Supporting Information

Recyclable Cu@C₂N Nano-catalyst Applied in the Transformation of Alkynes: pH Switchable Access to Ketones and 1,3-Diynes

Yuanjin Li,^{‡a} Tianyu Yang,^{‡a} Shuhui Wang,^{‡b} Zuqiang Bian,^{*a} Zhiwei Liu^{*a}

^{*a*} Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China. E-mail: bianzq@pku.edu.cn, zwliu@pku.edu.cn ^{*b*} Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China

‡ These authors have contributed equally

Experimental Section

Chemicals

Hexaketocyclohexane octahydrate (HKH·8H₂O (\geq 95%)) was purchased from HEOWNS (Tianjin, China), copper chloride dihydrate (CuCl₂·2H₂O (\geq 99%)) was purchased from Energy Chemical Company (Shanghai, China). Alkynes (\geq 98%) were purchased from Bidepharm Company (Shanghai, China). Formic acid, acetic acid, trifluoroacetic acid, sulfuric acid, propanoic acid, methanol, ethanol, 2,2,2-trifluoroethanol, ethyl acetate, tetrahydrofuran (THF), triethylamine, ethylenediamine, pyridine, aqueous ammonia, tert-butylamine, 4-dimethylaminopyridine (DMAP), isopropanol (IPA) and dichloromethane were purchased from Tianjin Med. Co. Ltd (Tianjin, China, analytical reagent (AR)). Hexaketocyclohexane octahydrate (HTB) was purchased from Tianjin HEOWNS Co. Ltd (Tianjin, China, analytical reagent (AR)). All chemicals were commercial purchased and used without further purification. Hexaaminobenzene (HAB) was prepared according to the literature: **Reference:** Mahmood, J. Kim, D. Jeon, I.-Y. Lah, M. Baek, J.-B. *Synthesis.* 2013, 24, 246. 1-Methyl-4-(prop-1-yn-1-yl)benzene, 1-chloro-4-(prop-1-yn-1-yl)benzene, but-1-yn-1-ylbenzene and pent-1-yn-1-ylbenzene were prepared according to the literature: Reference: Briones, J. F. Davies, H. M. L. Org, Lett. 2011, 13, 3984.

Instrumentation

Transmission electron microscopy (TEM), dark-field scanning transmission electron microscopy (dark-field STEM), and energy dispersive spectrometer (EDS) characterizations were all carried out with a TECNAI G² TF20 instrument (200 kV, USA). The field-emission scanning electron microscopy (SEM) were performed on a Hitachi SU8010 instrument (10 kV, Japan). The X-ray photoelectron spectroscopy (XPS) were recorded at ESCALab250Xi spectrometer (USA). Crystalline patterns of the materials were identified by powder X-ray diffraction (PXRD) using Cu Kα

radiation ($\lambda = 1.5418$ Å) (Bruker D8 Advance). The loading amount of Cu elements were determined by inductively coupled plasma optical emission spectrum (ICP-OES) (Agilent ICPOES730, USA). Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectroscopy was performed on a Shimadzu UV2600 (Shimadzu, Japan). The NH₃/CO₂-TPD were measured by Xianquan TP-5080 (Tianjing Xianquan, China). ¹H-NMR (400 MHz), ¹³C-NMR (100 MHz) and ¹⁹F-NMR (376 MHz) spectra were determined on Bruker Avance III 400 MHz NMR.

Synthesis of Cu@C₂N

For the preparation of Cu@C₂N, HAB·3HCl (2 mmol), HTB·8H₂O (2 mmol) and CuCl₂·2H₂O (4 mmol) were mixed in 20 mL of acetic acid/ethanol (1:1) and refluxed at 120 °C for 4 h. After cooled to room temperature, the precipitate was removed by centrifugation. Afterward, 100 mL of H₂O was added to the supernatant and allowed to stand overnight. The resulting precipitate was centrifugated, washed with H₂O/ethanol (1/1), and then freeze-dried at -50 °C under reduced pressure (<100 Pa) for 24 h.

Catalytic activity evaluation

Hydration Reaction

Method a: 10 mg as-prepared heterogeneous catalyst (the containing Cu amount was confirmed by ICP-OES) were mixed with 0.5 mmol alkynes and 0.5 mL H₂O in 2 mL HCOOH. After stirring at 60 °C for 2 h, the catalyst was removed by centrifugation. The product was purified by flash chromatography (silica gel, hexane/EtOAc, 5:1, $R_f = 0.5$) to give ketones compounds **2**.

