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Table S1. Agricultural waste-derived materials for energy applications.

Entry Agriculture 

waste

Electrocatalyst Application BET surface 

area (m2 g-1)

Highlights Ref.

1 Fresh 

banana peels

N-carbon nanoparticles 

(NPs) and N-carbon 

NPs-NH3
a

ORR 734.8 and 

941.2

N-CNPs-NH3 

showed high 

performance in 

ORR

1

2 Pomelo peel N-D hierarchical porous 

carbon/reduced 

graphene oxide (rGO)

ORR 1194 - 2

3 Grapefruit 

peel

Porous carbon OER/ORR 1037 to 1194 Porous carbon 

showed high 

performance as an 

OER/ORR catalyst 

in seawater

3

4 Pomelo peel Fe2N/N-PPCb ORR 1103.90 - 4

5 Mangosteen 

peel

Nitrogen self-doped 

porous graphitic carbon

ORR 1168 Mangosteen peel 

was applied as both 

N and C source

5

6 Sweet potato 

vines

N and S self-doped 

porous carbon

ORR 884.9 - 6

7 Pomegranate 

peel

Pt3Ni/rGO and 

Pt3Co/rGO

ORR - Pt3Ni/rGO showed 

better catalytic 

performance than 

Pt3Co/rGO

7

8 Bagasse N-D nanoporous carbon 

sheets

ORR 1284 - 8

9 Pomelo peel N-D nanoporous carbon ORR Up to 1444.9 The catalyst had 

porous structure 

and high graphitic 

N content

9

10 Rice husks Si-GQD 

nanocompositesc

ORR - - 10

11 Kidney bean N-D porous nanocarbon ORR - - 11

12 Pomelo peel Metal-free N-D porous 

carbons

ORR 1165 - 12
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13 Banana 

peels

Ba0.5Sr0.5Co0.8Fe0.2O3-δ 

on N-D mesoporous 

carbon

ORR and OER 372.3 - 13

14 Lignin (L), 

straw (S) 

and 

shaddock 

peel (SP)

Ru-based composites 

synthesized from 

nitrogen doped lignin, 

straw and shaddock peel 

(Ru@o-NL, Ru@o-NS 

and Ru@o-NSP)

HER 680.4  (for o-

NL)

Ru@o-NL 

presented better 

HER activity than 

Ru@o-NS and 

Ru@o-NSP

14

15 Bean sprout 

(BS)

BS-800 HER and high 

specific 

capacitance for 

supercapacitors

397.15 - 15

16 Pomelo peel NiFe@N-D 

carbon/carbonized 

pomelo peel

ORR/OER 367.5 - 16

17 Watermelon 

peels

Carbon-based 

nanocomposites

OER/HER 724-1331 (in 

different 

temperatures)

Overpotential and 

Tafel slope of 237 

mV at 10 mA cm-2 

and 69.8 mV dec-1, 

respectively for 

OER, overpotential 

of 111 mV for 

HER

17

18 Grapefruit 

peel

Ni NPs embedded in 

nitrogen self-doped 

graphene-like carbon

OER/HER 43 Overpotential of 

350 and 165 mV 

and moderate Tafel 

slope OER and 

HER of 20 and 10 

mA cm-2, 

respectively

18

19 Sugarcane 

bagasse

Sugarcane bagasse-

based porous carbon 

nanofiber-supported the 

CoP/Co2P 

heterostructure

OER/HER 233.45 - 19

20 Pomegranate Pd NPs supported CO2RR and - - 20
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peel NiO/C alkaline direct 

ethanol fuel 

cell
a Ammonia-activated N-D carbon NPs

b Fe2N NPs in situ immobilized over N-D porous carbon derived from pomelo peel

c Hybrid silicon nanosheets-graphene quantum dot nanocomposites.
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Table S2. Carbonaceous compounds from agricultural waste resources, their properties, and 

applications for supercapacitors.

Entry Agricultural 

resource

Carbonaceous 

material

Surface area 

(m2 g-1)

Other properties Ref.

1 Pomelo peel Two-dimensional 

lamellar carbon

1927 Rich in surface oxygen functional 

groups with a very high capacitance 

(398 F g-1 at 1 A g-1) and a high energy 

density (21 Wh kg-1 at a power density 

of 180 W kg-1)

21

2 Sapindus 

Mukorossi peel 

(SMP)

SMP-based 

activated carbon

1254.5 Specific capacitance of 314.5 F g-1 at 1 

A g-1

22

3 Watermelon 

peel

Heteroatom-

doped 

hierarchical 

porous carbon

1660 High specific capacitances of up to 278 

F g-1 in 1 M H2SO4 electrolyte

23

4 Pomelo peel N, O-co-doped 

hierarchical 

porous carbon

1582 Specific capacitance of 180 F g-1 at 0.5 

A g-1

24

5 Orange peel Porous carbon 912.4 Specific capacitance of 375.7 F g-1 at 1 

A g-1 and good rate retention of 50.9% 

from 1 to 100 A g-1

25

6 Wheat straw 

cellulosic foam

Hierarchical 

Porous carbon

772 Specific capacitance of 226.2 F g-1 at a 

current density of 0.5 A g-1

26

7 Rice straw N-D porous 

carbon

2786.5 Capacitance of 317 F g-1 at 1 A g-1 27

8 Durian peel Activated N/P co-

doped carbon 

with a 

hierarchical 

porous structure 

(84 vol % 

micropores)

3416 N (2.17 at. %) and P (0.48 at. %) doping 

amounts with specific capacitance 

(383.4 F g-1 at 0.5 A g-1), ideal rate 

performance (255.6 F g-1 at 20 A g-1), 

and superior cyclic performance (98.3% 

capacitance retention after 10 000 cycles 

at 5 A g-1)

28

9 Rice husk Activated 

graphene-based 

carbon (AGC)

