Supporting Information

Photocatalytic Synthesis of 2,3-Diamines from Anilines and DIPEA via C-N Bond Cleavage and C-C Bond Formation

Yunyan Meng,§^a Chunxiang Pan,§^a Na Liu,^a Hongjiang Li, ^a Zixiu Liu,^a Yao Deng, ^a Zixiang Wei,^a Jianbin Xu,*^a and Baomin Fan*^{ab}

^a School of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan, 650504, China

^b Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan, 650504, China

E-mail addresses: xujianbin@ymu.edu.cn (Dr. Jianbin Xu); adams.bmf@hotmail.com (Prof. Baomin Fan).

Table of Contents

1.	General information	S3
2.	General procedure for the diamine reaction	S3
3.	Optimization of reaction conditions	S4
4.	Mechanistic studies	S9
5.	Stern-Volmer experiment	S13
6.	Characterization data of products	S14
7.	Reference	S29
8.	NMR spectra	S30

1. General information

The reactions via general procedure was carried out under an atmosphere of argon unless otherwise noted. Column chromatography was performed with silica gel (200-300 mesh) with petroleum ether/ethyl acetate and ethyl acetate as eluents.Unless otherwise noted, all other reagents were obtained from commercial suppliers and used without further purification, all solvents was dried. ¹H NMR spectra were recorded using a Bruker 400 MHz instrument with tetramethylsilane (TMS) as an internal standard. ¹³C NMR spectra were obtained at 100 MHz and referenced to the internal solvent signals. Mass spectra were measured on Agilent 5977 GC-MS instrument (EI). The structures of known compounds were further corroborated by comparing their ¹H NMR, ¹³C NMR date and MS date with those in literature. Some new compounds for HRMS were tested on a Q-TOF time-of-flight with Dual ESI mass spectrometer. Some high-resolution mass spectra (HRMS) were obtained by fast atom bombardment (FAB) using a double focusing magnetic sector mass spectrometer and electron impact (EI) ionization technique. Stea-state emission spectra were recorded using a Cary Eclipse Fluorescence spectrophotometer (Agilent Techonologies). The light source was 20 W blue LED (454 nm, 1 W*20, 30-50 cd/m², made in Everlight Electronics., Ltd.); borosilicate glass Schlenk tube was used as the irradiation vessel; the distance from the light source to the irradiation vessel; 2-3 cm and no filter was used. The organic photocatalyst 4CzIPN was synthesized using reported procedures.¹

2. General procedure for the diamine reaction

Figure S1

Under the protection of argon, a 25 mL Schlenk tube equipped with a magnetic stir bar was charged with 4CzIPN (23.7 mg, 0.03 mmol, 10 mol%), aniline (27.9 mg, 0.3 mmol, 1.0 equiv), $(i-Pr)_2NEt$ (77.6 mg, 0.6 mmol, 2.0 equiv), and aromatic aldehydes (31.8 mg, 0.3 mmol, 1.0 equiv), in 2.0 mL acetonitrile. The resulting mixture was stirred for 20 h under irradiation with a 20 W blue LEDs at room temperature, and cooled by a fan to keep the temperature relatively constant. The reaction was monitored by TLC. The resulting solution was concentrated in vacuum and the residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether/ethyl acetate to give the product **3a** and **5a**.

Scale-up experiment

12 mmol scale reaction: Under the protection of argon, a 100 mL oven-dried reaction vessel equipped with a magnetic stir bar was charged with 4CzIPN (189.4 mg, 0.3 mmol, 2 mol%), aniline (1.1 g, 12 mmol, 1.0 equiv), $(i-Pr)_2NEt$ (3.1 g, 24 mmol, 2.0 equiv), and aromatic aldehydes (1.3 g, 12 mmol, 1.0 equiv), in 50.0 mL acetonitrile. The resulting mixture was stirred

for 20 h under irradiation with a 20 W blue LEDs at room temperature, and cooled by a fan to keep the temperature relatively constant. The reaction was monitored by TLC. The resulting solution was concentrated in vacuum and the residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether/ethyl acetate to give the product **3a** (748.8mg, 52% yield) and **5a** (590.6 mg, 46% yield)

 \sim

3. Optimization of reaction conditions

Table S1. Conditions for the optimization of solvent and PC^a

R	NH ₂ (<i>i</i> -Pr) ₂ NEt	, ArCHO plvent, Blue LEDs R II		R	
1a entry	solvent	PC (2 mol%)	3a Time (h)	Yield (%) ^b	
1	THF	4CzIPN	24	34	
2	CH ₃ CN	4CzIPN	24	69	
3	acetone	4CzIPN	24	58	
4	DMF	4CzIPN	24	52	
5	toluene	4CzIPN	24	trace	
6	DMSO	4CzIPN	24	trace	
7	1,4-dioxane	4CzIPN	24	50	
8	DCE	4CzIPN	24	65	
9	DCM	4CzIPN	24	64	
10	EA	4CzIPN	24	28	
11	EtOH	4CzIPN	24	trace	
12	HFIP	4CzIPN	24	n.d.	
13	CH ₃ CN	4CzPN	24	42	
14	CH ₃ CN	4CzTPN	24	55	
15	CH ₃ CN	4 <i>t</i> -BuCzIPN	24	61	
16	CH ₃ CN	4DP-IPN	24	56	
17	CH ₃ CN	<i>fac</i> -Ir(ppy) ₃	24	53	
18	CH ₃ CN	BP	24	trace	
19	CH ₃ CN	Eosin Y	24	trace	
20	CH ₃ CN	DDQ	24	trace	

21	CH ₃ CN	Ru(bpy) ₃ Cl ₂	24	n.d.
22	CH ₃ CN	Riboflavine	24	n.d.
23	CH ₃ CN	Rhodamine B	24	trace
24	CH ₃ CN	Xanthone	24	n.d.
25	CH ₃ CN	1,4-Dicyanbenzene	24	n.d.
26 ^c	CH ₃ CN	4CzIPN	48	n.d.
27 ^d	CH ₃ CN	4CzIPN	48	n.d.
28 ^e	CH ₃ CN	4CzIPN	48	trace

^a Reaction conditions: 1a (0.3 mmol), (i-Pr)₂NEt (0.6 mmol), ArCHO (0.3 mmol) and photocatalyst (2 mol%) in solvent (2 mL) at room temperature in argon under a 20 W blue LEDs (460-470 nm) irradiation, unless otherwise noted. ^b Isolated yields, dr = diastereomeric ratio. ^c The reaction was carried out in dark. d The reaction was carried out at 70 °C. e The reaction was carried out under air atmosphere.

Table S2. Conditions for the optimization of 4CzIPN (mmol), (i-Pr)₂Net (mmol) and ArCHO (mmol).^a

R	NH ₂ (<i>i</i> -Pr) ₂ NEt (mr	mol), ArCHO(mmol)		N R			
	4CzIPN (mol%), CH ₃ CN, Blue LEDs 3a						
entry	4CzIPN (mol%)	(<i>i</i> -Pr) ₂ Net (mmol)	Time (h)	Yield (%) ^b			
1	—	0.6 mmol	48	n.d.			
2	2 mol%	0.6 mmol	24	69			
3	4 mol%	0.6 mmol	20	72			
4	6 mol%	0.6 mmol	20	78			
5	8 mol%	0.6 mmol	20	78			
6	10 mol%	0.6 mmol	15	82			
7	12 mol%	0.6 mmol	20	62			
8	10 mol%	—	48	n.d.			
9	10 mol%	0.3 mmol	20	42			
10	10 mol%	0.45 mmol	20	66			
11	10 mol%	0.9 mmol	20	62			
12 ^c	10 mol%	0.6 mmol	48	52			

13 ^d	10 mol%	0.6 mmol	20	67
14 ^e	10 mol%	0.6 mmol	20	59
15 f	10 mol%	0.6 mmol	20	19

^{*a*} Reaction conditions: **1a** (0.3 mmol), (*i*-**Pr**)₂**NEt**, **ArCHO** (0.3 mmol), and 4CzIPN in CH₃CN (2 mL) at room temperature in argon under a 20 W blue LEDs (460-470 nm) irradiation, unless otherwise noted. ^{*b*} Isolated yields, dr = diastereomeric ratio. ^{*c*} no ArCHO was added. ^{*d*} 0.15 mmol ArCHO was added. ^{*e*} 0.45 mmol ArCHO was added. ^{*f*} 0.60 mmol ArCHO was added.