Method b: 10 mg as-prepared heterogeneous catalyst (the containing Cu amount was confirmed by ICP-OES) were mixed with 0.5 mmol alkynes, 0.5 mL H₂O and 0.5 mL concentrated H₂SO₄ in 2 mL CF₃CH₂OH. After stirring at 90 °C for 2 h, the catalyst

was removed by centrifugation. The product was purified by flash chromatography (silica gel, hexane/EtOAc, 5:1, $R_f = 0.5$) to give ketones compounds **2**.

Homo-coupling Reaction

Method a: 20 mg as-prepared heterogeneous catalyst (the containing Cu amount was confirmed by ICP-OES) were mixed with 0.5 mmol alkynes and 1 mol% Et₃N in 1 mL H₂O. After stirring at 80 °C for 4 h, the catalyst was removed by centrifugation. The product was purified by flash chromatography (silica gel, hexane, $R_f = 0.6$) to give symmetrical 1,3-diyne compounds **3**.

Method b: 20 mg as-prepared heterogeneous catalyst (the containing Cu amount was confirmed by ICP-OES) were mixed with 0.5 mmol alkynes and 1 mol% Et₃N in 1 mL IPA/H₂O (1:1). After stirring at 80 °C for 4 h, the catalyst was removed by centrifugation. The product was purified by flash chromatography (silica gel, hexane, $R_f = 0.6$) to give symmetrical 1,3-diyne compounds **3**.

Hetero-coupling Reaction

20 mg as-prepared heterogeneous catalyst (the containing Cu amount was confirmed by ICP-OES) were mixed with 0.5 mmol phenylacetylene, 0.1mmol alkynes and 1 mol% Et₃N in 1 mL IPA/H₂O (1:1). After stirring at 80 °C for 4 h, the catalyst was removed by centrifugation. The product was purified by flash chromatography (silica gel, hexane, $R_f = 0.6$) to give unsymmetrical 1,3-diyne compounds 4.

Supporting Figures

Figure S1. (a) The SEM images of C_2N . (b) The dark-field TEM image of C_2N . (c) Powder XRD patterns of C_2N . (d) XPS surveys of C_2N .

Figure S2. (a) The cyclic model reaction. (b) Catalytic performance of $Cu@C_2N$ catalyst during five cycles. (c) The SEM image of $Cu@C_2N$ after five recycling hydration reactions. (d) The SEM image of $Cu@C_2N$ after five recycling homo-coupling reactions.

Figure S3. Powder XRD patterns of Cu@C₂N after five catalytic cycles (Hydration Reaction).

Figure S4. Powder XRD patterns of $Cu@C_2N$ after five catalytic cycles (Homo-coupling Reaction).

Figure S5. (a) XPS Cu 2p spectra of Cu@C₂N before and after hydration reaction. (b) XPS Cu 2p spectra of Cu@C2N before and after Glaser-Hay reaction.

Figure S6. (a-b) Temperature-programmed desorption of CO_2 (a) and NH_3 (b) on C_2N . (c-d) Temperature-programmed desorption of CO_2 (c) and NH_3 (d) on $Cu@C_2N$.

Figure S7. ¹H and ¹³C NMR spectra of acetophenone (**2a**). ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, *J* = 8.4 Hz, 2H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 2.60 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 198.0,137.0, 133.0, 128.5, 128.1, 26.5.

Figure S8. ¹H and ¹³C NMR spectra of 1-(*p*-tolyl)ethan-1-one (**2b**). ¹H NMR (400 MHz, CDCl₃): δ 7.86-7.84 (m, 2H), 7.26-7.23 (m, 2H), 2.56 (s, 3H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 143.7, 134.5, 129.1, 128.2, 26.4, 21.5.

Figure S9. ¹H and ¹³C NMR spectra of 1-(*m*-tolyl)ethan-1-one (**2c**). ¹H NMR (400 MHz, CDCl₃): δ 7.74-7.71 (m, 2H), 7.32-7.30 (m, 2H), 2.55 (s, 3H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 198.24, 138.28, 137.12, 133.82, 128.75, 128.42, 125.56, 26.59, 21.27.

Figure S10. ¹H and ¹³C NMR spectra of 1-(*o*-tolyl)ethan-1-one (**2d**). ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, *J* = 8.0 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.23 (q, J = 5.6 Hz, 2H), 2.55 (s, 3H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 201.62, 138.40, 137.59, 132.04, 131.53, 129.40, 125.72, 29.50, 21.61.

