Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

$Seminormal-BrCH_2CH_2OH-mediated\ electrochemical\ epoxidation$

of unactivated olefins

Hong He,^{a,b} Yanxia Lv,^{a,b} Jing Hu,^a Zhong-Wei Hou,^{*a} and Lei Wang^{*a,b,c,d}

- ^a Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China
- ^b Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
- ^c College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- ^d State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
- * E-mail: zhongwei.hou@tzc.edu.cn; leiwang88@hotmail.com

Table of Content	Page
1. General Information	S2
2. General Procedure for Electrosynthesis	S2
3. Mechanistic Studies	S4
4. Unsuccessful Substrates	S8
5. Characterization Data for the Products	S8
6. Synthesis and Characterization of Unknown Substrates	S17
7. References	S20
8. NMR Spectra of the Products	S21

1. General Information

Unless otherwise noted, chemicals and materials were purchased from commercial suppliers and used without further purification. All the solvents were treated according to the general methods. Flash column chromatography was performed with silica gel (200–300 mesh). NMR spectra were recorded on a 400 MHz Bruker FT-NMR spectrometer. Data were reported as chemical shifts in ppm relative to CDCl₃ (7.26 ppm) for ¹H NMR and CDCl₃ (77.2 ppm) for ¹³C NMR. The abbreviations used for explaining the multiplicities were as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High resolution mass spectra (ESI HRMS) were recorded on an Agilent Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS (ESI). Products were purified by flash chromatography on 200–300 mesh silica gels, SiO₂. XINRUI® DJS-292B potentiostat made in China was used as a power supply device. The reticulated vitreous carbon (RVC) anode and Pt plate cathode are commercially available from Gaoss Union in China.

2. General Procedure for the Electrosynthesis

2.1 General Procedure for the Reaction

A 20 mL three-necked beaker-type cell was charged with alkene (0.2 mmol, 1 equiv.), BrCH₂CH₂OH (50 mol%), K₃PO₄ (0.24 mmol, 1.2 equiv.), *n*-Bu₄NBF₄ (0.1 mmol, 0.5 equiv.). The cell was equipped with a reticulated vitreous carbon (RVC, 100 PPI, 1.2 cm x 0.8 cm x 0.8 cm) anode and a platinum plate (1 cm x 1 cm x 0.1 mm) cathode (Figure S1A and Figure S1B). MeCN/H₂O (6 mL/1 mL) was added. The electrolysis was carried out at room temperature using a constant current of 3 mA for 6 h (Figure S1C). After the reaction was completed, the reaction mixture was washed with 10 mL of saturated NaHSO₃ (aq.) and extracted with ethyl acetate (3 x 15 mL). The combined organic phase was dried over Na₂SO₄, filtered and concentrated under reduced pressure. Then the residue was chromatographed through silica gel eluting with ethyl acetate/petroleum ether (1:30) to give the desired product. The reaction setup have been reported in our previous work.¹

Figure S1. The reaction setup

2.2 General Procedure for the Gram-Scale Synthesis of 2

A gram-scale electrolysis was conducted in a 100 mL three-necked round-bottomed flask with a piece of RVC (1.2 cm x 2 cm x 2 cm) as the anode, a Pt plate as the cathode (1.5 cm x 1.5 cm x 0.3 mm), and a constant current of 40 mA for 14 h at room temperature. The reaction mixture consisted 3-methylbut-2-en-1-yl benzoate (1, 1.14 g, 6 mmol, 1 equiv.), BrCH₂CH₂OH (0.38 g, 50 mol%), K₃PO₄ (1.53 g, 0.24 mmol, 1.2 equiv.), *n*-Bu₄NBF₄ (0.99 g, 3 mmol, 0.5 equiv.) and MeCN/H₂O (78 mL/13 mL). After the reaction was completed, the reaction mixture was washed with 50 mL of saturated NaHSO₃ (aq.) and extracted with ethyl acetate (3 x 100 mL). The combined organic phase was dried over Na₂SO₄, filtered and concentrated under reduced pressure. Then the residue was chromatographed through silica gel eluting with ethyl acetate/petroleum ether (1:30) to give the desired product **2** (0.89 g, 72% yield).

3. Mechanistic Studies

3.1 Epoxidation of 1 with Br₂

The epoxidation of 3-methylbut-2-en-1-yl benzoate (1) could be achieved in 91% yield with Br_2 as the activated reagent under the conditions of no electricity, indicating that the success of the reaction probably depends on the generation of Br_2 in situ.

3.2 Oxygen-Labeling Experiments

Figure S2 High resolution mass spectroscopy (HRMS) of ¹⁸O-2.

The oxygen-labeling experiment was conducted to understand the reaction mechanism. The product ¹⁸O-2 was primarily obtained in 75% yield when using $H_2^{18}O$ instead of H_2O , indicating that the oxygen atom in epoxy group of product comes from water (Figure S2).