R	NH ₂ (<i>i</i> -Pr) ₂ NE PC (mol%), N	Et, ArCHO IeCN, LEDs	N N	N +	OH OH
1a			3	a	5a
entry	LEDs ^b	РС	PC (mol%)	Diamine yield (%) ^c	Diol yield (%) ^c
1	Blue LEDs	4CzIPN	10 mol%	82	78
2	Purple LEDs	4CzIPN	10 mol%	53	74
3	Purple LEDs	4CzIPN	5 mol%	61	69
4	Purple LEDs	4CzIPN	2 mol%	53	66
5	Purple LEDs	4CzIPN	1 mol%	47	63
6	Purple LEDs	4DPAIPN	1 mol%	50	60
7	Purple LEDs	4DPAIPN	2 mol%	54	58
8	Purple LEDs	4DPAIPN	5 mol%	56	55
9	Purple LEDs	Ir(ppy) ₃	2 mol%	61	69
10	Purple LEDs	PTH	2 mol%	50	66
11	Purple LEDs	BP	2 mol%	47	63

Table S3. Screening of LEDs, photocatalyst (PC), and the amount of photocatalyst ^a.

^{*a*} Reaction conditions: **1a** (0.3 mmol), (*i*-**Pr**)₂**NEt** (0.6 mmol), and **ArCHO** (0.3 mmol) and PC in CH₃CN (2 mL) at room temperature in argon under a LEDs irradiation, unless otherwise noted. ^{*b*} 20 W blue LED (460-470 nm), 20 W Purple LEDs (365 nm)^{*c*} Isolated yields.

Į	NH ₂ (<i>i</i> -F	Pr) ₂ NEt, CH ₃ CHO (mmo		N N
	// 40211 1a	PN (MOI%), CH_3CN , LE	DS	
entry	LEDs ^b	4CzIPN (mol%)	CH ₃ CHO (mmol)	Yield (%) ^c
1	Blue LEDs	2 mol%	0.3 mmol	54
2	Blue LEDs	5 mol%	0.3 mmol	72
3	Blue LEDs	10 mol%	0.3 mmol	85
4	Blue LEDs	10 mol%	0.15 mmol	55
5	Blue LEDs	10 mol%	0.6 mmol	48
6 ^{<i>d</i>}	Blue LEDs	10 mol%	0.6 mmol	NR
7	Purple LEDs	2 mol%	0.3 mmol	41
8	Purple LEDs	5 mol%	0.3 mmol	46
9	Purple LEDs	10 mol%	0.3 mmol	55

Table S4. Screening of LEDs, the amount of CH₃CHO and 4CzIPN.^{*a*}

^{*a*} Reaction conditions: **1a** (0.3 mmol), **(***i***-Pr)₂NEt** (0.6 mmol) **CH₃CHO** and 4CzIPN in CH₃CN (2 mL) at room temperature in argon under a irradiation, unless otherwise noted. ^{*b*} 20 W blue LED (460-470 nm), 20 W Purple LEDs (365 nm)^{*c*} Isolated yields. ^{*d*} no (*i*-Pr)₂NEt was added.

Table S5. Optimization conditions for additive and H₂O^{*a*}.

N⊢ 1a	H ₂ (<i>i</i> -Pr) ₂ NEt, A 4CzIPN (5 mol%), C	H_2O H_3CN , 454 nm	H N J Sa	
entry	Additive	H ₂ O	Time (h)	Yield (%) ^b
1	KPF ₆	/	48	30.
2	CuI	/	48	42
3	Cu(OTf) ₂	/	48	NR
4	Bu ₄ NBr	/	48	45
5	Cs_2CO_3	0.6 mmol	48	NR

6	^t BuOK	0.6 mmol	48	NR
7	DABCO	0.6 mmol	40	70
8	quinuclidine	/	60	36.
9	LiBr	/	60	18
10	N-Methylpiperidine	/	60	26
11	DBU	/	60	NR

^a Reaction conditions: 1a (0.3 mmol), (*i*-Pr)₂NEt (0.6 mmol), additive (0.6 mmol), H₂O (0.6 mmol) and 4CzIPN (5 mol%) in CH₃CN (2 mL) at room temperature in argon under a 20 W blue LEDs (460-470 nm) irradiation, unless otherwise noted. ^b Isolated yields.

	∕NH₂ (<i>i-</i> Pr)₂NEt,	DABCO, H ₂ O	HNN	\downarrow_{N}
R	4CzIPN (mol	%), CH ₃ CN, 454 r	nm l	H
1a			3	a
Entry	4CzIPN (mol%)	DABCO (mmol)	H ₂ O (mmol)	Diamine (yield %) ^b
1	2	0.6	/	44
2	5	0.6	/	25
3	10	0.6	/	trace
4	10	0.3	/	28
5	10	0.15	/	50
6	2	0.6	0.3	35
7	2	0.6	0.6	28
8	5	0.6	0.3	45
9	5	0.6	0.6	70
10	10	0.6	0.3	15
11	10	0.6	0.6	20

Table S6. Screening of the amount of DACBO, H₂O and 4CzIPN ^a

^a Reaction conditions: 1a (0.3 mmol), (*i*-Pr)₂NEt (0.6 mmol), DABCO, H₂O and 4CzIPN (5 mol%) in CH₃CN (2 mL) at room temperature in argon under a 20 W blue LEDs (460-470 nm) irradiation, unless otherwise noted. ^b Isolated yields.

N	H ₂ (<i>i-</i> Pr) ₂ NEt,DABC(4CzIPN (mol%	D (mmol), ArCHO), CH ₃ CN, Blue LE	(mmol)	
1a				3a
Entry	4CzIPN (mol%)	DABCO	ArCHO	Diamine (yield
	4C21111 (mor/o)	(mmol)	(mmol)	%) ^b
1	2	0.3	0.15	44
2	2	0.6	0.3	64
3	2	0.6	0.06	31
4	4	0.6	0.06	70
5	6	0.6	0.06	56
6	2	0.6	0.15	70
7	5	0.3	0.15	75
8	5	0.6	0.15	67
9	5	0.6	0.06	75

Table S7. Screening of the amount of DACBO, ArCHO and 4CzIPN ^a

^{*a*} Reaction conditions: **1a** (0.3 mmol), (*i*-**Pr**)₂**NEt** (0.6 mmol), **DABCO**, **H**₂**O** and **4CzIPN** in CH₃CN (2 mL) at room temperature in argon under a 20 W blue LEDs (460-470 nm) irradiation, unless otherwise noted. ^{*b*} Isolated yields.

la	NH ₂ (<i>i</i> -Pr) ₂ NEt, ArCl	HO CN, LEDs	H N H 3a	+	OH OH 5a
entry	Solvent	РС	Time (h)	Yield (%) ^b	d.r. ^c
1	THF	4CzIPN	24	55	2:1
2	CH ₃ CN	4CzIPN	30	70	2:3
3	CH ₃ COCH ₃	4CzIPN	24	58	1:1
4	DMF	4CzIPN	24	52	2:3
5	DMA	4CzIPN	24	41	2:3
6	DCE	4CzIPN	24	65	1:2
7	DMF:MeCN=1:1	4CzIPN	24	55	2:3
8	DMA:MeCN=1:1	4CzIPN	24	50	2:3

Table S8. Effect of photocatalyst, solvent and temperature on d.r. value. ^a

9	CH ₃ CN	4CzPN	48	42	1:1
10	CH ₃ CN	4CzTPN	37	55	1:1
11	CH ₃ CN	4tBuCzIPN	48	42	1:1
12	CH ₃ CN	<i>fac</i> -Ir(ppy) ₃	48	53	1:1
13	CH ₃ CN	[Ir(dF(CF ₃ ppy) ₂)(5	48	50	1:1
		,5'-CF ₃ -bpy)]PF ₆		50	
14^d	CH ₃ CN	4CzIPN	48	NR	
15 ^e	CH ₃ CN	4CzIPN	48	20%	1:1

^{*a*} Reaction conditions: **1a** (0.3 mmol), (*i*-**Pr**)₂**NEt** (0.6 mmol), **ArCHO** (0.3 mmol) and **PC** (2 mol%) in solvent (2 mL) at room temperature in argon under a 20 W blue LEDs (460-470 nm) irradiation, unless otherwise noted. ^{*b*} Isolated yields, ^{*c*} dr = diastereomeric ratio. ^{*d*} T = -20 – 0°C. ^{*e*} T = 40 – 60°C.