3292 AGC was modified with Ni(OH)2 with 9 

wt.% loading and used for 

supercapacitor applications with a 

29
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specific capacitance of up to 300 F g-1 at 

a current density of 50 mA g-1

10 Wheat straw Porous carbon 1905 Pore distribution of 0.62 cm3 g-1 and 

meso-/macropores content of 0.53 cm3 

g-1 with the oxygen content of up to 

21.6% and high specific capacitance of 

268.5 F g-1 at 0.5 A g-1

30

11 Orange peel Nitrogen and 

oxygen co-doped 

carbon

917.66 Specific capacitance of 282.3 F g-1 at 1 

A g-1

31

12 Rice husk Nitrogen and 

phosphorus co-

doped porous 

carbon

2188 Pore volume of 3.025 cm3 g-1, pore 

diameter (PD) of 5.537 nm and specific 

capacitance of 236 F g-1 at a current 

density of 0.5 A g-1

32

13 Orange peel Orange peel 

carbon (OPC800)

2004 Pore volume of 1.24 cm3 g-1 and 

maximum specific capacitance of 306.6 

F g-1 at 0.5 A g-1

33

14 Mangosteen 

peel

Porous carbon 2623 Specific capacitance of 357 F g-1 at 1 A 

g-1

34

15 Coconut husk Activated carbon From 823 to 

1033.20

Specific capacitance of 184 F g-1 35

16 Rice husk Activated 

carbon/polyanilin

e

2265 Specific capacitance of 465 F g-1 in 1 M 

H2SO4 at discharge current density 0.2 

A g-1 with polyaniline content 60 wt.%

36

17 Rice husk Graphene 

nanosheets

~1225 Specific capacitance of 115 F g-1 at 0.5 

mA cm-2

37

18 Pomegranate 

husk

N-D porous 

nanosheets carbon

1754.8 Pore volume of 1.05 cm3 g-1, nitrogen 

doping content of 4.51 wt% and a high 

specific capacitance of 254 F g-1 at a 

current density of 0.5 A g-1

38

19 Rice husk Mesoporous 

carbons

1737 Specific capacitance and energy density 

of 157 F g-1 and 84 Wh kg-1 at 0.05 A g-

1, respectively

39

20 Banana peel Nitrogen-doped 

banana peel-

derived porous 

carbon foam

1357.6 Pore volume of 0.77 cm3 g-1, mesopore 

size distributions around 3.9 nm and 

specific capacitance of 185.8 F g-1 at 5 

mV s-1 and 210.6 F g-1 at 0.5 A g-1 in 6 

40
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M KOH aqueous electrolyte

21 Rice husk Activated carbon 2516 Average pore diameter of 3.02 nm 41

22 Rice husk Mesoporous 

carbon

2009 Mesoporosity of 90.8% with a specific 

capacitance of 176 F g-1 at a current 

density of 50 mA g-1

42

23 Rice husk Nanoporous 

activated carbon

2523.4 Specific capacitance of 250 F g-1 at the 

current density of 1 A g-1

43
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Table S3. Supercapacitors from agricultural wastes and their properties.

Entry Agricultural 

precursor

Prepared material Specific 

capacitances (F 

g-1)/ current 

density (A g-1)

Capacitance 

retention / 

cycles

Energy density 

(Wh kg-1)

Ref.

Activated carbon-

H3PO4

142/ 0.1 101%/ 5000 -1 Citrus 

bergamia 

peel Activated carbon-

Mn3O4

289/ 0.1 88%/ 5000 50.8 at a power 
density of 240 W 

kg-1

44

2 Dragon fruit 

peel

N-D mesoporous 

dominated hierarchical 

activated carbon

427/ - 109%/ 5000 112 Wh kg-1 at a 

power of 3214 W 

kg-1

45

3 Mangosteen 

peels

Liquefied bio-carbon 

nanofibers

365.5/ 0.5 97.7%/ 

10000

18 at a power 

density of 348.9 

W kg-1 at 1 A g-1 

current density

46

4 Potato peel Sulfur and phosphorus 

co-doped porous 

activated carbon

323/ 1 94.3%/ 

10000

45.5 at a power 

density of 800 W 

kg-1

47

5 Buckwheat 

husk

Nitrogen, sulfur and 

oxygen-co-doped 

porous carbon

285/ 1 96%/ 30 6.60 at a power 

density of 250 W 

kg-1

48

6 Areca 

catechu 

Husk (ACH)

Carbon nanofiber 181.96/ - - 25.27 for power 

density of 91.07 

W kg-1

49

7 Potato peel Copper 

phthalocyanine/activate

d carbon

237/ 0.1 80%/ 1000 - 50

8 Orange peel Boroncarbonitride 209/ 2.5 - - 51

9 Corn husk Hierarchical porous 

carbon

314.83 at 1 mV 

s-1 and 297.81 at 

5 mA cm-2 in 0.5 

M H2SO4 

electrolyte

- 9.85 at a high-

power density of 

7185 W kg-1

52

10 Garlic peel 3D hierarchical porous 

carbon

426/ 1 - 59.57 and 49.18 

at power density 

53
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of 190.06 W kg-1 

and 16.24 KW 

kg-1, respectively

11 Rice husk Porous rice husk-based 

activated carbon

147/ 0.5 92%/ 10000 

at 1 A g-1

- 54

Original bio-structured 

porous carbon (PC3-600)

390/ 1 73.5% at a 

high current 

density of 50 

A g-1

-

3D architecture porous 

carbon (HPC2-700)

353/ 1 76.48% at a 

high current 

density of 50 

A g-1

Energy density of 

20.4 at 872 W kg-

1 in 1 M Na2SO4 

electrolyte

12 Mung bean 

husk

Porous carbon block 

(HPPC2-700)

304/ 1 77.3% at a 

high current 

density of 50 

A g-1

-

55

13 Corn straw Hierarchical porous 

carbon based on corn 

straw carbon nanofiber

376.5/ 0.5 94.18%/ 

5000 at the 

current 

density of 2 

A g-1

- 56

14 Buckwheat 

husk

Nitrogen doped 3D 

hierarchical porous 

carbon

326/ 1 95% of the 

initial 

capacitance 

at 5 A g-1/ 

5000

20.4 at a power 

density of 699 W 

kg-1

57

15 Durian peel Activated carbon/CDs 60/ - - - 58

16 Orange peel N-D porous carbon 268/ - 92%/ up to 

6000

32.08 at a power 

density of 700.43 

W kg-1

59

17 Pomelo peel Nitrogen/sulfur dual-

doped sponge-like 

porous carbon (NSC-

600)