3.3 Bromohydroxylation of 36 without K₃PO₄

The bromohydroxylation product **37** was afforded in 30% yield by electrolyzing **36** in the absence of K_3PO_4 and epoxy product **21** was simultaneously detected in 14% yield, supporting that an electrochemical epoxidation involves a bromohydroxylation process.

4-Bromo-3-hydroxybutyl 4-methylbenzoate (37). Colourless oil (17.4 mg, 30% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.2 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 4.59–4.48 (m, 1H), 4.49–4.39 (m, 1H), 4.05–3.94 (m, 1H), 3.57 (dd, *J* = 10.4, 3.7 Hz, 1H), 3.46 (dd, *J* = 10.4, 6.6 Hz, 1H), 2.66 (d, *J* = 4.8 Hz, 1H), 2.41 (s, 3H), 2.14–2.00 (m, 1H), 2.02–1.88 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 144.0, 129.8, 129.3, 127.3, 68.2, 61.4, 39.8, 34.6, 21.8; HRMS (ESI) ([M + H]⁺) Calcd. for C₁₂H₁₆BrO₃⁺: 287.0277, Found: 287.0275.

3.4 Base-facilitated intramolecular epoxidation of 37

The epoxidation product **21** could be obtained in 48% yield from **37** with K_3PO_4 in a sulotion of MeCN/H₂O. The addition of K_3PO_4 could facilitate the conversion of the bromohydroxylation intermediate to the epoxidation product via an intramolecular nucleophilic substitution process with the release of Br⁻.

3.5 Cyclic voltammetry studies

The cyclic voltammograms were recorded in an electrolyte of *n*-Bu₄NBF₄ (0.1 M) in MeCN (5 mL) using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and an Ag/AgCl reference electrode. The scan rate was 50 mV/s.

Figure S3. Cyclic voltammogram of nBu_4NBr (10 mM) in an electrolyte of nBu_4NBF_4 (0.1 M) in MeCN (5 mL). $E_{p/2} = 0.77$ V.

Figure S4. Cyclic voltammogram of 3-methylbut-2-en-1-yl benzoate (1, 10 mM) in an electrolyte of nBu_4NBF_4 (0.1 M) in MeCN (5 mL). $E_{p/2} = 2.10$ V.

Figure S5. Cyclic voltammogram of (3,3-dimethyloxiran-2-yl)methyl benzoate (**2**, 10 mM) in an electrolyte of nBu_4NBF_4 (0.1 M) in MeCN (5 mL). $E_{p/2} \ge 2.17$ V.

The cyclic voltammograms (CVs) of nBu_4NBr , alkene substrate 1 and epoxidation product 2 were tested in an electrolyte of nBu_4NBF_4 (0.1 M) in MeCN (5 mL). The oxidation potential of Br⁻ ($E_{p/2} = 0.77$ V vs. Ag/AgCl) was significantly lower than that of the substrate 1 ($E_{p/2} = 2.10$ V vs. Ag/AgCl) and product 2 ($E_{p/2} \ge 2.17$ V vs. Ag/AgCl) (Figure S3, Figure S4, and Figure S5,), indicating the anodic oxidation of Br⁻ were preferentially carried out. The cyclic voltammograms studies support our proposed mechanism.

4. Unsuccessful Substrates

Scheme S1. Unsuccessful substrates in the reactions.

5. Characterization Data for the Electrolysis Products

(3,3-Dimethyloxiran-2-yl)methyl benzoate (2).² Yellow oil (34.1 mg, 83% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.11–8.02 (m, 2H), 7.60–7.53 (m, 1H), 7.48–7.39 (m, 2H), 4.58 (dd, J = 12.1, 4.3 Hz, 1H), 4.27 (dd, J = 12.1, 6.7 Hz, 1H), 3.13 (dd, J = 6.7, 4.3 Hz, 1H), 1.37 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 133.3, 129.9 (2C), 128.5, 64.1, 60.7, 58.4, 24.7, 19.1.

(3,3-Dimethyloxiran-2-yl)methyl 2-fluorobenzoate (3). Yellow oil (32.0 mg, 71% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.01–7.91 (m, 1H), 7.58–7.48 (m, 1H), 7.25–7.09 (m, 2H), 4.56 (dd, J = 12.1, 4.5 Hz, 1H), 4.31 (dd, J = 12.1, 6.7 Hz, 1H), 3.13 (dd, J = 6.7, 4.5 Hz, 1H), 1.37 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 164.3 (d, $J_{C-F} = 3.7$ Hz), 162.2 (d, $J_{C-F} = 260.9$ Hz), 134.9 (d, $J_{C-F} = 8.9$ Hz), 132.3, 124.1 (d, $J_{C-F} = 3.7$ Hz), 118.4 (d, $J_{C-F} = 9.5$ Hz), 117.2 (d, $J_{C-F} = 22.1$ Hz), 64.3, 60.5, 58.5, 24.7, 19.1; ¹⁹F NMR (377 MHz, CDCl₃) δ –109.1; HRMS (ESI) ([M + H]⁺) Calcd. for C₁₂H₁₄FO₃⁺: 225.0921, Found: 225.0926.