Mechanistic studies

4.1. Control experiment

Under the protection of argon, N-benzylideneaniline (54.4 mg, 0.3 mmol, 1.0 equiv), 4CzIPN (23.7 mg, 0.03 mmol, 10 mol%), and $(i-Pr)_2NEt$ (77.6 mg, 0.6 mmol, 2.0 equiv), in 2.0 mL acetonitrile. were added sequentially to a 25 mL Schlenk tube equipped with a magnetic stir bar. When reaction mixture was stirred under 20 W blue LEDs irradiation at room temperature, and cooled by a fan to keep the temperature relatively constant. The reaction was monitored by TLC. The product was not detected.

Under the protection of argon, N-phenylethanimine (35.7 mg, 0.3 mmol, 1.0 equiv), 4CzIPN (23.7 mg, 0.03 mmol, 10 mol%), and $(i-Pr)_2NEt$ (77.6 mg, 0.6 mmol, 2.0 equiv), in 2.0 mL acetonitrile. were added sequentially to a 25 mL Schlenk tube equipped with a magnetic stir bar. When reaction mixture was stirred under 20 W blue LEDs irradiation at room temperature, and cooled by a fan to keep the temperature relatively constant. The reaction was monitored by TLC. The products was not detected.

4.2. Radical-trapping experiment with 1,1-Diphenylethylene

According to general procedure **2**, When 1,1-Diphenylethylene was added, the product **3a** was only a trace amount of the product **3a** was detected by GC-MS analysis, the trapped product was obtained as main product, and purified by silica gel chromatography (PE/EA = 50:1) as White solid (MW = 301.4, 58.8 mg, 0.20 mmol, 65% yield, mp:52-53 °C). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.14 (m, 10H), 7.09 (dd, *J* = 8.6, 7.2 Hz, 2H), 6.64 (tt, *J* = 7.3, 1.2 Hz, 1H), 6.41 – 6.35 (m, 2H), 4.16 (t, *J* = 7.8 Hz, 1H), 3.33 (q, *J* = 6.4 Hz, 1H), 2.32 – 2.23 (m, 1H), 2.13 (dd, *J* = 8.1, 6.0 Hz, 1H), 1.18 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 147.7, 145.0, 144.9, 129.5, 128.8, 128.2, 128.2, 126.6, 126.5, 117.3, 113.6, 48.2, 46.8, 43.7, 21.3. HRMS (ESI) calcd for C₁₂H₂₃N, [M+H]⁺ m/z 302.1903; Found: 302.1906.

4. Product derivatizations

Under the protection of argon, 1,2-diamines (72.0 mg, 0.3 mmol, 1.0 equiv), $SOCl_2$ (48 mg, 0.4 mmol, 1.5 equiv), and EtN_3 (60.6 mg, 0.6 mmol, 2.0 equiv), in 2.0 mL THF. were added sequentially to a 25 mL Schlenk tube equipped with a magnetic stir bar. The resulting solution was stirred at 0 °C under argon atmosphere with TLC monitoring. The resulting solution was concentrated in vacuum and the residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether/ethyl acetate to give the product **10** (35 mg, 40% yield)²

Under the protection of argon, 1,2-diamines (72.0 mg, 0.3 mmol, 1.0 equiv), $POCl_2$ (61.2 mg, 0.4 mmol, 1.5 equiv), and EtN_3 (60.6 mg, 0.6 mmol, 2.0 equiv), in 2.0 mL DCM. were added sequentially to a 25 mL Schlenk tube equipped with a magnetic stir bar. The resulting solution was stirred at room temperature under argon atmosphere with TLC monitoring. The resulting

solution was concentrated in vacuum and the residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether/ethyl acetate to give the product **11** (20 mg, 21% yield)³

5. Stern-Volmer experiment

Formulation solution: N,N-Diisopropylethylamine was dissolved in CH₃CN in a 5 mL volumetric flask to set the concentration to be 0.05 mM, 0.10 mM, 0.15 mM, 0.20 mM. Photocatalyst 4CzIPN was dissolved in CH₃CN (50 mL) to set the concentration to be 0.1 mM. Experimental procedure: Steady-state emission spectra were recorded using a Cary Ecipse Fluorescence Spectrophotomer (Agilent Techonologies) (Figure S2). N.N-Diisopropylethylamine was added to an CH₃CN solution of 4CzIPN (0.1 mM) and made to a fixed concentration in a volumetric flask. The solutions were then transferred to a septum topped quarts cuvette. Samples were irradiated at 440 nm and area under the graph was calculated and used for determing the Stern-Volmer quenching values. A pre-weighed amount of N,N-Diisopropylethylamine was dissolved in CH₃CN solution of 4CzIPN (0.1 mM) and made to fixed concentration in a volumetric flask. The solution were then transferred to a septum topped quarts cuvette. Due to competing absorption of the imine substrate, samples were irradiated at 440 nm and the emission intensity at 510 nm was used to determine the Stern-Volmer quenching values.

Figure 2. Emission quenching of 4CzIPN with (*i*-Pr)₂NEt in CH₃CN

6. Characterization data of products

N², N³-diphenylbutane-2,3-diamine (3a)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 20:1, v/v), the desired product **3a** was obtained as a colourless oil. (30 mg, 82% yield). *meso/dl* 1:1; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.18 (dtd, *J* = 14.3, 7.2, 1.9 Hz, 4H), 6.76 – 6.59 (m, 6H), 3.78 – 3.71 (m, 1H), 3.60 (dt, *J* = 6.1, 4.3 Hz, 1H), 1.26 – 1.18 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 147.6, 147.6, 129.5, 129.4, 117.7, 117.6, 113.8, 113.6, 52.6, 52.3, 17.0, 16.3. HRMS (ESI) calcd for C₁₆H₂₀N₂, [M+H]⁺ m/z 241.1699; Found: 241.1692.

N², N³-di-p-tolylbutane-2,3-diamine (3b)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 30:1, v/v), the desired product **3b** was obtained as a colourless oil. (31 mg, 77% yield). *meso/dl* 1:1.5; ¹H NMR (400

MHz, Chloroform-*d*) δ 7.03 – 6.93 (m, 4H), 6.59 – 6.49 (m, 4H), 3.72 – 3.62 (m, 1H), 3.51 (ddd, *J* = 9.8, 7.1, 4.9 Hz, 2H), 2.24 (d, *J* = 4.4 Hz, 6H), 1.21 – 1.14 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 145.3, 145.2, 129.9, 129.8, 126.9, 126.8, 114.1, 113.9, 52.9, 52.7, 29.7, 20.4, 16.9, 16.2. HRMS (ESI) calcd for C₁₈H₂₄N₂, [M+H]⁺ m/z 269.2012; Found: 269.2011.

N², N³-bis(4-ethylphenyl)butane-2,3-diamine (3c)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 30:1, v/v), the desired product **3c** was obtained as a yellow oil. (34 mg, 80% yield). *meso/dl* 1:1.5; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.05 – 6.96 (m, 4H), 6.61 – 6.52 (m, 4H), 3.72 – 3.63 (m, 1H), 3.52 (dt, *J* = 5.9, 4.2 Hz, 1H), 2.54 (qd, *J* = 7.6, 4.2 Hz, 4H), 1.23 – 1.13 (m, 12H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 145.6, 145.5, 133.5, 133.4, 128.8, 128.7, 114.1, 113.8, 52.9, 52.7, 28.0, 17.1, 16.3, 16.0. HRMS (ESI) calcd for C₂₀H₂₈N₂, [M+H]⁺ m/z 297.2325; Found: 297.2327.

N², N³-bis(4-isopropylphenyl)butane-2,3-diamine (3d)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 30:1, v/v), the desired product **3d** was obtained as a colourless oil. (37 mg, 76% yield). *meso/dl* 1:2; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.09 – 6.96 (m, 4H), 6.62 – 6.51 (m, 4H), 3.70 – 3.61 (m, 1H), 3.50 (dt, J = 5.9, 4.2 Hz, 2H), 2.85 – 2.73 (m, 2H), 1.21 – 1.12 (m, 18H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 145.6, 145.5, 138.1, 138.0, 127.2, 127.2, 113.8, 113.6, 52.9, 52.7, 33.1, 33.1, 24.2, 17.1, 16.3,. HRMS (ESI) calcd for C₂₂H₃₂N₂, [M+Na]⁺ m/z 347.2458; Found: 347.2453.