310/ 0.5 98.8%/ 

10000

21.4 at a power 

density of 259.9 

W kg-1

60

18 Rice husk Activated carbon 315/ 0.5 - - 61

19 Pomelo peel CuS nanosheets-based 954/ 1 81.99% at 7 - 62
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3D micro-flowers 

grown on pomelo peel 

-derived porous 

activated carbon

A g-1/ 5000

20 Ginger straw Ginger straw-based 

porous carbon

274/ 0.1 88%/ 6000 at 

a current 

density of 5 

A g-1

34.06 at a power 

density of 4.35 

kW kg-1

63

21 Pineapple 

peel

Carbon/ZnMn2O4 

composite

104.89/ 300 mA 

g-1

97.06%/ 

5000

- 64

22 Rice husk Rice husk activated 

carbon/NiCo2S4

133.3/ 0.2 A 86%/ 5000 at 

a current 

density of 1 

A g-1

41.6 at power 

density of 150 W 

kg-1

65

23 Rice husk Poly(3,4-

ethylenedioxythiophen

e)-CO2@C hybrid

458/ 1 ∼98%/ 5000 280 at power 

density of ~1 kW 

kg-1

66

24 Rice husk Hierarchical micro-

/mesoporous carbon

302.2/ 1 88.5%/ 5000 - 67

25 Pomelo peel Nitrogen-doped 

hierarchical porous 

carbon600 (Porous 

carbon at 600 °C)

208.7/ 1 - 7.3 at a current 

density of 1 A g-1 

in 1 M H2SO4 

electrolyte

68

26 Banana peel Porous carbon 

electrode

258-273/ 0.1 90%/ 1000 - 69

27 Rice husk Activated carbon 168/ 250 mA g-1 - - 70

28 Banana peel MnO2/biomass-derived 

porous carbon

139.6/ 300 mA 

g-1

92.3%/ 1000 

at 1 A g-1

- 71

29 Wheat husk NiO@porous carbon 500/ 10 92%/ 8000 - 72

30 Rice straw Graphene-like 

activated carbon

255/ 0.5 98%/ 10000 - 73

31 Rice husk Rice husk porous 

carbon

260/ 1 86%/ 10000 - 74

32 Shaddock 

peel

N-doped activated 

shaddock peel 

carbon/graphene/bacter

ial cellulose

250.5/ - 97%/ 10000 - 75
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33 Pomelo peel Oxygen-rich 

hierarchical porous 

carbon

222.6/ 0.5 99%/ 5000 - 76

34 Rice husk Silica-free rice husk-

derived porous carbon

220/ 0.5 98%/ 10000 - 77

35 Pomelo peel Cobalt nickel 

aluminum layered 

double 

hydroxide@carbonaceo

us aerogel

1134/ 1

902/ 10

- - 78

36 Grapefruit 

Peel

Hierarchically porous 

N-doped carbon 

nanosheets

Up to 311/- 94.1%/ 

10000

17.7 at a power 

density of 1100 

W kg-1 in 1 M 

H2SO4 electrolyte

79

37 Pomelo peel 3D porous framework-

like N-D carbon

260/ 1 84.2%/ 

10000 at 10 

A g-1

- 80
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Table S4. Agricultural wastes-derived carbon for lithium-ion batteries (LIBs).

Entry Source Prepared material Electrolyte Highlights Ref.

1 Rice husk Nanoporous 

silicon@graphitized 

carbon composites

LiPF6 solution (1 M) in a 

mixture of ethylene 

carbonate/dimethyl 

carbonate/fluoroethylene 

carbonate (EC/DMC/FEC, 

3:6:1 v/v/v)

Initial coulombic 

efficiency of 41% and 

the reversible specific 

capacity of 681.8 mAh 

g-1 after 100 times at 

0.2 A g-1

81

2 Rice husk 

and lignin

Si/C as an anode 

material

1 M LiPF6 in a mixture of 

EC:ethyl methyl carbonate 

(EMC):DMC (1:1:1, v/v/v)

High specific capacity 

retention of 572 mAh g-

1 at 1 A g-1 after 1000 

cycles

82

3 Rice husk Si/C as an anode 

material

1 M LiPF6 in a mixture of EC 

and DMC (1:1 vol%)

Reversible capacity of 

up to 1247.8 mAh g-1 

with 92.4% capacity 

retention over 50 cycles

83

4 Rice husk Si@SiO2@C as an 

anode material

1 M LiPF6 in a 1:1 mixture of 

EC and diethyl carbonate 

(DEC)

After 200 cycles at 1 A 

g-1, the anode delivered 

a reversible capacity of 

973.1 mAh g-1, showing 

a capacity retention of 

93.1% and a Coulumbic 

efficiency of above 

99.7%

84

5 Rice husk Si/C composite as an 

anode material

- Capacity retention rate 

above 90% after 150 

cycles at the 

charge/discharge rate of 

0.5 C (1 C = 600  mAh 

g-1)

85

6 Rice husk Pitaya-like 

SiOx/nitrogen-doped 

carbon superstructures 

prepared as an anode

1 M LiPF6 in EC and DMC 

(volume ratio of 1:1) with 5% 

FEC

Specific capacity of 

622.8 mAh g-1 after 100 

cycles at 0.1 A g-1 and 

an excellent long cycle 

performance of 190.1 

mAh g-1 after 5000 

86
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cycles at 5 A g-1

7 Rice husk C/SiO2 composite as 

an anode material

1 M LiPF6 in EC:EMC:DEC 

(1:1:1, v/v/v)

Reversible specific 

capacity of 553 mAh g-1 

after 100 cycles at 0.1 

A g-1

87

8 Rice husk Porous N-D 

carbon/SiOx composite 

as an anode material

1 M LiPF6 in EC:EMC:DEC 

(1:1:1, v/v/v)