(3,3-Dimethyloxiran-2-yl)methyl 2-bromobenzoate (4). Yellow oil (48.4 mg, 85% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.86–7.80 (m, 1H), 7.69–7.63 (m, 1H), 7.41–7.28 (m, 2H), 4.57 (dd, J = 12.1, 4.5 Hz, 1H), 4.30 (dd, J = 12.1, 6.8 Hz, 1H), 3.14 (dd, J = 6.8, 4.5 Hz, 1H), 1.37 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 166.0, 134.5, 132.9, 131.8, 131.6, 127.3, 121.9, 64.6, 60.4, 58.4, 24.7, 19.1; HRMS (ESI) ([M + H]⁺) Calcd. for C₁₂H₁₄BrO₃⁺: 285.0121, Found: 285.0120.

(3,3-Dimethyloxiran-2-yl)methyl [1,1'-biphenyl]-2-carboxylate (5). Yellow oil (35.6 mg, 63% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.91–7.83 (m, 1H), 7.58–7.52 (m, 1H), 7.46–7.30 (m, 7H), 4.19–4.07 (m, 2H), 2.60 (t, J = 5.6 Hz, 1H), 1.26 (s, 3H), 1.21 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.6, 142.8, 141.7, 131.6, 130.9, 130.6, 130.1, 128.5, 128.2, 127.4, 63.8, 60.1, 58.2, 24.6, 18.9; HRMS (ESI) ([M + H]⁺) Calcd. for C₁₈H₁₉O₃⁺: 283.1329, Found: 283.1334.

(3,3-Dimethyloxiran-2-yl)methyl 4-methoxybenzoate (6). Yellow oil (26.6 mg, 57% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.07–7.98 (m, 2H), 6.97–6.86 (m, 2H), 4.57 (dd, J = 12.1, 4.3 Hz, 1H), 4.23 (dd, J = 12.1, 6.8 Hz, 1H), 3.86 (s, 3H), 3.13 (dd, J = 6.8, 4.3 Hz, 1H), 1.38 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 163.7, 132.0, 122.3, 113.8, 63.9, 60.9, 58.4, 55.6, 24.8, 19.2; HRMS (ESI) ([M + H]⁺) Calcd. for C₁₃H₁₇O₄⁺: 237.1121, Found: 237.1125.

(3,3-Dimethyloxiran-2-yl)methyl 4-(trifluoromethyl)benzoate (7). White solid (37.7 mg, 69% yield); m.p. = 83.4–85.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.24–8.14 (m, 2H), 7.77–7.67 (m, 2H), 4.64 (dd, J = 12.1, 4.0 Hz, 1H), 4.29 (dd, J = 12.1, 7.0 Hz, 1H), 3.15 (dd, J = 7.0, 4.0 Hz, 1H), 1.39 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 165.4, 134.8 (q, $J_{C-F} = 32.8$ Hz), 133.1, 130.3, 125.6 (q, $J_{C-F} = 3.7$ Hz), 123.7 (q, $J_{C-F} = 272.9$ Hz), 64.7, 60.5, 58.5, 24.7, 19.1; ¹⁹F NMR (377 MHz, CDCl₃) δ –63.1; HRMS (ESI) ([M + H]⁺) Calcd. for C₁₄H₁₄F₃O₃⁺: 275.0890, Found: 275.0888.

(3,3-Dimethyloxiran-2-yl)methyl 4-nitrobenzoate (8).³ The title compound was obtained by eluting with ethyl acetate/petroleum ether (1:5) as a yellow oil (32.2 mg, 64% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.23–8.15 (m, 2H), 7.74–7.69 (m, 2H), 4.64 (dd, J = 12.1, 4.1 Hz, 1H), 4.29 (dd, J = 12.1, 7.0 Hz, 1H), 3.14 (dd, J = 7.0, 4.0 Hz, 1H), 1.39 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 164.7, 150.8, 135.2, 131.1, 123.8, 65.1, 60.4, 58.5, 24.8, 19.2.

(3,3-Dimethyloxiran-2-yl)methyl 2,4,6-trimethylbenzoate (9). Yellow oil (27.1 mg, 54% yield); ¹H NMR (400 MHz, CDCl₃) δ 6.87 (s, 2H), 4.50 (dd, J = 12.0, 4.9 Hz, 1H), 4.34 (dd, J = 12.0, 6.6 Hz, 1H), 3.11 (dd, J = 6.6, 4.9 Hz, 1H), 2.32 (s, 6H), 2.29 (s, 3H), 1.38 (s, 3H), 1.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.0, 139.7, 135.4, 130.5, 128.6, 63.8, 60.5, 58.4, 24.7, 21.3, 20.0, 19.0; HRMS (ESI) ([M + H]⁺) Calcd. for C₁₅H₂₁O₃⁺: 249.1485, Found: 249.1488.