N², N³-bis(4-(tert-butyl)phenyl)butane-2,3-diamine (3e)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 30:1, v/v), the desired product **3e** was obtained as a colourless oil. (35 mg, 66% yield). *meso/dl* 1:1.7; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 – 7.16 (m, 4H), 6.65 – 6.53 (m, 4H), 3.73 – 3.66 (m, 1H), 3.53 (dt, J = 5.9, 4.2 Hz, 2H), 1.29 (d, J = 3.5 Hz, 18H), 1.24 – 1.15 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 145.3, 145.2, 140.4, 140.3, 126.2, 126.1, 113.5, 113.3, 52.9, 52.6, 33.9, 33.9, 31.6, 17.2, 16.4. HRMS (ESI) calcd for C₂₄H₃₆N₂, [M+H]⁺ m/z 353.2951; Found: 353.2950.

N², N³-bis(4-fluorophenyl)butane-2,3-diamine (3f)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 15:1, v/v), the desired product **3f** was obtained as a yellow oil. (30 mg, 72% yield). *meso/dl* 1:1.5; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.94 – 6.78 (m, 4H), 6.60 – 6.46 (m, 4H), 3.66 – 3.56 (m, 1H), 3.44 (dd, *J* = 4.6, 1.8 Hz, 2H), 1.23 – 1.11 (m, 6H). ¹¹⁹F NMR (376 MHz, Chloroform-*d*) δ -119.14 – -135.60 (m). ¹¹³C NMR (101 MHz, Chloroform-*d*) δ 155.9 (dd, *J* = 235.4, 6.3 Hz), 143.9 (dd, *J* = 4.2, 2.0 Hz), 121.1 – 102.1 (m), 53.6, 53.0, 17.0, 16.1. HRMS (ESI) calcd for C₁₆H₁₈F₂N₂, [M+H]⁺ m/z 277.1511; Found: 277.1510.

N²,N³-bis(4-chlorophenyl)butane-2,3-diamine (3g)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 15:1, v/v), the desired product **3g** was obtained as a yellow oil. (32 mg, 70% yield). *meso/dl* 1:1.2; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.16 – 7.06 (m, 4H), 6.59 – 6.46 (m, 4H), 3.67 (q, *J* = 6.0 Hz, 1H), 3.61 (s, 2H), 3.51 (dt, *J* = 5.9, 4.2 Hz, 1H), 1.19 (dd, *J* = 11.0, 6.0 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 146.1, 146.0, 129.3, 129.2, 129.1, 122.2, 122.1, 114.8, 114.6, 52.8, 52.3, 17.0, 16.2. HRMS (ESI) calcd for C₁₆H₁₈Cl₂N₂, [M+H]⁺ m/z 309.0920; Found: 309.0924.

N², N³-bis(4-bromophenyl)butane-2,3-diamine (3h)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 15:1, v/v), the desired product **3h** was obtained as a yellow oil. (36 mg, 60% yield). *meso/dl* 1.4:1; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.09 (dtd, *J* = 13.5, 8.1, 6.7 Hz, 2H), 6.45 – 6.24 (m, 6H), 3.69 (q, *J* = 5.9 Hz, 1H), 3.59 – 3.50 (m, 1H), 1.21 (dd, *J* = 11.0, 6.0 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 146.5, 146.5, 132.1, 132.1, 115.3, 115.1, 109.2, 109.1, 52.7, 52.2, 16.9, 16.2. HRMS (ESI) calcd for C₁₆H₁₈Br₂N₂, [M+H]⁺ m/z 398.9890; Found: 398.9886.

N², N³-bis(4-(trifluoromethoxy)phenyl)butane-2,3-diamine (3i)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 7:1, v/v), the desired product **3i** was obtained as a colourless oil. (34 mg, 56% yield). *meso/dl* 2.5:1; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.07 – 6.97 (m, 4H), 6.61 – 6.50 (m, 4H), 3.73 – 3.63 (m, 3H), 3.52 (dd, *J* = 4.5, 1.8 Hz, 1H), 1.21 (dd, *J* = 13.1, 5.9 Hz, 6H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -58.5. ¹³C NMR (100 MHz, Chloroform-*d*) δ 146.3, 146.3, 122.6, 122.6, 114.0, 113.7, 53.0, 52.4, 17.1, 16.1. HRMS (ESI) calcd for C₁₈H₁₈F₆N₂O₂, [M+H]⁺ m/z 409.1345; Found: 409.1342.

N², N³-di-m-tolylbutane-2,3-diamine (3j)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 30:1, v/v), the desired product **3j** was obtained as a colourless oil. (35 mg, 88% yield). *meso/dl* 1:1.4; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.10 – 7.01 (m, 2H), 6.57 – 6.39 (m, 6H), 3.71 (dt, *J* = 7.1, 1.7 Hz, 1H), 3.58 (dt, *J* = 5.8, 4.3 Hz, 2H), 2.26 (d, *J* = 17.7 Hz, 6H), 1.22 – 1.15 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 147.7, 147.6, 139.2, 139.2, 129.3, 129.3, 118.6, 118.5, 114.6, 114.4, 111.0, 110.8, 52.4, 52.2, 21.7, 21.7, 16.9, 16.4. HRMS (ESI) calcd for C₁₈H₂₄N₂, [M+H]⁺ m/z 269.2012; Found: 269.2018.

N², N³-bis(3-methoxyphenyl)butane-2,3-diamine (3k)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 10:1, v/v), the desired product **3k** was obtained as a yellow oil. (29 mg, 65% yield). *meso/dl* 1:1; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.09 (dt, *J* = 14.0, 8.1 Hz, 2H), 6.36 – 6.13 (m, 6H), 3.79 (s, 3H), 3.73 (s, 3H), 3.68 (s, 1H), 3.63 – 3.56 (m, 1H), 1.22 (dd, *J* = 11.3, 5.9 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 160.9, 160.9, 149.0, 148.9, 130.1, 130.1, 106.7, 106.6, 103.0, 102.9, 99.4, 55.1, 55.0, 52.5, 52.2, 29.7, 17.0, 16.3. HRMS (ESI) calcd for C₁₈H₂₄O₂N₂, [M+H]⁺ m/z 301.1910; Found: 301.1909.

N², N³-bis(3-ethylphenyl)butane-2,3-diamine (3l)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 30:1, v/v), the desired product **31** was obtained as a yellow oil. (36 mg, 85% yield). *meso/dl* 1:2.5; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.15 – 7.03 (m, 2H), 6.61 – 6.39 (m, 6H), 3.72 (d, J = 6.0 Hz, 1H), 3.62 – 3.56 (m, 1H), 2.55 (dq, J = 17.9, 7.6 Hz, 4H), 1.20 (dt, J = 15.4, 7.4 Hz, 12H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 147.8, 147.7, 145.7, 145.6, 129.4, 129.3, 117.4, 117.3, 113.6, 113.3, 111.1, 110.9, 52.4, 52.3, 29.2, 29.1, 16.9, 16.4, 15.7, 15.6. HRMS (ESI) calcd for C₂₀H₂₈N₂, [M+H]⁺ m/z 297.2325; Found: 297.2324.

N², N³-bis(3-isopropylphenyl)butane-2,3-diamine (3m)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 30:1, v/v), the desired product **3m** was obtained as a colourless oil. (43 mg, 88% yield). *meso/dl* 1:1.4; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.18 – 7.03 (m, 2H), 6.65 – 6.36 (m, 6H), 3.77 – 3.52 (m, 3H), 2.85 – 2.71 (m, 2H), 1.22 (ddd, *J* = 15.0, 7.0, 2.0 Hz, 18H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 150.3, 150.2, 147.6, 147.5, 129.3, 129.2, 115.9, 115.8, 112.2, 112.0, 111.0, 110.8, 52.3, 52.3, 34.3, 34.2, 24.0, 24.0, 16.8, 16.3. HRMS (ESI) calcd for C₁₈H₂₄N₂, [M+H]⁺ m/z 325.2638; Found: 325.2636.

N², N³-bis(3-(tert-butyl)phenyl)butane-2,3-diamine (3n)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 30:1, v/v), the desired product **3n** was obtained as a colourless oil. (41 mg, 78% yield). *meso/dl* 1:1.7; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.16 – 7.06 (m, 2H), 6.83 – 6.61 (m, 4H), 6.47 (dddd, J = 20.7, 8.0, 2.4, 1.2 Hz, 2H), 3.76 - 3.69 (m, 1H), 3.68 - 3.54 (m, 2H), 1.31 - 1.17 (m, 24H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 152.5, 152.5, 147.4, 147.3, 129.1, 129.0, 115.0, 114.9, 111.5, 111.4, 110.5, 110.2, 52.6, 52.4, 34.7, 34.6, 31.4, 31.4, 17.0, 16.3. HRMS (ESI) calcd for C₂₄H₃₆N₂, [M+H]⁺ m/z 353.2951; Found: 353.2950.