Reversible capacity up 

to 1018.5 mAh g-1 at 

0.1 A g-1

88

9 Rice husk Hierarchically porous 

SiO2/N-D carbon 

composites as anode 

materials

1 M LiPF6 in DMC/EC (1:1 

v/v)

Reversible capacity of 

556 mAh g-1 over 1000 

cycles at 1 A g-1

89

10 Rice husk Rice husk-derived 

silicon-tin/N-D 

graphene composite 

nanostructure as anode 

materials

1 M LiPF6 in the DMC/EC 

(1:1 v/v)

The composite with 

10% Sn and 10% Si on 

N-D graphene delivered 

a capacity of 480 mAh 

g-1 after 100 cycles

90

11 Rice husk SiO2/C and Si/C 

composites as anode 

materials

1 M LiPF6 in EC/DEC (1:1 

vol%)

- 91

12 Rice husk Rice husk-derived 

SiOx@carbon 

nanocomposites

1 M LiPF6 in EC/DMC (1:1) The anode showed a 

reversible capacity of 

1315 mAh g-1 after 100 

cycles at 100 mA g-1

92

13 Rice husk Rice husk-derived 

carbon@SnO2@rGO 

composite as an anode 

electrode

1 M LiPF6 The anode showed a 

reversible capacity of 

1206.9 mAhg-1 at a 

current density of 0.2 C 

after 100 cycles

93

14 Rice husk Rice husk lignin‑based 

porous carbon and 

ZnO composite as an 

anode material

- The anode showed a 

discharge capacity of 

898.1 mAh g-1 at 0.2 C 

after 110 cycles

94

15 Rice husk Rice husk-based 

C/SiO2 composites as 

anode materials

1 M LiPF6 in EC:DEC:DMC 

(1:1:1, v/v/v)

Good cycling 

performance under a 

current density of 100 

mA g-1

95



15

16 Rice husk C/SnO2 composite 

anode

1 M LiPF6 in a mixture of 

propylene carbonate, EC and 

DMC (1:1:1 in volume)

The results showed the 

fifty-discharge capacity 

of 550 mAh g-1 at 

current density of 100 

mA g-1 (180 mAh g-1 

for SnO2 anodes)

96

17 Rice husk P-doped porous 

carbon/SiOx 

composites as anode 

materials

1 M LiPF6 in EC:DMC:EMC 

(1:1:1, v/v/v) with 5% FEC

Capacity of 1151.8 

mAh g-1 at 0.1 A g-1

97

18 Rice husk N-D carbon/SiOx 

composites as anode 

materials

1 M LiPF6 in EC, DMC and 

DEC (1:1:1 in volume)

The composite 

displayed high 

reversible capacity (at a 

current density of 100 

mA g-1, after 100 cycles 

the discharge capacity 

as high as 1110 mAh g-

1)

98

19 Rice husk SiO2/C as anode 

materials

1 M LiPF6 dissolved in an 

equal volume mixture of EC 

and DMC

Capacity of 756.9 

mAhg-1 after 150 

charge-discharge cycles 

at 0.2 C and 620 mAh 

g-1 after 600 cycles at 2 

C

99

20 Rice husk 

ash

SiO2/C composite as 

an anode material

1 M LiPF6 in EC:EMC:DMC 

(1:1:1, v/v/v)

Reversible specific 

capacity of 404 mAh g-1 

over 500 cycles at 0.25 

C

100

21 Rice husk Rice husk-nano 

Si@C/CNT as anode 

materials

1 M LiPF6 and 6 vol% of 

vinylene carbonate in a 

solution of EC and DEC 

(volume ratio of 1:1)

Reversible capacity of 

989.5 mAh g-1 at 0.5 C 

(1 C = 4.2 A g-1) and 

345 mAh g-1 at 3 C

101

22 Rice husk ZnO/CoO@rice husk-

Cellulose 

nanocomposites as 

anode materials

- Capacity of 972 mAh g-

1 over 150 cycles at 100 

mA g-1

102

23 Rice husk SiO2 as an anode 1 M LiPF6 in a mixture of Initial discharge 103
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material EC/DEC/DMC (1:1:1, v/v/v) capacity of 1049 mAhg-

1

24 Rice husk Rice husk-based 3D 

porous silicon/carbon 

nanocomposites as 

anode materials

1 M LiPF6 in a mixture of 

EC/DEC/DMC (1:1:1, v/v/v)

Reversible capacity of 

345 mAh g-1 after 100 

cycles at 50 mA g-1

104

25 Rice husk Rice husk lignin-

derived porous carbon 

as an anode material

1 M LiPF6 in EC and DMC 

(1:1, v/v)

Specific capacity of 469 

mAh g-1 after 100 

cycles

105

26 Rice husk MoS2@rice husk 

carbon composite 

anode

1 M LiPF6 in a mixture of EC 

and DMC (1:1 w/w)

The composite 

delivered average 

discharge capacities of 

280, 260, 234 and 186 

mAh g-1 at current 

density of 40, 60, 80, 

and 100 mA g-1, 

respectively

106

27 Rice husk Activated carbon-

decorated spherical 

silicon nanocrystal 

composites as anode 

materials

1 M LiPF6 in 1:1 mixture of 

OC(OCH3)2 and (CH2O)2CO

Reversible specific 

capacity of 429 mAh g-1 

after 100 cycles

107

28 Rice husk Silicon derived from 

Rice husks

1 M LiPF6 in a mixture of EC 

and DEC (1:1, w/w) with 10 

w% EFC

The material delivered 

initial discharge and 

charge capacities of 

3844.7 and 3144.4 mAh 

g-1 at the current density 

of 100 mA g-1

108

29 Rice husk Rice husk-derived Si-

Sn/nitrogen-doped 

rGO nanocomposites 

as anode materials

1 M LiPF6 in EC/DMC (1:1 

v/v)