(3,3-Dimethyloxiran-2-yl)methyl 4-bromo-2-naphthoate (10). White solid (37.7 mg, 56% yield); m.p. = 77.7–78.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.00–8.92 (m, 1H), 8.38–8.30 (m, 1H), 8.06 (d, J = 7.9 Hz, 1H), 7.84 (d, J = 7.9 Hz, 1H), 7.71–7.62 (m, 2H), 4.68 (dd, J = 12.1, 4.2 Hz, 1H), 4.36 (dd, J = 12.1, 6.9 Hz, 1H), 3.20 (dd, J = 6.9, 4.2 Hz, 1H), 1.42 (s, 3H), 1.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 132.6, 132.4, 130.6, 129.4, 129.1, 128.8, 128.0, 127.9, 126.7, 126.3, 64.5, 60.7, 58.5, 24.8, 19.2; HRMS (ESI) ([M + Na]⁺) Calcd. for C₁₆H₁₅BrNaO₂⁺: 341.0148, Found: 341.0152.

(3,3-Dimethyloxiran-2-yl)methyl isonicotinate (11). Yellow oil (30.0 mg, 72% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.81–8.74 (m, 2H), 7.91–7.83 (m, 2H), 4.62 (dd, J = 12.1, 4.1 Hz, 1H), 4.29 (dd, J = 12.1, 7.0 Hz, 1H), 3.12 (dd, J = 7.0, 4.1 Hz, 1H), 1.37 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 150.8, 137.1, 123.1, 65.0, 60.4, 58.5, 24.7, 19.2; HRMS (ESI) ([M + H]⁺) Calcd. for C₁₁H₁₄NO₃⁺: 208.0968, Found: 208.0968.

(3,3-Dimethyloxiran-2-yl)methyl 3-phenylpropiolate (12). Yellow oil (21.0 mg, 46% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.63–7.58 (m, 2H), 7.50–7.44 (m, 1H), 7.42–7.36 (m, 2H), 4.71 (dd, J = 12.2, 4.1 Hz, 1H), 4.52 (dd, J = 12.2, 8.4 Hz, 1H), 4.25 (dd, J = 8.4, 4.1 Hz, 1H), 1.44 (s, 3H), 1.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.7, 133.3, 131.1, 128.8, 119.5, 87.7, 80.3, 71.8, 67.1, 62.6, 27.6, 27.0; HRMS (ESI) ([M + H]⁺) Calcd. for C₁₄H₁₅O₃⁺: 231.1016, Found: 231.1015.

(3,3-Dimethyloxiran-2-yl)methyl 2-phenylacrylate (13). Colourless oil (31.7 mg, 68% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.40 (m, 2H), 7.39–7.33 (m, 3H), 6.42 (d, *J* = 1.1 Hz, 1H), 5.95 (d, *J* = 1.1 Hz, 1H), 4.49 (dd, *J* = 12.1, 4.2 Hz, 1H), 4.20 (dd, *J* = 12.1, 6.8 Hz, 1H), 3.07 (dd, *J* = 6.8, 4.2 Hz, 1H), 1.36 (s, 3H), 1.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 141.0, 136.6, 128.4 (2C), 128.3, 127.6, 64.2, 60.6, 58.4, 24.7, 19.1; HRMS (ESI) ([M + H]⁺) Calcd. for C₁₄H₁₇O₃⁺: 233.1172, Found: 233.1170.

3,3-Dimethyloxiran-2-yl)methyl 2-(4-isobutylphenyl)propanoate (14). Yellow oil (33.0 mg, 57% yield, dr = 1:1); ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.18 (m, 2H), 7.13–7.06 (m, 2H), 4.35–4.23 (m, 1H), 4.10–4.00 (m, 1H), 3.79–3.70 (m, 1H), 3.04–2.83 (m, 1H), 2.44 (d, *J* = 7.2 Hz, 2H), 1.90–1.75 (m, 1H), 1.53–1.48 (m, 3H), 1.30 (s, 3H), 1.25 (d, *J* = 1.8 Hz, 3H), 0.90 (s, 3H), 0.89 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.8, 140.8, 137.6, 129.5, 127.3, 63.8, 60.5, 58.3, 45.2, 45.1, 30.3, 24.7, 22.5, 19.0, 18.7, 18.6; HRMS (ESI) ([M + H]⁺) Calcd. for C₁₈H₂₇O₃⁺: 291.1955, Found: 291.1958.

3,3-Dimethyloxiran-2-yl)methyl (*tert*-butoxycarbonyl)-*D*-alaninate (15). The title compound was obtained by eluting with ethyl acetate/petroleum ether (1:3) as a yellow oil (27.5 mg, 51% yield, dr = 1:1); ¹H NMR (400 MHz, CDCl₃) δ 5.05 (s, 1H), 4.42–4.33 (m, 1H), 4.14–4.04 (m, 1H), 3.03–2.93 (m, 1H), 1.79–1.72 (m, 1H), 1.43 (s, 9H), 1.40 (d, *J* = 7.2 Hz, 3H), 1.34 (s, 3H), 1.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 155.2, 80.1, 64.3, 60.4, 60.3, 58.4, 49.4, 28.4, 24.6, 19.1, 19.0, 18.7; HRMS (ESI) ([M + Na]⁺) Calcd. For C₁₃H₂₃NNaO₄⁺: 280.1519, Found: 280.1516.