N², N³-bis(3-fluorophenyl)butane-2,3-diamine (30)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 15:1, v/v), the desired product **30** was obtained as a yellow oil. (32 mg, 76% yield). *meso/dl* 2:1; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.09 (dtd, *J* = 13.4, 8.2, 6.7 Hz, 2H), 6.43 – 6.24 (m, 6H), 3.71 – 3.65 (m, 1H), 3.56 – 3.50 (m, 1H), 1.24 – 1.17 (m, 6H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -112.62 (d, *J* = 43.2 Hz). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.1 (dd, *J* = 243.0, 2.4 Hz), 149.2 (d, *J* = 10.8 Hz), 130.5 (dd, *J* = 10.3, 4.0 Hz), 116.1 – 95.7 (m), 52.6, 52.1, 17.1, 16.2. HRMS (ESI) calcd for C₁₆H₁₈F₂N₂, [M+H]⁺ m/z 277.1511; Found: 277.1508.

N², N³-bis(3-chlorophenyl)butane-2,3-diamine (3p)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 15:1, v/v), the desired product **3p** was obtained as a yellow oil. (38 mg, 81% yield). *meso/dl* 1:1.2; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.07 (dt, *J* = 13.8, 8.0 Hz, 2H), 6.68 (td, *J* = 7.7, 1.9 Hz, 2H), 6.59 (dt, *J* = 22.2, 2.2 Hz, 2H), 6.47 (ddd, *J* = 23.0, 8.2, 2.4 Hz, 2H), 3.73 – 3.67 (m, 2H), 3.54 (dd, *J* = 4.7, 1.7 Hz, 1H), 1.20 (dd, *J* = 10.0, 6.1 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 148.5, 135.2, 135.1, 130.4, 130.3, 117.5, 117.5, 113.2, 113.1, 112.0, 111.8, 52.5, 52.0, 17.0, 16.2. HRMS (ESI) calcd for C₁₆H₁₈Cl₂N₂, [M+H]⁺ m/z 309.0920; Found: 309.0920.

N², N³-bis(3-bromophenyl)butane-2,3-diamine (3q)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 15:1, v/v), the desired product **3q** was obtained as a yellow oil. (50 mg, 84% yield). *meso/dl* 1.4:1; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.01 (dt, *J* = 14.3, 8.0 Hz, 2H), 6.85 – 6.76 (m, 3H), 6.72 (t, *J* = 2.1 Hz, 2H), 6.56 – 6.46 (m, 2H), 3.72 – 3.65 (m, 2H), 3.53 (dt, *J* = 5.9, 4.3 Hz, 1H), 1.21 – 1.16 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 148.7, 130.7, 130.7, 123.4, 123.4, 120.5, 120.4, 116.1, 116.0, 112.3, 112.2, 52.4, 52.0, 17.0, 16.2. HRMS (ESI) calcd for C₁₆H₁₈Br₂N₂, [M+H]⁺ m/z 398.9890; Found: 398.9886.

N², N³-bis(3-(trifluoromethyl)phenyl)butane-2,3-diamine (3r)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 8:1, v/v), the desired product **3r** was obtained as a colourless oil. (34 mg, 60% yield). *meso/dl* 1:1; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.24 (m, 2H), 6.96 (t, *J* = 8.0 Hz, 2H), 6.88 – 6.70 (m, 4H), 3.84 (s, 1H), 3.80 (d,

J = 6.3 Hz, 1H), 3.65 (dt, J = 6.1, 4.4 Hz, 1H), 1.26 (dd, J = 8.4, 6.0 Hz, 6H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.88 (d, J = 5.5 Hz). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.5, 129.9 (d, J = 4.3 Hz), 116.4 (d, J = 13.6 Hz), 114.1, 109.7 (d, J = 10.2 Hz), 52.4, 52.0, 17.0, 16.2. HRMS (ESI) calcd for C₁₈H₁₈F₆N₂, [M+H]⁺ m/z 377.1447; Found: 377.1444.

N², N³-di-o-tolylbutane-2,3-diamine (3s)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 50:1, v/v), the desired product **3s** was obtained as a colourless oil. (21 mg, 51% yield). *meso/dl* 1:3.5; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.18 – 6.99 (m, 4H), 6.76 – 6.59 (m, 4H), 3.84 (tdd, *J* = 8.3, 6.6, 2.9 Hz, 1H), 3.68 (dt, *J* = 6.0, 4.3 Hz, 1H), 3.57 (s, 1H), 2.07 (d, *J* = 14.4 Hz, 6H), 1.29 – 1.23 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 145.4, 130.4, 130.4, 127.2, 127.2, 122.5, 117.1, 110.9, 110.6, 52.6, 17.6, 17.6, 17.3, 16.6. HRMS (ESI) calcd for C₁₈H₂₄N₂, [M+H]⁺ m/z 269.2012; Found: 269.2018.

N²,N³-bis(2-ethylphenyl)butane-2,3-diamine (3t)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 30:1, v/v), the desired product **3t** was obtained as a yellow oil. (25 mg, 60% yield). *meso/dl* 1:3; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.04 (dt, J = 29.1, 7.8 Hz, 4H), 6.63 (dt, J = 22.3, 7.9 Hz, 4H), 3.77 (d, J = 6.1 Hz, 1H), 3.61 (q, J = 5.1 Hz, 3H), 2.34 (dq, J = 14.7, 7.5 Hz, 4H), 1.22 – 1.10 (m, 12H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.8, 143.8, 127.2, 127.0, 126.0, 126.0, 116.2, 116.1, 110.1, 109.8, 51.5, 51.0, 22.9, 22.9, 22.7, 16.4, 15.4, 11.9. HRMS (ESI) calcd for C₂₀H₂₈N₂, [M+H]⁺ m/z 297.2325; Found: 297.2325.

N²,N³-bis(2-isopropylphenyl)butane-2,3-diamine (3u)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 30:1, v/v), the desired product **3u** was obtained as a colourless oil. (25 mg, 52% yield). *meso/dl* 1:1.4; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.03 (td, J = 7.4, 1.7 Hz, 4H), 6.67 – 6.55 (m, 4H), 3.73 (q, J = 5.8 Hz, 1H), 3.68 (s, 1H), 3.60 – 3.52 (m, 1H), 2.68 (dq, J = 14.2, 6.9 Hz, 2H), 1.18 – 1.06 (m, 19H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.1, 143.1, 131.7, 131.7, 125.7, 125.7, 124.2, 124.2, 116.4, 116.3, 110.7, 110.3, 51.8, 51.3, 26.2, 26.2, 21.4, 21.4, 21.3, 21.1, 16.5, 15.3. HRMS (ESI) calcd for C₁₈H₂₄N₂, [M+Na]⁺ m/z 347.2458; Found: 347.2453

N²,N³-bis(3,4-dimethylphenyl)butane-2,3-diamine (3v)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 20:1, v/v), the desired product **3v** was obtained as a colourless oil. (25 mg, 57% yield). *meso/dl* 1:1.5; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.93 (dd, *J* = 12.7, 8.0 Hz, 2H), 6.51 – 6.34 (m, 4H), 3.66 (td, *J* = 6.2, 4.4 Hz, 1H), 3.53 (dt, *J* = 5.9, 4.3 Hz, 1H), 2.22 – 2.12 (m, 12H), 1.17 (dd, *J* = 11.5, 6.0 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 148.7, 130.7, 130.7, 123.5, 123.4, 120.5, 120.4, 116.1, 116.0, 112.4, 112.2, 52.4, 52.2, 52.0, 17.0, 16.2. HRMS (ESI) calcd for C₂₀H₂₈N₂, [M+H]⁺ m/z 297.2325; Found: 297.2328.

N²,N³-bis(3,5-dimethylphenyl)butane-2,3-diamine (3w)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 20:1, v/v), the desired product **3w** was obtained as a colourless oil. (30 mg, 67% yield). *meso/dl* 1:1.5; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.36 (d, *J* = 10.3 Hz, 2H), 6.25 (d, *J* = 26.5 Hz, 4H), 3.68 (d, *J* = 5.9 Hz, 1H), 3.57 (dt, *J* = 5.9, 3.0 Hz, 2H), 2.21 (d, *J* = 15.9 Hz, 12H), 1.16 (t, *J* = 6.6 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 147.7, 147.5, 139.1, 139.0, 119.6, 119.4, 111.7, 111.4, 52.1, 52.0, 21.5, 21.5, 16.5, 16.4. HRMS (ESI) calcd for C₂₀H₂₈N₂, [M+H]⁺ m/z 297.2325; Found: 297.2323.