The composite 

delivered an initial 

capacity of 1600 mAh 

g-1

109

30 Rice husk Rice husk-derived 

activated carbon as an 

anode material

1 M LiPF6 in a 1:1 (V/V) 

mixture of EC and DMC

The anode delivered 

reversible specific 

capacity of 448 mAh g-1 

after 100 cycles at a 

rate of 0.2 C

110
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31 Rice husk Si-Co/Nitrogen-doped 

rGO as an anode 

material

LiPF6 solution in EC/DMC 

(1:1 V/V)

Initial capacity of 975 

mAh g-1

111

32 Rice husk Rice husk-Porous-

Si/C/rGO as anode 

materials

1 M LiPF6 solution (mixed 

EC:DEC as solvent 50:50)

Capacity of 760 mAh g-

1 after 100 cycles at the 

current density of 100 

mA g-1

112

33 Rice husk ZnO/rice husk-based 

hollow carbonaceous 

nanosphere composite 

as an anode material

- Specific charge 

capacity of 920 mAh g-1 

at 0.2 C after 100 cycles

113

34 Rice husk 

ash

Nano-silica materials - - 114

35 Rice husk SiO2/C composite as 

anode materials

1 M LiPF6 in EC, EMC and 

DEC (1 :1 :1, v/v/v)

Reversible capacity of 

827 mAh g-1 over 300 

cycles at the current 

density of 100 mA g-1

115

36 Rice husk Nanostructured 

silicon/carbon and 

silica/carbon 

nanocomposites as 

anode materials

1 M LiPF6 in a 1:1:1 (v/v/v) 

mixture of EC, EMC and 

DMC

Reversible capacity of 

560 mAh g-1 at a 

current density of 100 

mA g-1 over 180 cycles 

with good structural 

stability for 

silicon/carbon and 650 

mAh g-1 at 100 mA g-1 

after 150 cycles for 

silica/carbon 

nanocomposite

116

37 Rice husk Silicon/Carbon as an 

anode material

1 M LiPF6 (mixed EC:DEC as 

the solvent, 50:50)

Si/C composite 

displayed good cycling 

stability (537 mAh g-1 

after 200 cycles at a 

current density of 0.1 A 

g-1)

117

38 Rice husk Porous Li2MnSiO4/C 

nanocomposite as a 

cathode material

1 M LiPF6 in a 1:1 (v/v) 

mixture of EC and DMC

Discharge specific 

capacity of 163.2 mAh 

g-1 at 1 C

118
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39 Rice husk Nano-Co1-xS/biomass 

derived activated 

carbon as a cathode 

material

1 M LiPF6/EC + DMC (1:1 in 

volume)

Capacity of 630 mAh g-

1 after 120 cycles at a 

current density of 0.1 A 

g-1

119

40 Rice husk Si-graphite composites 

as anode materials

1 M LiPF6 solution in a 

mixture of EC and DEC (1:1, 

v/v) with 5 wt% FEC

- 120

41 Rice husk C/SiO2 composite as a 

cathode material

1 M LiPF6/EC + DMC (1:1 in 

volume) solution

Discharge specific 

capacity of 1105 mAh 

g-1 at 0.1 A g-1

121

42 Rice husk Fe3O4/rice husk-based 

maco-/mesoporous 

carbon bone 

nanocomposite as a 

cathode material

1 M LiPF6 dissolved in EC, 

DMC, and DEC (1:1:1 by 

volume)

The anode delivered an 

initial reversible 

capacity of 918 mAh g-1 

at 0.2 A g-1 and a 

reversible capacity of 

681 mAh g-1 remained 

after 200 cycles at 1 A 

g-1

122

43 Rice husk Phosphorus-carbon 

composite as an anode 

material

1 M LiPF6 dissolved in EC, 

DMC, and EMC (1:1:1, v:v:v)

After over 100 cycles, 

the composite delivered 

a capacity of about 

1293 mAh g-1

123

44 Rice husk Cellulose-derived 

hollow carbonaceous 

nanospheres as anode 

materials

1 M LiPF6 in a 1:1 (v/v) 

mixture of EC and DMC

The first discharge 

specific capacity of 

1040 mAh g-1 at a rate 

of 0.2 C and the 

reversible specific 

capacity stabilized at 

489 mAh g-1 after 100 

cycles

124

45 Rice husk SiOx/C composite as 

an anode material

1 M LiPF6 in a mixed solvent 

of EC, DMC, and EMC (1:1:8 

in weight)

Specific capacity of 

nearly 600 mAh g-1 at 

100 mA g-1 after 100 

cycles

125

46 Rice husk Rice husk-derived 

hierarchical silicon/N-

D carbon/CNT spheres 

1 M LiPF6 in a mixed solvent 

of EC and DMC (1:1, v:v) 

containing 10 vol% FEC

Reversible specific 

capacity of 1380 mAh 

g-1 at a current density 

126
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as anode materials of 0.5 A g-1

47 Rice husk Disordered carbon 1 M LiPF6 in a 1:1 (v/v) 

mixture of EC-DEC

Reversible capacity of 

502 mAh g-1 after 100 

cycles at 0.2 C

127

48 Rice husk Microsized porous 

SiOx@C composites as 

anode materials

1 M LiPF6/EC + DMC (1:1 in 

volume)

Specific capacity of 

1230 mAh g-1 at a 

current density of 0.1 A 

g-1

128

49 Rice husk rGO-porous silicon 

composite as an anode 

material

1 M LiPF6 EC/DEC (1:1 v/v) 

plus 1 wt% vinylene carbonate

Capacity of 907 mAh g-

1 at a rate of 16 A g-1

129

50 Rice husk Porous silicon as 

anode materials

1 M LiPF6 in a mixture of 

EC:DMC:EMC (vol ratio 

1:1:1) and 1.5 wt% vinylene 

carbonate additive

Reversible capacity of 1 

400.7 mAh g-1

130

51 Rice husk Phosphorus-doped 

porous carbon as an 

anode material

1 M LiPF6 in a 50:50 (v/v) 

mixture of EC and DEC

Reversible capacity of 

757 mAh g-1 after 100 

cycles at 100 mA g-1

131

52 Rice husk Nb2O5/graphene 

nanocomposites as 

anode materials

1 M LiPF6 in a mixture of EC 

and DMC (1:1 v/v)