(2-Methyloxiran-2-yl)methyl benzoate (16).⁴ Yellow oil (28.4 mg, 74% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.09–8.03 (m, 2H), 7.60–7.54 (m, 1H), 7.48–7.42 (m, 2H), 4.49 (d, J = 12.0 Hz, 1H), 4.20 (d, J = 12.0 Hz, 1H), 2.86 (d, J = 4.7 Hz, 1H), 2.72 (d, J = 4.7 Hz, 1H), 1.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 133.4, 129.9, 128.6, 67.8, 55.1, 52.1, 18.7.

(*IR*,*2R*,*5R*)-5-Methyl-2-(2-methyloxiran-2-yl)cyclohexyl 4-bromo-1-naphthoate (17). The title compound was obtained by eluting with ethyl acetate/petroleum ether (1:50) as a white solid (58.4 mg, 72% yield, dr > 19:1); m.p. = 120.6–122.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.00–8.90 (m, 1H), 8.37–8.27 (m, 1H), 8.22 (d, *J* = 7.9 Hz, 1H), 7.85 (d, *J* = 7.9 Hz, 1H), 7.70–7.58 (m, 2H), 5.23–5.12 (m, 1H), 2.55 (s, 2H), 2.31–2.21 (m, 1H), 1.89–1.62 (m, 3H), 1.48–1.37 (m, 2H), 1.30 (s, 3H), 1.17 (q, *J* = 11.9 Hz, 1H), 1.04–0.92 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 132.6, 132.3, 130.4, 129.4, 128.6, 128.4, 127.8 (2C), 127.6, 126.3,

74.3, 58.1, 52.3, 49.3, 40.5, 33.9, 31.4, 28.3, 22.0, 17.4; HRMS (ESI) ([M + Na]⁺) Calcd. for C₂₁H₂₃BrNaO₃⁺: 425.0723, Found: 425.0732.

3-Methyloxiran-2-yl)methyl benzoate (18).⁵ Yellow oil (20.0 mg, 52% yield, dr = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 8.11–8.02 (m, 2H), 7.61–7.54 (m, 1H), 7.50–7.40 (m, 2H), 4.61 (dd, *J* = 12.2, 3.2 Hz, 1H), 4.18 (dd, *J* = 12.2, 6.1 Hz, 1H), 3.11–2.97 (m, 2H), 1.37 (d, *J* = 5.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 133.3, 129.9, 129.8, 128.5, 65.2, 56.5, 52.7, 17.4.

3-Phenyloxiran-2-yl)methyl 4-bromo-1-naphthoate (19). Colourless oil (41.0 mg, 54% yield, dr > 19:1); ¹H NMR (400 MHz, CDCl₃) δ 9.01–8.93 (m, 1H), 8.38–8.32 (m, 1H), 8.08 (d, *J* = 7.9 Hz, 1H), 7.84 (d, *J* = 7.9 Hz, 1H), 7.73–7.62 (m, 2H), 7.42–7.28 (m, 5H), 4.84 (dd, *J* = 12.2, 3.2 Hz, 1H), 4.43 (dd, *J* = 12.2, 5.9 Hz, 1H), 3.94 (d, *J* = 2.0 Hz, 1H), 3.50–3.42 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 136.2, 132.6, 132.3, 130.6, 129.4, 129.0, 128.8, 128.7 (2C), 127.9, 127.8, 126.4, 126.3, 125.8, 65.0, 59.5, 56.7; HRMS (ESI) ([M + H]⁺) Calcd. for C₂₀H₁₆BrO₃⁺: 383.0277, Found: 383.0273.

2-(Oxiran-2-yl)ethyl benzoate (20). Yellow oil (24.2 mg, 63% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.09–8.00 (m, 2H), 7.61–7.52 (m, 1H), 7.49–7.40 (m, 2H), 4.53–4.43 (m, 2H), 3.16–3.06 (m, 1H), 2.86–2.78 (m, 1H), 2.60–2.52 (m, 1H), 2.15–1.92 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 133.2, 130.2, 129.7, 128.5, 62.0, 49.8, 47.0, 32.2; HRMS (ESI) ([M + H]⁺) Calcd. for C₁₁H₁₃O₃⁺: 193.0859, Found: 193.0852.

2-(Oxiran-2-yl)ethyl 4-methylbenzoate (21). Yellow oil (24.1 mg, 59% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 4.50–4.41 (m, 2H), 3.15–3.06 (m, 1H), 2.84–2.79 (m, 1H), 2.58–2.54 (m, 1H), 2.41 (s, 3H), 2.11–1.90 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 143.9, 129.8, 129.3, 127.5, 61.8, 49.8, 47.1, 32.2, 21.8; HRMS (ESI) ([M + H]⁺) Calcd. for C₁₂H₁₅O₃⁺: 207.1016, Found: 207.1013.