N²,N³-bis(3-chloro-5-fluorophenyl)butane-2,3-diamine (3x)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 8:1, v/v), the desired product **3x** was obtained as a colourless oil. (26 mg, 51% yield). *meso/dl* 1.4:1; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.96 (dt, *J* = 12.2, 8.8 Hz, 2H), 6.62 (ddd, *J* = 22.2, 6.1, 2.9 Hz, 2H), 6.44 (ddt, *J* = 21.5, 8.9, 3.3 Hz, 2H), 3.62 (q, *J* = 5.8 Hz, 2H), 3.49 (s, 1H), 3.44 (dt, *J* = 5.9, 4.2 Hz, 1H), 1.20 (dd, *J* = 13.1, 6.0 Hz, 6H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -130.60 (d, *J* = 31.8 Hz). ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.1 (dd, *J* = 238.2, 7.5 Hz), 144.3 (d, *J* = 2.2 Hz), 121.2 (dd, *J* = 18.4, 4.5 Hz), 117.2 – 110.3 (m), 53.3, 52.7, 31.5, 31.5, 30.2, 30.6, 17.0, 16.1. HRMS (ESI) calcd for C₁₆H₁₆Cl₂F₂N₂, [M+H]⁺ m/z 345.0731; Found: 345.0729.

N²,N³-bis(phenyl-d5)butane-2,3-diamine (3y)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 20:1, v/v), the desired product **3y** was obtained as a colourless oil. (30 mg, 83% yield). *meso/dl* 1:2.5; ¹H NMR (400 MHz, Chloroform-*d*) δ 3.76 – 3.69 (m, 1H), 3.62 – 3.54 (m, 2H), 1.28 – 1.16 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 52.6, 52.2, 17.0, 16.3. HRMS (ESI) calcd for C₁₆H₁₀D₁₀N₂, [M+H]⁺ m/z 251.2325; Found: 251.2327.

N²,N³-bis(2,3-dihydro-1H-inden-5-yl)butane-2,3-diamine (3z)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 20:1, v/v), the desired product **3z** was obtained as a colourless oil. (34 mg, 70% yield). *meso/dl* 1:1; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.02 (dd, *J* = 12.0, 8.0 Hz, 2H), 6.56 (dd, *J* = 20.8, 2.3 Hz, 2H), 6.44 (ddd, *J* = 12.7, 8.0, 2.3 Hz, 2H), 3.68 (dt, *J* = 7.1, 1.8 Hz, 1H), 3.54 (dd, *J* = 4.6, 1.7 Hz, 1H), 2.87 – 2.76 (m, 8H), 2.04 (pd, *J* = 7.4, 4.9 Hz, 4H), 1.22 – 1.15 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 146.4, 146.3, 145.6, 145.6, 133.4, 133.3, 125.0, 124.9, 112.4, 112.2, 110.2, 109.9, 53.0, 52.9, 33.2, 33.2, 32.0, 25.8, 17.0, 16.3. HRMS (ESI) calcd for C₂₂H₂₈N₂, [M+H]⁺ m/z 321.2325; Found: 321.2328.

N³,N⁴-diphenylhexane-3,4-diamine (6)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 50:1, v/v), the desired product **6** was obtained as a colourless oil. (9 mg, 22% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.14 (dtd, *J* = 18.7, 7.3, 1.9 Hz, 4H), 6.72 – 6.60 (m, 4H), 6.57 – 6.51 (m, 2H), 3.47 (d, *J* = 26.0 Hz, 4H), 1.77 – 1.60 (m, 2H), 1.47 (dt, *J* = 14.7, 7.3 Hz, 2H), 0.97 (dt, *J* = 15.2, 7.4 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 148.6, 129.4, 129.3, 117.1, 117.1, 113.4, 113.1, 58.0, 57.7, 25.6, 24.6, 11.4, 11.1. HRMS (ESI) calcd for C₁₈H₂₄N₂, [M+H]⁺ m/z 269.2012; Found: 269.2015.

N²,N³-diphenylpentane-2,3-diamine (7)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 20:1, v/v), the desired product **7** was obtained as a colourless oil. (15 mg, 38% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.14 (m, 4H), 6.73 – 6.59 (m, 6H), 3.66 (qd, *J* = 6.4, 4.1 Hz, 1H), 3.39 (dt, *J* = 8.4, 4.3 Hz, 1H), 1.76 (ddp, *J* = 14.9, 7.5, 4.3, 3.8 Hz, 1H), 1.47 (dt, *J* = 15.1, 7.6 Hz, 1H), 1.21 (d, *J* = 6.4 Hz, 3H), 0.96 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 148.9, 148.5, 147.8, 147.5, 129.5, 129.4, 117.5, 117.5, 117.4, 117.3, 113.7, 113.6, 113.3, 59.0, 58.8, 51.2, 50.9, 25.9, 24.6, 17.8, 15.2, 11.5, 10.8. HRMS (ESI) calcd for C₁₇H₂₂N₂, [M+H]⁺ m/z 255.1856; Found: 255.1862.

N⁴,N⁵-diphenyloctane-4,5-diamine (8)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 50:1, v/v), the desired product **8** was obtained as a colourless oil. (19 mg, 42% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.14 (dtd, *J* = 21.5, 7.3, 1.9 Hz, 4H), 6.71 – 6.59 (m, 4H), 6.55 – 6.46 (m, 2H), 3.58 (dd, *J* = 8.0, 3.2 Hz, 1H), 3.50 (d, *J* = 8.3 Hz, 3H), 1.59 – 1.29 (m, 8H), 0.90 (dt, *J* = 15.9, 7.0 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 148.8, 148.5, 147.8, 147.5, 129.5, 129.4, 129.4, 129.2, 117.5, 117.4, 117.3, 117.0, 113.7, 113.6, 113.2, 57.1, 56.9, 51.6, 51.4, 51.2, 35.3, 34.2, 20.0, 19.6, 17.7, 15.2, 14.3, 14.2. HRMS (ESI) calcd for C₂₀H₂₈N₂, [M+H]⁺ m/z 297.2325; Found: 297.2330.

N²,N³-diphenylhexane-2,3-diamine (9)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 20:1, v/v), the desired product **9** was obtained as a colourless oil. (10 mg, 25% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.18 (ddd, *J* = 9.1, 7.2, 2.2 Hz, 4H), 6.68 (dd, *J* = 22.0, 7.7 Hz, 6H), 3.66 (qd, *J* = 6.4, 3.9 Hz, 1H), 3.49 (dt, *J* = 8.2, 4.1 Hz, 1H), 1.68 – 1.62 (m, 1H), 1.50 – 1.40 (m, 2H), 1.35 (td, *J* = 7.7, 4.2 Hz, 1H), 1.20 (d, *J* = 6.4 Hz, 3H), 0.89 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.3, 129.4, 129.4, 117.7, 117.3, 113.8, 113.2, 57.0, 51.6, 34.1, 19.5, 17.5, 14.2. HRMS (ESI) calcd for C₁₈H₂₄N₂, [M+K]⁺ m/z 307.1571; Found: 307.1575.

3,4-dimethyl-2,5-diphenyl-1,2,5-thiadiazolidine 1-oxide (10)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 5:1, v/v), the desired product **10** was obtained as a white solid (35 mg, 40% yield). mp 126 - 128°C, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 - 7.32 (m, 4H), 7.28 - 7.19 (m, 5H), 7.14 - 7.06 (m, 1H), 4.44 - 4.33 (m, 1H), 3.99 - 3.86 (m, 1H), 1.48 (d, *J* = 6.1 Hz, 3H), 1.28 (d, *J* = 6.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.1, 138.5, 129.6, 129.5, 126.4, 126.1, 123.4, 118.8, 63.6, 61.1, 17.6, 16.5. HRMS (ESI) calcd for C₁₆H₁₈N₂OS, [M+H]⁺ m/z 287.1213; Found: 287.1211.

2-chloro-4,5-dimethyl-1,3-diphenyl-1,3,2-diazaphospholidine 2-oxide (11)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 7:1, v/v), the desired product **11** was obtained as a white solid. (20 mg, 21% yield). mp 130 - 132°C ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 - 7.32 (m, 8H), 7.25 - 7.13 (m, 2H), 4.00 (dqd, *J* = 12.6, 6.3, 4.6 Hz, 1H), 3.93 - 3.82 (m, 1H), 1.40 (dd, *J* = 6.2, 2.8 Hz, 6H). ³¹P NMR (162 MHz, Chloroform-*d*) δ 13.31. ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.0, 137.9, 137.3, 137.2, 129.6, 129.6, 125.2, 125.2, 124.4, 122.6, 122.5, 121.2, 121.1, 58.4, 58.2, 57.8, 57.6, 18.7, 18.7, 17.8, 17.8. HRMS (ESI) calcd for C₁₆H₁₈ClN₂OP, [M+H]⁺ m/z 321.0918; Found: 321.0915.

