green Chem.*, 2023, 25, 4696-4704.
- 4. X. Yang, M. S. Reid, P. Olsen and L. A. Berglund, ACS Nano, 2020, 14, 724-735.
- 5. S. Galland, F. Berthold, K. Prakobna and L. A. Berglund, *Biomacromolecules*, 2015, 16, 2427-2435.
- 6. X. Yang, E. Jungstedt, M. S. Reid and L. A. Berglund, *Macromolecules*, 2021, 54, 4443-4452.