2-(Oxiran-2-yl)ethyl 2-bromobenzoate (22). Colourless oil (25.9 mg, 48% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.76 (m, 1H), 7.70–7.61 (m, 1H), 7.42–7.28 (m, 2H), 4.54–4.46 (m, 2H), 3.17–3.08 (m, 1H), 2.86–2.79 (m, 1H), 2.57 (dd, *J* = 4.9, 2.7 Hz, 1H), 2.15–2.02 (m, 1H), 2.02–1.88 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 134.5, 132.8, 132.2, 131.5, 127.4, 121.7, 62.7, 49.8, 47.1, 32.0; HRMS (ESI) ([M + Na]⁺) Calcd. for C₁₁H₁₁BrNaO₃⁺: 292.9784, Found: 292.9796.

Benzyl-3-(oxiran-2-yl)propanoate (23).⁶ Yellow oil (22.5 mg, 55% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.30 (m, 5H), 5.13 (s, 2H), 3.04–2.95 (m, 1H), 2.75 (t, *J* = 4.4 Hz, 1H), 2.56–2.46 (m, 3H), 2.07–1.93 (m, 1H), 1.87–1.73 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 136.0, 128.8, 128.5, 128.4, 66.6, 51.4, 47.2, 30.6, 27.8.

N-((3,3-Dimethyloxiran-2-yl)methyl)benzamide (24).⁷ Yellow oil (37.8 mg, 92% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.95–7.85 (m, 2H), 7.48–7.34 (m, 3H), 4.16 (dd, *J* = 9.5, 5.4 Hz,

1H), 4.01 (dd, J = 17.5, 5.4 Hz, 1H), 3.84 (dd, J = 17.5, 9.5 Hz, 1H), 1.57 (s, 3H), 1.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.1, 133.4, 130.9, 128.2, 127.3, 51.0, 50.1, 27.5, 22.3.

N-(3-(Oxiran-2-yl)propyl)benzamide (25). Colorless oil (23.8 mg, 58% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.80–7.73 (m, 2H), 7.55–7.40 (m, 3H), 6.22 (s, 1H), 4.33–4.14 (m, 1H), 3.91–3.83 (m, 1H), 3.63 (t, *J* = 10.1 Hz, 1H), 3.57–3.49 (m, 2H), 2.34–2.22 (m,1H), 1.98–1.73 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.9, 134.7, 131.7, 128.8, 127.0, 52.3, 39.2, 36.2, 33.5, 27.3.

N-((3,3-Dimethyloxiran-2-yl)methyl)-4-methylbenzenesulfonamide (26).⁸ Colorless oil (30.7 mg, 60% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 5.29–5.14 (m, 1H), 3.28–3.16 (m, 1H), 3.03–2.91 (m, 1H), 2.88–2.80 (m, 1H), 2.41 (s, 3H), 1.24 (s, 3H), 1.20 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.8, 136.9, 129.9, 127.2, 61.9, 59.2, 42.8, 24.6, 21.7, 18.8.

4-Chloro-*N***-((3,3-dimethyloxiran-2-yl)methyl)benzenesulfonamide (27).** Yellow oil (28.4 mg, 52% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.72 (m, 2H), 7.47–7.40 (m, 2H), 5.21– 5.09 (m, 1H), 3.30–3.18 (m, 1H), 2.95–2.84 (m, 1H), 2.83–2.75 (m, 1H), 1.21 (s, 3H), 1.16 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.5, 138.5, 129.7, 128.7, 61.9, 59.4, 43.0, 24.6, 18.9; HRMS (ESI) ([M+H]⁺) Calcd. for C₁₁H₁₄CINNaO₃S⁺: 298.0275, Found: 298.0281.

N-((3,3-Dimethyloxiran-2-yl)methyl)-4-nitrobenzenesulfonamide (28). Colourless oil (23.5 mg, 41% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.40–8.35 (m, 2H), 8.10–8.05 (m, 2H), 5.31–5.28 (m, 1H), 3.49–3.37 (m, 1H), 3.05–2.93 (m, 1H), 2.87 (dd, *J* = 7.6, 4.0 Hz, 1H), 1.29 (s, 3H), 1.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.2, 146.0, 128.4, 124.6, 61.8, 59.5, 43.1, 24.6, 18.9; HRMS (ESI) ([M+H]⁺) Calcd. for C₁₁H₁₄N₂NaO₅S⁺: 309.0516, Found: 309.0524.