1,2-diphenylethane-1,2-diol (5a)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 7:1, v/v), the desired product **5a** was obtained as a white solid. (25 mg, 78% yield). *meso/dl* 1:1.7; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.20 – 6.97 (m, 8H), 6.94 – 6.90 (m, 2H), 4.63 (s, 1H), 4.47 (s, 1H), 3.40 (s, 1H), 2.71 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 140.0, 140.0, 128.1, 128.1, 128.0, 127.9, 127.2, 127.1, 79.1.

1,2-di-p-tolylethane-1,2-diol (5b)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 7:1, v/v), the desired product **5b** was obtained as a white solid. (29 mg, 80% yield). *meso/dl* 1:1.1; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.13 (q, *J* = 8.2 Hz, 4H), 7.05 – 6.97 (m, 4H), 4.71 (s, 1H), 4.62 (s, 1H), 2.90 (s, 1H), 2.31 (d, *J* = 17.3 Hz, 6H), 2.18 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.8, 137.5, 137.0, 137.0, 129, 128.8, 127.1, 126.9, 78.8, 78.0, 21.2, 21.2.

1,2-bis(4-methoxyphenyl)ethane-1,2-diol (5c)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 3:1, v/v), the desired product **5c** was obtained as a white solid. (26 mg, 63% yield). *meso/dl* 1:1.7; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.21 – 7.16 (m, 2H), 7.05 – 6.99 (m, 2H), 6.88 – 6.82 (m, 2H), 6.77 – 6.72 (m, 2H), 4.72 (s, 1H), 4.61 (s, 1H), 3.77 (d, *J* = 15.3 Hz, 6H), 2.89 (s, 1H), 2.18 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.4, 159.2, 132.1, 132.1, 128.3, 128.2, 113.7, 113.5, 78.8, 55.3, 55.2.

1,2-bis(3-methoxyphenyl)ethane-1,2-diol (5d)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 3:1, v/v), the desired product **5d** was obtained as a white solid. (32 mg, 73% yield). *meso/dl* 1.1:10; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.63 – 8.48 (m, 2H), 8.21 – 8.03 (m, 6H), 6.13 (s, 1H), 6.00 (s, 1H), 5.08 (d, *J* = 11.5 Hz, 6H), 4.43 (s, 1H), 3.79 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.5, 159.4, 141.5, 141.4, 129.3, 129.2, 119.5, 119.3, 114.0, 113.7, 112.3, 112.2, 78.9, 78.0, 55.2, 55.2.

1,2-bis(2-methoxyphenyl)ethane-1,2-diol (5e)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 5:1, v/v), the desired product **5e** was obtained as a white solid. (36 mg, 82% yield). *meso/dl* 1:1.1; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.26 – 7.13 (m, 4H), 6.86 (dtd, *J* = 15.9, 7.5, 1.1 Hz, 2H), 6.79 (dd, *J* = 8.2, 1.1 Hz, 1H), 6.76 – 6.72 (m, 1H), 5.24 (d, *J* = 4.6 Hz, 1H), 5.03 (d, *J* = 3.5 Hz, 1H), 3.70 – 3.61 (m, 6H), 3.47 (d, *J* = 3.9 Hz, 1H), 3.13 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.97, 157.0, 128.6, 128.5, 128.3, 120.5, 120.5, 110.3, 110.2, 74.5, 73.7, 73.7, 55.3, 55.2.

1,2-di([1,1'-biphenyl]-4-yl)ethane-1,2-diol (5f)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 5:1, v/v), the desired product **5f** was obtained as a white solid. (24 mg, 43% yield). *meso/dl* 1:1.2 ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 – 7.04 (m, 18H), 4.82 (s, 1H), 2.90 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 140.8, 140.6, 139.0 128.8, 127.4, 127.4, 127.0, 126.9, 78.8. HRMS (ESI) calcd for C₂₆H₂₂O₂, [M+Na]⁺ m/z 389.1512; Found: 389.1516.

1,2-bis(4-(benzyloxy)phenyl)ethane-1,2-diol (5g)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 3:1, v/v), the desired product **5g** was obtained as a white solid. (30 mg, 47% yield). *meso/dl* 1:1.5; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.30 (m, 10H), 7.21 – 7.15 (m, 2H), 7.04 – 6.99 (m, 2H), 6.92 (d, *J* = 8.7 Hz, 2H), 6.85 – 6.79 (m, 2H), 5.02 (d, *J* = 16.7 Hz, 4H), 4.71 (s, 1H), 4.60 (s, 1H), 2.86 (s, 1H), 2.16 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.7, 158.4, 136.9, 132.4, 128.6, 128.6, 128.4, 128.2, 128.0, 128.0, 127.5, 114.7, 114.5, 70.0, 70.0.

1,2-bis(4-fluorophenyl)ethane-1,2-diol (5h)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 5:1, v/v), the desired product **5h** was obtained as a white solid. (27 mg, 71% yield). *meso/dl* 1:1.5; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.17 – 7.09 (m, 2H), 7.07 – 6.86 (m, 6H), 4.80 (s, 1H), 4.60 (s, 1H), 3.02 (s, 1H), 2.42 (s, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -114.05 (d, *J* = 30.5 Hz). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.4 (d, *J* = 246.4 Hz), 135.4 (d, *J* = 3.2 Hz), 128.7 (dd, *J* = 8.1, 6.6 Hz), 115.1 (dd, *J* = 21.4, 2.4 Hz), 78.7.

1,2-bis(4-chlorophenyl)ethane-1,2-diol (5i)

CI

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 3:1, v/v), the desired product **5i** was obtained as a white solid. (25 mg, 59% yield). *meso/dl* 1.2:1; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 – 7.15 (m, 4H), 7.10 – 6.94 (m, 4H), 4.78 (s, 1H), 4.56 (s, 1H), 3.12 (s, 1H), 2.58 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.0, 137.8, 133.8, 133.8, 128.4, 128.3, 128.3.

1,2-bis(4-(trifluoromethyl)phenyl)ethane-1,2-diol (5j)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 3:1, v/v), the desired product **5j** was obtained as a white solid. (35 mg, 67% yield). *meso/dl* 1:1.2; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 (t, *J* = 9.0 Hz, 4H), 7.24 (dd, *J* = 23.4, 8.0 Hz, 4H), 4.94 (s, 1H), 4.72 (s, 1H), 3.12 (s, 1H), 2.62 (s, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.54 (d, *J* = 13.1 Hz). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.3 (d, *J* = 16.1 Hz), 130.4 (dd, *J* = 32.5, 11.1 Hz), 134.2 – 120.8 (m), 122.6 (d, *J* = 6.1 Hz), 78.4.

dimethyl 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoate (5k)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 3:1, v/v), the desired product **5k** was obtained as a white solid. (25 mg, 51% yield). *meso/dl* 1:1.3; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 – 7.19 (m, 2H), 7.15 – 7.08 (m, 2H), 7.04 – 6.91 (m, 4H), 4.76 (s, 1H), 4.63 (s, 1H), 3.11 (s, 1H), 2.54 (s, 1H), 2.27 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.6, 169.4, 150.3, 150.2, 137.4, 137.4, 128.2, 128.0, 121.3, 121.3, 21.1.

di-tert-butyl ((1,2-dihydroxyethane-1,2-diyl)bis(4,1-phenylene))dicarbamate (51)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 2:1, v/v), the desired product **51** was obtained as a white solid. (55 mg, 82% yield). mp 183 - 185°C *meso/dl* 1:1.3; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 - 7.10 (m, 6H), 6.99 (d, *J* = 8.3 Hz, 2H), 6.54 (d, *J* = 16.8 Hz, 2H), 4.72 (s, 1H), 4.57 (s, 1H), 1.50 (d, *J* = 5.2 Hz, 18H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152. 8, 138.1, 137.9, 134.5, 134.4, 127.8, 127.7, 118.2, 118.1, 78.7, 77.6, 60.4, 28.4, 14.2. HRMS (ESI) calcd for C₂₄H₃₂N₂O₆, [M+H]⁺ m/z 445.2333; Found: 445.2335.