Reversible capacity of 

192 mAh g-1 under 0.1 

C rate over 50 cycles

132

53 Rice husk V2O5 NPs as cathode 

material

1 M LiPF6 in EC, DMC and 

EMC (1: 1: 8 by volume ratio)

Discharge capacity of 

229 mAh g-1 after 50 

cycles

133

54 Rice husk Fe/Fe3O4/N-carbon 

composite as an anode 

material

1 M LiPF6 in a mixture of EC 

and DEC with a volume ratio 

of 1:1

Reversible capacity of 

about 610 mAh g-1 at a 

current density of 200 

mA g-1 after 100 cycles

134

55 Rice husk Activated carbon as an 

anode material

1 M LiPF6 in a mixture of EC 

and DMC (1:1 by volume)

Reversible specific 

capacity of 730 mAh g-1 

at a current density of 

0.2 C

135

56 Rice husk Carbon-silica 

composites as anode 

materials

1 M LiPF6 in a mixture of EC 

and DMC (1:1 by volume)

It showed an initial 

discharge capacity of 

325 mAh g-1, increasing 

to 485 mAh g-1 after 84 

cycles

136
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57 Rice husk Rice husk-based 

silicon-graphene 

composite as an anode 

material

1 M LiPF6 in EC/DMC (1:1 

v/v)

Initial capacity of 1000 

mAh g-1 at current 

density of 1000 mA g-1

137

58 Rice husk Rice husk-derived 

carbon as anode 

materials

1 M LiPF6 in a mixture of EC 

and DMC (1:1 v/v)

It delivered superior 

electrochemical 

behavior; especially 

rate performance (137 

mAh g-1 at 10 C)

138

59 Rice husk Mesoporous silicon as 

an anode material

1 M LiPF6 in a mixture of 

carbonate-containing vinylene 

carbonate

Reversible capacity of 

1220.2 mAh g-1 at a 

specific discharge-

charge current of 1000 

mA g-1 after 100 cycles

139

60 Rice husk Pyrolytic carbons as 

anode materials

- The highest insertion 

and deinsertion 

capacities were 

observed with the 

carbon obtained from 

Rice husk treated with 

0.3 M NaOH, at 819 

and 463 mAh g-1, 

respectively

140

61 Rice husk Carbon anode 1 M LiPF6 in a 50/50 v/v% 

mixture of EC and DEC

Reversible capacity of 

1055 mA g-1

141

62 Bagasse Carbon-coated 

Na2FePO4F as a 

cathode material

1 M LiPF6 in a mixture of EC 

and DMC (1:1 v/v)

The coulombic 

efficiency of the 

cathode remained above 

97.8% after 30 cycles at 

0.1 C

142

63 Bagasse xNa3V2(PO4)2F3·(1‑x)

Na2MnPO4F@C as a 

cathode material

1 M LiPF6 in a mixture of EC 

and DMC (1:1 v/v)

The coulombic 

efficiency of the 

cathode remained 95% 

after 35 cycles at 0.1 C

143

64 Sugarcane 

bagasse

HAPC/MoS2/rGOa as 

an anode material

1 M LiPF6 in EC, DMC and 

EMC (1: 1: 1 by volume ratio)

Reversible discharge 

capacity of 952 mAh g-1 

after 200 cycles at a 

144
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current density of 0.2 A 

g-1

65 Bagasse Sulfur-doped 

honeycomb-like 

carbon as an anode 

material

1.25 M MPF6 (M: Li/Na) in a 

mixture of DEC and EC (1:1 

by volume)

Reversible specific 

capacity of 690.9 mAh 

g-1 at 0.1 A g-1 after 100 

cycles

145

66 Bagasse 

and starch

Carbon-coated 

LiNi0.5Mn0.3Co0.2O2 as 

a cathode material

1 M LiPF6 in a mixture of 

EC/DEC (1:1 by volume)

The initial discharge 

capacity of the 

LiNi0.5Mn0.3Co0.2O2 

was 147.8 mAh g-1, 

which increased to 

152.4 and 153.3 mAh g-

1 for 2% starch and 

bagasse, respectively

146

67 Bagasse Hierarchically 

functionalized porous 

carbon/β-FeOOH 

composite as an anode 

material

1 M LiPF6 in EC, DMC and 

EMC (1: 1: 1 by volume ratio)

Discharge capacity of 

898.8 mAh g-1 at 0.2 A 

g-1 after 350 times

147

68 Bagasse Li4Ti5O12 as an anode 

material

1 M LiPF6 in a mixture of 1:1 

volume of EC and DEC

Reversible capacity of 

170.7 mAh g-1 at 1 A g-

1 after 1000 cycles and 

an excellent rate 

performance of 91.2 

mAh g-1 at 10 A g-1 

even after 3000 cycles

148

69 Sugarcane 

bagasse

N-D porous carbon as 

an anode material

1 M LiPF6 in a mixture of EC 

and DEC (1:1 v/v)

Reversible capacity of 

1148 mAh g-1 at 0.1 A 

g-1

149

70 Sugarcane 

bagasse

Functionalized 

bioinspired porous 

carbon with graphene 

sheets as anode 

materials

1 M LiPF6 in a mixture of EC 

and DEC (1:1 v/v)

Reversible discharging 

capacity of 617.3 mAh 

g-1 after 600 cycles at 

200 mA g-1

150

71 Sugarcane 

bagasse

Alkali activated 

carbons as anode 

materials

- - 151
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72 Sugarcane 

bagasse

Activated porous 

carbon as an anode 

material

1 M LiPF6 in a mixture (1:1, 

in vol %) of EC and DMC

Reversible capacity of 

757 mAh g-1 at a 

current density of 100 

mA g-1

152

73 Sugarcane 

bagasse

Single-crystalline α-

MoO3 microbelts as 

anode materials

1 M LiPF6 in EC and DEC 

(1:1, v/v ratio)

