Supporting Critical Raw Material Circularity – Upcycling Graphite from Waste LIBs to Zn-air Batteries

Reio Praats^a, Alexander Chernyaev^b, Jani Sainio^c, Mari Lundström^b, Ivar Kruusenberg^a and Kerli Liivand^{a*}

^aR. Praats, I. Kruusenberg, K. Liivand

National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia, *E-mail: kerli.liivand@kbfi.ee

^bA. Chernyaev, M. Lundström

Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto

University, P.O. Box 16200, 00076 Aalto, Finland

^cJ. Sainio

Department of Applied Physics, School of Science, Aalto University, P.O. Box 15100, 00076 Aalto, Finland

ARTICLE

Figures

Figure S1. SEM-EDX mapping of Raw material, wt% of elemental composition shown in Table 1 (in manuscript file).

Figure S2. XRD diffractogram of Raw material.

ARTICLE

Figure S3. SEM-EDX mapping of HT-Bat-res.

Figure S4. SEM-EDX mapping of Bat-res-N.

ARTICLE

Figure S5. SEM-EDX mapping of HT-Bat-res-BM-N.

Figure S6. SEM micrographs of (a) Bat-res-N and (b) HT-Bat-res-BM-N catalyst materials using 3000x magnification.

Journal Name

Figure S7. XRD diffractograms of (a) Raw material, *HT-Bat-res*, *Bat-res-N*, *HT-Bat-res-BM-N* catalyst materials, (b) *HT-Bat-res*, (c) *Bat-res-N* and (d) *HT-Bat-res-BM-N* with standard cards.

8 | J. Name., 2012, 00, 1-3

Figure S8. Raman spectra of Raw material, HT-Bat-res, Bat-res-N, HT-Bat-res-BM-N catalyst materials.

Figure S9. (a) N₂ adsorption-desorption isotherms and (b) pore size distribution of Raw material, *HT-Bat-res*, *Bat-res-N*, *HT-Bat-res-BM-N* materials.

Figure S10. ORR polarization curves on different rotating speeds for (a) *Bat-res-N* and (c) *HT-Bat-res-BM-N* and Koutecky-Levich plots derived from ORR data from the RDE data (b) *Bat-res-N* and (d) *HT-Bat-res-BM-N* for studied materials. The insets of Fig b and d show the dependence of *n* vs potential. (e) ORR Tafel plots and (f) OER Tafel plots for Raw material, *HT-Bat-res, Bat-res-N* and *HT-Bat-res-BM-N*.

Figure S11. a) Zn-Air battery assembly and b) open circuit potential of different ZABs

Tables

Table S1. The atomic percentages (at-%) of the elements for *Bat-res-N* and *HT-Bat-res-BM-N* samples including peak fitting results from XPS data (data acquired from Fig. 2). The error associated with each value is roughly $\pm 10\%$ of the value.

Element	Bat-res-N	HT-Bat-res-BM-N
С	77.1	74.2
of which $sp^2 C$	57 %	55 %
$sp^3 C / sp^2 C-N$	21 %	24 %
C-O/ sp ³ C-N	9 %	10 %
C=O	4 %	4 %
O-C=O	3 %	2 %
π-π*	6 %	5 %
0	12.4	13.9
Ν	5.6	6.4
of which Pyridinic-N	50 %	55 %
Pyrrolic-N	29 %	24 %
Graphitic-N	11 %	11 %
N-oxide	10 %	9 %
Al	2.1	2.1
Mn	0.5	0.9
Li	1.4	0.6
Со	0.1	0.4
of which Co(0)	6 %	8 %
CoO / Co-N	94 %	92 %
Zr	-	0.2
Cu	0.3	0.2
Ni	0.1	0.1
F	0.3	0.9
S	0.1	0.1