1,2-di(thiophen-2-yl)ethane-1,2-diol (5m)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 7:1, v/v), the desired product **5m** was obtained as a white solid. (11 mg, 32% yield). *meso/dl* 1:1.4; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (ddd, *J* = 11.7, 5.0, 1.2 Hz, 1H), 7.26 – 7.23 (m, 1H), 7.04 – 6.96 (m, 2H), 6.91 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.83 (dd, *J* = 3.5, 1.2 Hz, 1H), 5.12 (s, 1H), 5.05 (s, 1H), 3.04 (s, 1H), 2.53 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.6, 142.5, 142.4, 110.4, 110.3, 108.2, 108.0, 70.1, 69.9.

1,2-di(furan-2-yl)ethane-1,2-diol (5n)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 7:1, v/v), the desired product **5n** was obtained as a white solid. (11 mg, 36% yield). *meso/dl* 1:1.3; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (ddd, *J* = 12.9, 1.9, 0.9 Hz, 2H), 6.37 – 6.21 (m, 4H), 5.03 (s, 1H), 5.01 (s, 1H), 2.85 (s, 1H), 2.51 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.8, 152.6, 142.5, 142.4, 110.4, 110.3, 108.2, 108.0, 70.1, 70.0.

4-(2-(4-(((1S,2R,5R)-adamantane-2-carbonyl)oxy)phenyl)-1,2-dihydroxyethyl) phenyl (1r,3r,5r,7r)-adamantane-2-carboxylate (50)

Purified by silica gel chromatography (petroleum ether/ethyl acetate = 3:1, v/v), the desired product **50** was obtained as a white solid. (48 mg, 56% yield). mp 195 - 197°C *meso/dl* 1:1.7; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.02 – 5.89 (m, 2H), 5.82 (d, *J* = 8.0 Hz, 2H), 5.67 (dd, *J* = 21.3, 8.1 Hz, 4H), 3.49 (d, *J* = 2.7 Hz, 1H), 3.33 (d, *J* = 3.2 Hz, 1H), 1.94 (s, 1H), 1.38 (d, *J* = 16.4 Hz, 1H), 0.79 (dt, *J* = 18.0, 3.2 Hz, 17H), 0.50 (t, *J* = 3.4 Hz, 11H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.2, 137.1, 128.1, 128.0, 121.3, 41.0, 41.0, 38.8, 36.5, 27.9. HRMS (ESI) calcd for C₃₆H₄₂O₆, [M+H]⁺ m/z 571.3054; Found: 571.3055.

7. Reference

(1) (a) J. Luo and J. Zhang, ACS Catal., 2020, 10, 14302-14303; (b) E. Speckmeier, T. G. Fischer and K. Zeitler, J. Am. Chem. Soc., 2018, 140, 15353-15365.

- (2) J. L. Li, D. Zhang, J. H. Chen, C. Q. Ma, and W. H. Hu, ACS Catal., 2020, **10**, 4559–4565.
- (3) D. V. Hrishikesh, R. A. Annadate and S. V. Pansare, *ACS Omega.*, 2023, **8**, 3190-3197.

8. NMR spectra

¹H-NMR spectrum of **3b** (CDCl₃, 400 MHz)

¹H-NMR spectrum of **3c** (CDCl₃, 400 MHz)

¹H-NMR spectrum of **3d** (CDCl₃, 400 MHz)

S33

¹H-NMR spectrum of **3f** (CDCl₃, 400 MHz)

¹³C-NMR spectrum of **3f** (CDCl₃, 100 MHz)

¹³C-NMR spectrum of **3g** (CDCl₃, 100 MHz)

¹³C-NMR spectrum of **3h** (CDCl₃, 100 MHz)

¹⁹F-NMR spectrum of **3i** (CDCl₃, 376 MHz)

210 190 170 150 130 110 90 70 50 30 10 -10 f1 (ppm)

¹H-NMR spectrum of **3j** (CDCl₃, 400 MHz)

90 80 f1 (ppm) Ó

¹H-NMR spectrum of **3k** (CDCl₃, 400 MHz)

¹H-NMR spectrum of **3l** (CDCl₃, 400 MHz)

¹H-NMR spectrum of **3m** (CDCl₃, 400 MHz)

¹H-NMR spectrum of **3n** (CDCl₃, 400 MHz)

¹H-NMR spectrum of **30** (CDCl₃, 400 MHz)

¹⁹F-NMR spectrum of **30** (CDCl₃, 376 MHz)

MYY-2-46 A2.fid FISCPD CDCIS D:\\ other 4

-82 -106 -110 -122 -134 -138 -86 -90 -94 -98 -102 -114 -118 -126 -130 f1 (ppm)

¹³C-NMR spectrum of **30** (CDCl₃, 100 MHz)

¹³C-NMR spectrum of **3p** (CDCl₃, 100 MHz)

¹⁹F-NMR spectrum of **3r** (CDCl₃, 376 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

¹³C-NMR spectrum of **3r** (CDCl₃, 100 MHz)

¹H-NMR spectrum of **3s** (CDCl₃, 400 MHz)

MY-2-5A.2. fist のとののちちちちたたたののちちちちののの	8888888888888888888888888888888888888	8.8	23 26 26 21
		20	
V VIIIIII	and the second	52	

¹³C-NMR spectrum of **3s** (CDCl₃, 100 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H-NMR spectrum of **3t** (CDCl₃, 400 MHz)

¹H-NMR spectrum of **3u** (CDCl₃, 400 MHz)

¹H-NMR spectrum of **3v** (CDCl₃, 400 MHz)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H-NMR spectrum of 3x (CDCl₃, 400 MHz)

ΜΥ ία20604 δι ξά ου 4 α α α α α α κ κ κ α α α 4 4 α κ ο ο ο α α α α α α α α α α α α α α α α	000-
m 8.8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	0077

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S56

¹³C-NMR spectrum of **3y** (CDCl₃, 100 MHz)

S58

¹³C-NMR spectrum of **6** (CDCl₃, 100 MHz)

S60

¹³C-NMR spectrum of 8 (CDCl₃, 100 MHz)

¹³C-NMR spectrum of **9** (CDCl₃, 100 MHz)

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

101

5.13

3.10 -

³¹P-NMR spectrum of **11** (CDCl₃, 162 MHz)

¹H-NMR spectrum of **5a** (CDCl₃, 400 MHz)

¹H-NMR spectrum of **5b** (CDCl₃, 400 MHz)

¹³C-NMR spectrum of **5b** (CDCl₃, 100 MHz)

¹H-NMR spectrum of **5c** (CDCl₃, 400 MHz)

S68

¹H-NMR spectrum of **5e** (CDCl₃, 400 MHz)

f1 (ppm)

¹H-NMR spectrum of **5f** (CDCl₃, 400 MHz)

¹H-NMR spectrum of **5g** (CDCl₃, 400 MHz)

¹H-NMR spectrum of **5h** (CDCl₃, 400 MHz)

¹⁹F-NMR spectrum of **5h** (CDCl₃, 376 MHz)

MYY-3-90D.6.fid F19CPD CDCl3 D:\\ other 12 ---114.0 F ŌН ÓН F 5h 10 -10 -30 -50 -70 -110 -150 -90 -130 -170 -190 f1 (ppm)
¹³C-NMR spectrum of **5h** (CDCl₃, 100 MHz)

¹⁹F-NMR spectrum of **5j** (CDCl₃, 376 MHz)

f1 (ppm)

¹³C-NMR spectrum of **5**I (CDCl₃, 100 MHz)

¹H-NMR spectrum of **5m** (CDCl₃, 400 MHz)

$^{1}\mathrm{F}$

¹ H-NMR spectrum of a MYY-3-90E.1. fide and a spectrum of	5n (CDCl ₃ ,	, 400 MHz)	5.0	- 28	- 2.5		
OH O OH O OH 5n							
						r.l.,]
	1.95-	3.77 -	€00.1 1.00	5	1.00		
10.5 10.0 9.5 9.0 8.5	8.0 7.5 7.0	6.5 6.0 5.5	5.0 4.5	4.0 3.5 3.0 f1 (ppm)	2.5 2.0	1.5 1.0	0.5 0
¹³ C-NMR spectrum of	5n (CDCl ₃	3, 100 MHz)				
MYY-3-90E.2.fid C13CPD CDCl3 D:\\ other 1	<pre> <!--152.8 </152.6 </pre--> 142.5 </pre>	110.4 110.3 108.2 108.2		₹0.1 €69.9			
OH O OH O OH 5n							
werte bestellter angeben de state angeben d			Agetan digar terment				desperation of sectors

110 90 f1 (ppm) -10