- 153

74 Bamboo 

culm, rice 

husk and 

sugarcane 

bagasse

3D nanoporous Si and 

its nanohybrids as 

anode materials

1 M LiPF6 in EC and DMC 

(1:1 v/v) with 2wt% vinylene 

carbonate

Si decorated with 

dimensionally 

modulated carbon-

based materials such as 

carbon, graphene 

nanosheets, and 

multiwall CNTs, 

exhibited higher 

delithiation capacities 

(1997, 1290, and 1166 

mAh g-1, respectively) 

compared to pristine Si 

(956 mAh g-1) extracted 

from rice husk

154

75 Sugarcane 

bagasse

Germanium-graphene 

nanocomposites as 

anode materials

1 M LiPF6 in EC, DMC and 

DEC (1: 1: 1 by volume ratio)

The nanocomposites 

exhibited high specific 

capacity and superior 

capacity retention of 

90% after 15 cycles

155

76 Sugarcane 

bagasse

Carbonaceous 

materials

1 M LiPF6 in EC, DMC and 

DEC (Selectipur-1:1:1 

m/m/m)

Reversible specific 

capacity of 310 mAh g-1

156

77 Waste 

mango-

peel

Porous hard carbon 1 M LiPF6 in EC:EMC:DMC 

(1:1:1 wt.%) with 1% of 

vinylene carbonate

Reversible discharge 

capacity of 801 mAh g-1 

at 100 mA g-1

157

78 Shaddock 

peel

N-D porous hard 

carbons as anode 

materials

1 M LiPF6 in a mixture of EC, 

EMC and DMC (1:1:1 in 

volume)

Reversible capacity of 

673 mAh g-1 at 50 mA 

g-1 after 100 cycles

158

79 Lemon 

juice and 

Nanosized MnO2 as a 

cathode material

1 M LiPF6 in a 1:1 mixture of 

EC and DMC

Reversible capacity of 

160  mAh g-1 (initial 

159



23

citrus peel capacity of 212  mAh g-

1) at a current density of 

10 mA  g-1

80 Shaddock 

peel

Graphene-Co/CoO 

shaddock peel-derived 

carbon foam hybrid as 

anode materials

1 M LiPF6 in a mixture of EC, 

DEC, and DMC

Capacity of 600 mAh g-

1 at 0.2 A g-1 after 80 

times

160

81 Banana 

peel

Banana peel 

pseudographite as 

anode materials

1 M LiPF6 in a 1:1:1 volume 

ratio of EC, DEC and DMC

Capacity of 1090 mAh 

g-1 at 50 mA g-1

161

82 Spongy 

pomelo 

peel

Carbonaceous material 

as an anode material

1 M LiPF6 in a mixture of EC, 

DMC and EMC (in a volume 

ratio of 1:1:1)

Capacity of 452 mAh g-

1 at a current density of 

90 mAg-1 after 200 

cycles

162

83 Wheat 

bran

Carbon anode 1 M LiPF6 in EC, EMC, and 

DMC (1:1:1, v/v)

Reversible capacity of 

515 mAh g-1 and 

corresponding retention 

of 92% after 1000 

charge/discharge cycles

163

84 Rice husk Silicon/carbon as 

anode materials

1 M LiPF6 in 1:1 (v/v) EC and 

DMC with 5 % FEC as an 

additive

Reversible capacity of 

1309 mAh g-1 after 300 

cycles

164

85 Barley 

husk ash

Porous silicon 

composite as anode 

material

1 M LiPF6 in (1:1 v/v) 

EC:DMC

Average discharge 

capacity of 2049 mAh 

g-1 and 472 mAh g-1 at 

the rate of 0.1 C and 1 

C, respectively

165

86 Sunfower 

stalk and 

walnut 

shell

Porous carbon 

microsphere as anode 

materials

1 M LiPF6 in EC and DEC 

(1:1 vol%)

The capacity of the 

carbon microsphere 

originating from 

Sunflower stalk and 

walnut shell are 145.9 

and 235.3 mAh g-1 after 

50 cycles, respectively

166

87 Shaddock 

peel

SiOx-modified porous 

biocarbon as an anode 

material

1 M LiPF6 in a mixture of EC, 

DMC and EMC (1:1:1 w/w)

Reversible capacity of 

740 mAh g-1 at a 

current density of 0.358 

167
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A⋅g-1 after 100 cycles

88 Coffee 

beans

α-Fe2O3 nano coffee 

beans as anode 

materials

1 M LiPF6 in EC/DMC (1:1 

v%)

Reversible capacity of 

810 mAh g-1 (0.2 C)

168

89 Broad 

bean shells

Sulfur and nitrogen 

dual-doping porous 

carbon materials as 

anode materials

1 M LiPF6 in EC and DMC 

with a volume ratio of 1:1

- 169

90 Soya bean 

seed 

(Glysin 

maze), 

Bagasse 

fibers 

(Sacharum 

officinaru

m) and 

Semer 

Cotton 

(Bombax 

ceiba)

Carbon anode LiPF6 (1 wt.%) in EC:DMC 

(1:20 solution)

Bagasse is the best 

precursor

170

91 Coffee 

bean

Carbon anodes 1 M LiPF6 in 1:1 EC and 

DMC for mesocarbon 

microbead cells and in 1:1 

propylene carbonate and DMC 

for non-graphitizable carbon 

cells

- 171

92 Wheat 

straw

Hierarchical nitrogen-

rich porous carbon 

(HNPC) as an anode 

material

- Initial reversible 

capacity of 792.41 mAh 

g-1 with coulombic 

efficiency of 88.61%

172

93 Wheat 

straw

SnO2/C as an anode 

material

1 M LiPF6/EC:DMC:EMC 

(1:1:1 in volume)

Initial capacity of 517.6 

mAh g-1 and a capacity 

ratio of 52.9% at 0.05 C 

(80 mA g-1) after 100 

cycles

173

94 Wheat Few-layer graphene as 1 M LiPF6 in EC/DMC (1:1 Reversible capacity of 174



25

straw an anode material by volume) 502 mAh g-1 at 0.1 C, 

rate capability of 463.5, 

431.4, and 306.8 mAh 

g-1 at 1, 2, and 5 C, 

respectively, and 

cycling performance of 

392.8 mAh g-1 at 1 C 

after 300 cycles

95 Wheat 

straw

Hierarchically porous 

nitrogen-rich carbon as 

an anode material

- Specific capacity of 

1470 mAh g-1 at 0.037 

A g-1

175

96 Rice husk Hierarchically porous 

carbons

1 M LiPF6 in EC and DEC 

(1:1, v/v)

Specific capacity of 541 

mAh g-1 after 800 

cycles at 1 A g-1

176

a 3D aerogels based on the in-situ growth of tetragonal molybdenum disulfide (1T-MoS2) on hydrothermally acid-

treated porous carbon (HAPC) derived from sugarcane bagasse and rGO composites.
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Table S5. Agricultural wastes-derived carbon for lithium-sulfur batteries (Li-SBs).