This journal is © The Royal Society of Chemistry 20xx

~ 1		0.077			~ 1	~ 1	D 0
Catalyst	Mass	OCV	Peak power	j of peak	Stability	Stability	Ref
	loading	(V)	density (mW	power	(h)	conditions	
	$(mg cm^{-2})$		cm ⁻²)	density (mA			
				cm^{-2}			
Bat-res-N	1.0	1.37	97	150	-	-	This
	-						article
HT_Rat_res_N	1.0	1 40	104	160	80	30 min charge-	This
III Dui res iv	1.0	1.10	101	100	00	discharge 10	article
						m A am 2	articic
200/ D4D/C	1.0	1.45	05	150	15	20 min altanta	T1.:-
20% PIKU/C	1.0	1.45	95	138	15	50 min charge-	
						discharge 10	article
					1	mA cm- ²	
Co@CoFe _{0.01-}	1.0	1.56	174	235	100	10 min charge-	1
N-C						discharge 1	
						mA cm- ²	
FeNi/N-	N/I	1.47	321	450	400	10 min charge-	2
GPCM						discharge 10	
						mA cm ⁻²	
Mno FearC/N	2.0	1 50	160	250	334	20 min charge-	3
C	2.0	1.00	100	200	551	discharge 5	
C						$m\Lambda \text{ cm}^2$	
Dd Cu /N #GO		1.46	164	220			4
$Pd_3Cu_1/N-FGO$	-	1.40	104	230	-	-	5
$N1CO_2O_4/NCN$	~6	1.51	91	1/5	380	60 min charge-	5
I s/N1Co						discharge 2	
						mA cm- ²	
FeCo@PCNF	2.0	1.48	290	460	N/I	N/I	6
Cu/Fe-NG	1.0	1.53	164	270	18	20 min charge-	7
						discharge 10	
						mA cm- ²	
Fe-Cu-N4/C	2.0	1.45	85	150	250	N/I	8
					cycles		
NCNT/MnO-	2.0	1 4 5	98	160	20	5 min charge-	9
$(MnFe)_{2}O_{2}$	2.0	1.10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100	20	discharge 20	
(10111 0)203						$m\Lambda \text{ cm}^2$	
NCNT/CaEa	2.0	1.56	00	160	20	5 min shanga	9
C-E-O	2.0	1.50	90	100	20	J'antheres 20	
$COFe_2O_4$						discharge 20	
	1.0	1.50		• • • •		mA cm- ²	10
FeCu _{0.3} -N/C	1.0	1.50	111	200	75	N/I min	10
						charge-	
						discharge 5	
						mA cm- ²	
Pd_Cu/C		1 4 3	219	300	N/I	N/I	11

Table S2. Comparison of catalysts ZAB performance.

References

- 1 R. Hao, J. Chen, Z. Wang, Y. Huang, P. Liu, J. Yan, K. Liu, C. Liu and Z. Lu, J. Colloid Interface Sci, 2021, 586, 621–629.
- 2 M. Zhang, X. M. Hu, Y. Xin, L. Wang, Z. Zhou, L. Yang, J. Jiang and D. Zhang, Sep. Purif. Technol., 2023, 308, 122974.
- 3 C. Lin, X. Li, S. S. Shinde, D. H. Kim, X. Song, H. Zhang and J. H. Lee, ACS Appl. Energy Mater., 2019, 2, 1747–1755.
- 4 H. Chen, L. Bao, C. Ou, H. Wang, Y. Liao, R. Li and H. Liu, Energy Fuels, 2022, 36, 7699–7709.
- 5 C. Chen, H. Su, L. N. Lu, Y. S. Hong, Y. Chen, K. Xiao, T. Ouyang, Y. Qin and Z. Q. Liu, J. Chem. Eng., 2021, 408, 127814.
- 6 C. Deng, J. Tan, C. Y. Toe, X. Li, G. Li, X. Jiang, S. Wei, H. Yang, Q. Hu and C. He, J. Mater. Chem. A: Mater., 2022, 10, 17217–17224.
- 7 L. Xu, Y. Tian, D. Deng, H. Li, D. Zhang, J. Qian, S. Wang, J. Zhang, H. Li and S. Sun, ACS Appl. Mater. Interfaces., 2020, 12, 31340– 31350.
- 8 T. H. Chiang, S. C. Sun and Y. S. Chen, J. Taiwan Inst. Chem. Eng., 2020, 115, 175–186.
- 9 Q. Qin, P. Li, L. Chen and X. Liu, ACS Appl. Mater. Interfaces, 2018, 10, 39828–39838.

12 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

- 10 B. Wang, L. Xu, G. Liu, Y. Ye, Y. Quan, C. Wang, W. Wei, W. Zhu, C. Xu, H. Li and J. Xia, J. Alloys Compd., 2020, 826, 154152.
- 11 M. Ma, W. Zhu, Q. Shao, H.
- 12 Shi, F. Liao, C. Shao and M. Shao, ACS Appl. Nano Mater., 2021, 4, 1478–1484.