N-((3,3-Dimethyloxiran-2-yl)methyl)-*N*,4-dimethylbenzenesulfonamide (29). Colourless oil (28.7 mg, 54% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.69–7.64 (m, 2H), 7.34–7.29 (m, 2H), 3.64–3.54 (m, 1H), 2.91–2.87 (m, 1H), 2.81 (s, 3H), 2.80–2.74 (m, 1H), 2.43 (s, 3H), 1.30 (s, 3H), 1.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 134.3, 129.9, 127.5, 62.0, 57.6, 49.8, 35.7, 24.6, 21.6, 18.9; HRMS (ESI) ([M + H]⁺) Calcd. for C₁₃H₂₀NO₃S⁺: 270.1158, Found: 270.1155.

6. Synthesis and Characterization of Unknown Substrates

A round-bottom flask was charged with 1-bromo-3-methylbut-2-ene (5 mmol, 1 equiv.), carboxylic acid (6 mmol, 1.2 equiv.), K_2CO_3 (1.38 g, 10 mmol, 2 equiv.) and MeCN (25 mL). The solution was refluxed for 12 h. After the reaction was completed, H_2O (50 mL) was added and the resulting mixture was extracted with ethyl acetate (3 × 50 mL). The combined organic layers dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was chromatographed through silica gel eluting with ethyl acetate/petroleum ether (1:50) to afford product.

3-Methylbut-2-en-1-yl 2-fluorobenzoate (S1). Yellow oil (662 mg, 64% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.97–7.86 (m, 1H), 7.53–7.43 (m, 1H), 7.22–7.05 (m, 2H), 5.51–5.40 (m, 1H), 4.82 (d, *J* = 7.2 Hz, 2H), 1.77 (s, 3H), 1.75 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.5 (d, *J*_{C-F} = 3.6 Hz), 162.0 (d, *J*_{C-F} = 259.7 Hz), 139.5, 134.4 (d, *J*_{C-F} = 9.2 Hz), 132.1, 123.9 (d, *J*_{C-F} = 3.8 Hz), 119.1 (d, *J*_{C-F} = 9.7 Hz), 118.5, 117.0 (d, *J*_{C-F} = 22.3 Hz), 62.3, 25.9, 18.2; ¹⁹F NMR (377 MHz, CDCl₃) δ –109.7; HRMS (ESI) ([M + Na]⁺) Calcd. for C₁₂H₁₃FNaO₂⁺: 231.0792, Found: 231.0799.

3-Methylbut-2-en-1-yl [1,1'-biphenyl]-2-carboxylate (S2). Yellow oil (950 mg, 71% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, J = 7.7, 1.4 Hz, 1H), 7.57–7.48 (m, 1H), 7.44–7.32 (m, 7H), 5.13–5.02 (m, 1H), 4.58 (d, J = 7.3 Hz, 2H), 1.71 (s, 3H), 1.61 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 142.3, 141.4, 139.1, 131.5, 131.1, 130.6, 129.7, 128.5, 128.1, 127.2, 61.9, 25.8, 18.0; HRMS (ESI) ([M + H]⁺) Calcd. for C₁₈H₁₉O₂⁺: 267.1380, Found: 267.1375.

3-Methylbut-2-en-1-yl 2-(4-isobutylphenyl)acetate (S3). Yellow oil (1.24 g, 95% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 8.1 Hz, 2H), 7.11 (d, J = 8.1 Hz, 2H), 5.37–5.27 (m, 1H), 4.67–4.50 (m, 2H), 3.71 (q, J = 7.2 Hz, 1H), 2.53–2.40 (m, 2H), 1.95–1.80 (m, 1H), 1.74 (s, 3H), 1.66 (s, 3H), 1.50 (d, J = 7.2 Hz, 3H), 0.92 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 174.8, 140.4, 138.9, 138.0, 129.3, 127.2, 118.7, 61.7, 45.2, 45.1, 30.2, 25.7, 22.4, 18.7, 18.0; HRMS (ESI) ([M + Na]⁺) Calcd. for C₁₈H₂₆NaO₂⁺: 297.1825, Found: 297.1836.

The mixture of 4-bromo-1-naphthoic acid (5 mmol, 1 equiv.) in CH_2Cl_2 (30 mL) was added dicyclohexylcarbodiimide (DCC, 6 mmol, 1.2 equiv) and 4-dimethylaminopyridine (DMAP, 0.5 mmol, 0.1 equiv), then the corresponding enol (6 mmol, 1.2 equiv) was added dropwise at 0 °C. The solution was warmed up to room temperature and stirred for 3 h. Then the mixture was filtered and washed with CH_2Cl_2 (3 × 50 mL) and concentrated. The residue was chromatographed through silica gel eluting with ethyl acetate/petroleum ether (1:50) to afford product.