Figure S11. ¹H and ¹³C NMR spectra of 1-(4-methoxyphenyl)ethan-1-one (**2e**). ¹H NMR (400 MHz, CDCl₃): δ 7.95-7.91 (m, 2H), 6.94-6.91 (m, 2H), 3.86 (s, 3H), 2.54 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 196.6, 163.3, 130.4, 130.1, 113.5, 55.3, 26.2.

Figure S12. ¹H and ¹³C NMR spectra of 1-(4-chlorophenyl)ethan-1-one (**2f**). ¹H NMR (400 MHz, CDCl₃): δ 7.90-7.86 (m, 2H), 7.43-7.39 (m, 1H), 2.57 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 196.6, 139.4, 135.3, 129.6, 128.7, 26.4.

Figure S13. ¹H and ¹³C NMR spectra of 1-(naphthalen-1-yl)ethan-1-one (**2g**). ¹H NMR (400 MHz, CDCl₃): δ 6.83 (s, 2H), 2.45 (s, 3H), 2.27 (s, 3H), 2.21 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 208.6, 139.9, 138.3, 132.3, 128.5, 126.9, 32.2, 21.0, 19.1.

Figure S14. ¹H and ¹³C NMR spectra of 1-mesitylethan-1-one (**2h**). ¹H NMR (400 MHz, CDCl₃): δ 8.76-8.74 (m, 1H), 7.96-7.83 (m, 3H), 7.60-7.43 (m, 3H), 2.71 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 201.8, 135.3, 133.9, 133.0, 130.1, 128.6, 128.3, 128.0, 126.4, 125.9, 124.2, 29.9.

Figure S15. ¹H and ¹³C NMR spectra of 1-(pyridin-3-yl)ethan-1-one (**2h**). ¹H NMR (400 MHz, CDCl₃): δ 9.14 (m, *J* = 2.0 Hz, 1H), 8.76, 8.75 (dd, *J* = 1.6, 1.6 Hz, 1H), 8.22, 8.20 (tt, *J* = 1.6, 2.0 Hz, 1H), 7.40 (q, *J* = 2.8 Hz, 1H), 2.62 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 196.56, 153.36, 149.75, 135.26, 132.04, 123.46, 26.55.

Figure S16. ¹H and ¹³C NMR spectra of 1-(furan-2-yl)ethan-1-one (**2j**). ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.45 (m, 1H), 7.06-7.04 (m, 1H), 8.41-8.39 (m, 1H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 188.59, 152.67, 146.43, 117.28, 112.19, 25.87.

Figure S17. ¹H and ¹³C NMR spectra of 1,1'-(1,4-phenylene)bis(ethan-1-one) (**2k**). ¹H NMR (400 MHz, CDCl₃): δ 8.04 (s, 4H), 2.65 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 197.5, 140.1, 128.5, 26.9.

Figure S18. ¹H and ¹³C NMR spectra of 1,1'-(1,4-phenylene)bis(ethan-1-one) (**2l**). ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 2.96 (q, *J* = 7.2 Hz, 2H), 2.39 (s, 3H), 1.21 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.45, 143.56, 134.44, 129.22, 128.09, 31.63, 21.59, 8.32.

Figure S19. ¹H and ¹³C NMR spectra of 1-(4-chlorophenyl)propan-1-one (**2m**). ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 2.97 (q, *J* = 7.2 Hz, 2H), 1.22 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.51, 139.27, 135.21, 129.40, 128.86, 31.79, 8.14.

Figure S20. ¹H and ¹³C NMR spectra of 1-phenylbutan-1-one (**2n**). ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, *J* = 8.0 Hz, 2H), 7.54 (t, *J* = 8.0 Hz, 1H), 7.45 (t, *J* = 6.4 Hz, 2H), 2.94 (t, *J* = 7.2 Hz, 2H), 1.81-1.72 (m, 2H), 1.00 (t, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.3, 136.9, 132.8, 128.4, 127.9, 40.4, 17.7, 13.8.

Figure S21. ¹H and ¹³C NMR spectra of 1-phenylpentan-1-one (20). ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, J = 7.6 Hz, 2H), 7.55 (t, J = 7.2 Hz, 1H), 7.45 (t, J = 8.0 Hz, 2H), 2.97 (t, J = 7.2 Hz, 2H), 1.72 (quint, J = 7.6 Hz, 2H), 1.41 (sext, J = 7.6 Hz, 2H), 0.954 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.6, 137.1, 132.9, 128.6, 128.1, 38.3, 26.5, 22.5, 13.9.