Entry Source Li-SBs applications Highlights Ref.

1 Snake skin 

fruit peel 

(SFP)

The synthesized porous carbon using 

SFP applied as cathode along with 

sulfur (Carbon-S)

Carbon-sulfur electrodes demonstrated 

initial specific capacity of 945 mAh g-1 

and good capacity retention until the 

100th cycle at 0.1 C rate

177

2 Bagasse S/Bagasse-based 3D carbon matrix 

(BC) used as a cathode

S/BC cathode delivered specific 

capacity of 1360 mAh g-1 at 0.2 C and 

remained at 790 mAh g-1 after 200 

cycles

178

3 Pomelo 

peel

N-D porous carbon-derived pomelo 

peel used as an advanced sulfur host 

for the improvement of Li-SBs 

performance

The sulfur composite electrodes 

displayed an ultrahigh initial capacity 

of 1534.6 mAh g-1, high coulombic 

efficiency of over 98% upon 300 

cycles, and decent rate capability of up 

to 2 C

179

4 Rice husk Rice husks-derived hierarchical 

porous SiO2@C-2.5S used as a 

cathode

SiO2@C-2.5S cathode delivered high 

reversible capacity of 1218 mAh g-1 at 

0.2 C, superior rate capability of 553 

mAh g-1 at 2 C and outstanding cycling 

stability with a low capacity fading of 

0.104% after 300 cycles at 0.5 C

180

5 Garlic peel The porous carbon synthesized using 

hydrothermal treatment (GPC/HT) 

applied as cathode along with sulfur 

(GPC/HT-S)

The GPC/HT-S with a sulfur content of 

87.6 wt.% demonstrated high initial 

specific capacity of 1087 mAh g-1 at 0.1 

C and good cycle retention of 72.2% 

after 400 cycles at 0.5 C

181

6 Corn husk Co/3D carbon/rGO decorated pomelo 

peel separator applied in Li-SBs with 

3DC/S as a cathode

Stable reversible capacity of 516.3 mAh 

g-1 after 500 cycles

182

7 Rice husk Rice husk-derived SiOx@carbon 

nanocomposites used as cathodes

The composite showed high capacity 

and good stability (675 mAh g-1 after 

100 cycles at 0.1 C

183
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Table S6. Different agriculture wastes for DSSCs applications.

Entry Source DSSCs applications Highlights Ref.

1 Spinach, pitaya pericarp, 

orange peel, ginkgo leaf, 

purple cabbage and carrot

Dyes sensitizers Higher and lower conversion 

efficiencies of 0.157 and 0.01% 

were obtained using purple cabbage 

and carrot, respectively

184

2 Acanthus sennii chiovenda 

flower and Euphorbia 

cotinifolia leaf

Light harvesting 

pigments

- 185

3 Red dragon fruit peel Natural sensitizer Open Circuit-Voltage = 0.47 V, Jsc 

= 23.46 µAcm-2, fill factor = 0.480 

and efficiency of 0.029%

186

4 Cochineal, papaya peel, and 

the microalga Scenedesmus 

obliquus

Natural sensitizer The high efficiencies of 0.228, 

0.093 and 0.064% were achieved 

using cochineal, papaya peel extract 

and Scenedesmus obliquus extract, 

respectively

187

5 Pomelo peel Counter electrode 

catalyst

- 188

6 Guar Gum Polymer gel electrolyte Power conversion efficiency of 

4.96%

189

7 Peels of Musa paradisiaca, 

Mangifera indica, Punica 

granatum, and Ananas 

comosus

Photosensitizer Solar to electrical energy 

efficiencies of natural dye-based on 

ZnO DSSCs for Musa paradisiaca, 

Mangifera indica, Punica 

granatum, and Ananas comosus 

were 0.009, 0.024, 0.010, and 

0.002%, respectively

190

8 Red grape peel (Vitis 

Vinifera), jengkol peel 

(Pithecellobium jiringa), 

senduduk fruit (Melastoma 

malabathricum L), and 

mangosteen peel (Garcinia 

Mangostana L)

Natural dye co-

pigmented

The highest efficiency in DSSC was 

obtained using TiO2-Ag and 

mangosteen peel as the dye source

191

9 Onion peel Natural sensitizer η = 0.0413%, Jsc = 0.6031 mAcm-2 192
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and fill factor of 0.2764

10 A mixture of waste orange-

apple peels

Counter electrode 

(Se@activated carbon)

The DSSC with a Se@activated 

carbon-based composite 

(synthesized via Se incorporation 

on the porous activated carbon 

derived from fruit peel wastes) 

counter electrode of 5.67% PCE 

with long stability

193

11 Limonene extracted from 

orange peel

Additive η = 4.4%, Jsc = 8.94 mAcm-2, Open 

Circuit-Voltage = 887 mV, fill 

factor of 0.55% and efficiency of 

4.4%

194

12 Cornelian cherry, black 

pomegranate, ruby grape, and 

tangerine peel

Photosensitizer - 195

13 Rhamnus tinctoria seed, 

Rubia fruticosa fruits, and 

Pinus pinea bark

Natural sensitizer - 196

14 Mussaenda erythrophylla Natural sensitizer - 197
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