3-Methylbut-2-en-1-yl 4-bromo-1-naphthoate (S4). Yellow oil (1.03 g, 65 yield); ¹H NMR (400 MHz, CDCl₃) δ 8.99–8.89 (m, 1H), 8.37–8.27 (m, 1H), 7.99 (d, *J* = 7.9 Hz, 1H), 7.81 (d, *J* = 7.9 Hz, 1H), 7.70–7.59 (m, 2H), 5.60–5.48 (m, 1H), 4.91 (d, *J* = 7.2 Hz, 2H), 1.81 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 139.7, 132.5, 132.3, 130.1, 129.0, 128.7, 128.5, 127.8, 127.7, 127.6, 126.4, 118.6, 62.3, 26.0, 18.3; HRMS (ESI) ([M + Na]⁺) Calcd. for C₁₆H₁₅BrNa O₂⁺: 341.0148, Found: 341.0162

(1R,2S,5R)-5-methyl-2-(prop-1-en-2-yl)cyclohexyl4-bromo-1-naphthoate(S5).Colourless oil (1.46 g, 76% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.90–8.83 (m, 1H), 8.35–8.28 (m, 1H), 7.91 (d, J = 7.8 Hz, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.68–7.57 (m, 2H), 5.23–5.12 (m, 1H), 4.90–4.79 (m, 2H), 2.41–2.21 (m, 2H), 1.84–1.78 (m, 1H), 1.77 (s, 3H), 1.74–1.66 (m, 1H), 1.58–1.43 (m, 1H), 1.28–1.14 (m, 1H), 1.11–0.99 (m, 1H), 0.99 (d, J = 6.5 Hz, 3H),

0.92–0.78 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 146.4, 132.4, 132.2, 129.8, 129.0, 128.3, 127.7, 127.6, 126.5, 112.3, 74.7, 51.2, 40.6, 34.2, 31.6, 30.7, 22.2, 19.5; HRMS (ESI) ([M + H]⁺) Calcd. for C₂₁H₂₄BrO₂⁺: 387.0954, Found: 387.0951.

Cinnamyl 4-bromo-1-naphthoate (S6). White solid (1.58 g, 86% yield); m.p.= 63.1-64.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.04–8.94 (m, 1H), 8.39–8.31 (m, 1H), 8.06 (d, J = 7.9 Hz, 1H), 7.83 (d, J = 7.9 Hz, 1H), 7.72–7.62 (m, 2H), 7.49–7.41 (m, 2H), 7.39–7.32 (m, 2H), 7.32–7.27 (m, 1H), 6.80 (d, J = 15.7 Hz, 1H), 6.53–6.41 (m, 1H), 5.08 (dd, J = 6.5, 1.3 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 136.3, 134.8, 132.6, 132.3, 130.3, 129.0, 128.8, 128.7, 128.3, 127.8 (2C), 127.1, 126.8, 126.4, 123.1, 66.0; HRMS (ESI) ([M + Na]⁺) Calcd. for C₂₀H₁₅BrNaO₂⁺: 389.0148, Found: 389.0161.

7. References

1. Y. Lv, Z.-W. Hou, P. Li and L. Wang, Org. Chem. Front., 2023, 10, 990-995.

2. M. Noji, M. Baba, R. Hirabe, S. Hayashi and T. Takanami, *Chem. Commun.*, 2021, **57**, 7104–7107.

3. M.-H. Xu, Y.-Q. Tu, J.-M. Tian, F.-M. Zhang, S.-H. Wang, S.-H. Zhang and X.-M. Zhang, *Tetrahedron: Asymmetry*, 2016, **27**, 294–300.

4. A. W. Phillips, M. J. Anketell, T. Balan, N. Y. S. Lam, S. Williams and I. Paterson, *Org. Biomol. Chem.*, 2018, **16**, 8286–8291.

5. B. H. Brodsky and J. du Bois, J. Am Chem. Soc., 2005, 127, 15391-15393.

E. Peralta-Hernández, O. Cortezano-Arellano and A. Cordero-Vargas, *Tetrahedron Lett.*, 2011, 52, 6899–6902.

7. A. Theodorou, L. Triandafillidi and C. G. Kokotos, *Adv. Synth. Catal.*, 2018, 360, 951–957.

8. J. L. Olivares-Romero, Z. Li and H. Yamamoto, J. Am. Chem. Soc., 2012, 134, 5440-5443.

8. NMR Spectra of the Products

Compound 2

¹H NMR (400 MHz, CDCl₃) .00± 1.03_{II} 2.05_{I} 1.05₄ 1.03₌ .01_∓ 6.04= 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 7.5 7.0 6.5 6.0 5.5 5.0 f1 (ppm) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 8.0 77.5 CDCl3 77.2 CDCl3 76.9 CDCl3 64.3 60.5 158.5 164.3 164.3 163.5 160.9 135.0 135.0 134.9 132.3 132.3 124.1 124.1 118.5 118.4 117.3 117.3 ~ 24.7 ~ 19.1

- 6.0E+07 -- 5.5E+07

5.0E+07

4.5E+07

4.0E+07

3.5E+07 3.0E+07

-2.5E+07

2.0E+07

1.5E+07

5.0E+06

-5.0E+06

- 300000(. - 280000(

2600000 2400000

Compound 3

Compound 5

fl (ppm)

Compound 9

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Compound 10

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Compound S1

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-200000

Compound S3

Compound S5