Figure S22. ¹H and ¹³C NMR spectra of 1,2-diphenylethan-1-one (**2p**). ¹H NMR (400 MHz, CDCl₃): δ 8.02-7.98 (m, 2H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 8.0 Hz, 2H), 7.34-7.25 (m, 5H), 4.28 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 136.6, 134.5, 133.1, 129.4, 128.6, 128.6, 128.5, 126.9, 45.5.

Figure S23. ¹H and ¹³C NMR spectra of 1,4-diphenylbuta-1,3-diyne (**3a**). ¹H NMR (400 MHz, CDCl₃): δ 7.54-7.52 (m, 4H), 7.37-7.31 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 132.5, 129.2, 128.4, 121.8, 81.5, 73.9.

Figure S24. ¹H and ¹³C NMR spectra of 1,4-di-p-tolylbuta-1,3-diyne (**3b**). ¹H NMR (400 MHz, DMSO-*d*6): δ 7.49 (d, *J* = 8.0 Hz, 4H), 7.25 (d, *J* = 8.0 Hz, 4H), 2.34 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*6): δ 140.5, 132.8, 130.1, 117.9, 82.3, 73.6, 21.6.

Figure S25. ¹H and ¹³C NMR spectra of 1,4-bis(4-ethylphenyl)buta-1,3-diyne (**3c**). ¹H NMR (400 MHz, DMSO-*d*6): δ 7.51 (d, *J* = 8.4 Hz, 4H), 7.28 (d, *J* = 8.4 Hz, 4H), 2.64 (q, *J* = 7.6 Hz, 4H), 1.17 (t, *J* = 7.6 Hz, 6H). ¹³C NMR (100 MHz, DMSO-*d*6): δ 146.6, 132.9, 128.9, 118.2, 82.3, 73.6, 28.6, 15.7.

Figure S26. ¹H and ¹³C NMR spectra of 1,4-bis(4-methoxyphenyl)buta-1,3-diyne (**3d**). ¹H NMR (400 MHz, DMSO-*d*6): δ 7.36 (d, *J* = 7.6 Hz, 4H), 6.91 (d, *J* = 8.4 Hz, 4H), 3.76 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*6): δ 159.6, 133.5, 115.1, 114.2, 92.5, 55.3.

Figure S27. ¹H and ¹³C NMR spectra of 1,4-bis(3-methoxyphenyl)buta-1,3-diyne (**3e**). ¹H NMR (400 MHz, DMSO-*d*6): δ 7.35 (t, *J* = 7.6 Hz, 2H), 7.18 (d, *J* = 8.8 Hz, 4H), 7.08-7.05 (m, 2H), 3.78 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*6): δ 159.7, 130.6, 125.3, 121.9, 117.5, 117.1, 82.3, 73.7, 55.8.

Figure S28. ¹H and ¹³C NMR spectra of 1,4-bis(2-methoxyphenyl)buta-1,3-diyne (**3f**). ¹H NMR (400 MHz, DMSO-*d*6): δ 7.52 (d, *J* = 6.0 Hz, 2H), 7.43 (d, *J* = 8.8 Hz, 2H), 7.09 (d, *J* = 8.8 Hz, 2H), 6.98 (d, *J* = 7.6 Hz, 2H), 3.86 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*6): δ 161.6, 134.4, 132.0, 121.1, 112.0, 110.1, 79.6, 78.0, 56.2.

Figure S29. ¹H, ¹³C and ¹⁹F NMR spectra of 1,4-bis(4-fluorophenyl)buta-1,3-diyne (**3g**). ¹H NMR (400 MHz, DMSO-*d*6): δ 7.69 (q, *J* = 3.6 Hz, 4H), 7.30 (d, *J* = 9.2 Hz, 4H). ¹³C NMR (100 MHz, DMSO-*d*6): δ 164.5, 162.0 135.5 (d, *J* = 9.0 Hz), 117.3 (d, *J* = 2.9 Hz), 116.8 (d, *J* = 22.4 Hz), 81.2, 73.7. ¹⁹F NMR (376 MHz, DMSO-*d*6): δ -107.90

(376 MHz, DMSO-d6): δ -61.56

Figure S31. ¹H and¹³C NMR spectra of 1-ethyl-4-(phenylbuta-1,3-diyn-1-yl)benzene (**4a**). ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, *J* = 8.0 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.36-7.30 (m, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 2.65 (q, *J* = 7.6 Hz, 2H), 1.23 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 145.9, 132.5, 129.1, 128.5, 128.1, 128.1, 122.0, 118.9, 82.0, 81.2, 74.1, 73.3, 29.0, 15.3.

Figure S32. ¹H and¹³C NMR spectra of 1,3,5-trimethyl-2-(phenylbuta-1,3-diyn-1-yl)benzene (**4b**). ¹H NMR (400 MHz, CDCl₃): δ 7.54-7.51 (m, 2H), 7.34-7.32 (m, 2H), 6.86 (s, 2H), 2.44 (s, 6H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 142.0, 138.9, 132.4, 129.0, 128.5, 127.8, 122.2, 118.6, 82.4, 80.9, 79.9, 74.4, 21.5, 21.0.

Figure S33. ¹H and¹³C NMR spectra of 1-(phenylbuta-1,3-diyn-1-yl)-4-(trifluoromethyl)benzene (**4c**). ¹H NMR (400 MHz, CDCl₃): δ 7.64-7.53 (m, 6H), 7.40-7.33 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 133.7, 132.6, 130.9, 130.6, 129.6, 128.5, 125.7, 125.4 (q, J = 3.8 Hz), 125.1, 122.4, 121.4, 82.9, 79.8, 76.3, 73.4.

Figure S34. ¹H and¹³C NMR spectra of 1-methoxy-4-((4-(trifluoromethyl)phenyl)buta-1,3diyn-1-yl)benzene (**4d**). ¹H NMR (400 MHz, CDCl₃): δ 7.61, 7.58 (dd, *J* = 8.4, 8.8 Hz, 4H), 7.48 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 160.7, 134.3, 132.6, 130.5 (q, *J* = 32.5 Hz), 126.0, 125.4 (q, *J* = 3.8 Hz), 123.8, 114.3, 113.2, 83.2, 79.4, 76.6, 72.4, 55.4.

		Cu (mg·Kg ⁻¹)	Cu wt%
Before five cycles		65100.0	6.51%
After five cycles	Hydration Reaction	65163.6	6.51%
	Homo-coupling Reaction	60938.3	6.09%

Table S1. The ICP-OES results of Cu in the samples of Cu@C $_2N$

1a	+ 1q	Cu@C ₂ N (2 Et ₃ N (1 m IPA/H ₂ O, a	20 mg) 101%) 80 °C			3a 4a 3c
Entres	1 a	1q	3 a	4 a	3c	
Entry	(mmol)	(mmol)	yield%	yield%	yield%)
1°	0.1	0.1	48	trace	42	
2	0.1	0.1	42	12	35	
3	0.1	0.2	32	35	27	
4	0.1	0.3	25	58	trace	

IJ Π

Table S2. Optimization of reaction conditions for the hetero-coupling.^{a,b}

^aReaction conditions: The mixture of **1a** (0.1 mmol), **1q** (0.1-0.3 mmol) and catalysts (20 mg) with 1 mol% Et₃N was stirred at 80 °C in solvent (1 mL) under an air atmosphere. ^bIsolated yields. °H₂O as solvent.

la	+ H ₂ O — (0.5 mL)	Catalyst (10 mg)	O 2a
Entry	Catalyst	1a Conversion%	2a Yield%
1	-	-	n.r. ^c
2	C_2N	-	n.r.
3	CuCl ₂	-	n.r.
4	CuI	-	n.r.
5	C ₂ N+CuCl ₂	30	26
6	C ₂ N+CuI	-	n.r.

Table S3 Mechanistic studies of hydration of alkynes.^{a,b}

^aReaction conditions: The mixture of **1a** (0.5 mmol) and catalysts (10 mg) was stirred at 60 °C in HCOOH (2 mL) under an air atmosphere. ^bIsolated yields. ^cn.r. = no reaction.

	Catalyst (20 mg) Et ₃ N (1 mol%)			
	H ₂ O,air, 80 °C			
1a		3a		
Entry	Catalvat	1a	3 a	
Entry	Cataryst	Conversion%	Yield%	
1	-	-	n.r. ^c	
2	C ₂ N	-	n.r.	
3	CuCl ₂	13	11	
4	CuI	17	15	
5	C ₂ N+CuCl ₂	16	13	
6	C ₂ N+CuI	22	18	

Table S4 Mechanistic studies of Glaser-Hay reaction.^{a,b}

^aReaction conditions: The mixture of **1a** (0.5 mmol) and catalysts (20 mg) was stirred at 80 °C in H₂O (1 mL) with 1mol% Et₃N under an air atmosphere. ^bIsolated yields. ^cn.r. = no reaction.