Biocompatible diimidazolium based ionic liquid system for enhancing

the solubility of paclitaxel

Yanhui Hu,^{a,b,c} Hua Yue,^{b,c} Shiqi Huang,^b Bingxi Song,^{b,c} Yuyuan Xing,^{b,c} Minmin Liu,^b Gongying Wang,^{*a,c} Yanyan Diao^{*b,d,e}, Suojiang Zhang^{*b,d}

a Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China

b Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China

c University of Chinese Academy of Sciences, Beijing, 100049, China

d Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, P. R. China

e School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, P. R. China

*Corresponding Author: Gongying Wang, Yanyan Diao, Suojiang Zhang Tel/Fax: 86-10-82544875, E-mail: wanggongying1102@126.com, yydiao@ipe.ac.cn, sjzhang@ipe.ac.cn

Characterizations of ILs

NMR as shown in Figure S1-S12, were carried out to identify the structures of the prepared diimidazole ILs.

Fig. S1 The ¹H NMR spectrum of [C₂(MIM)₂][Br]₂ (DMSO)

Fig. S2 The ¹³C NMR spectrum of [C₂(MIM)₂][Br]₂ (DMSO)

 $\label{eq:c2} \begin{array}{l} [C_2(\text{MIM})_2][\text{Br}]_2:^1\text{H NMR (600 MHz, DMSO) } \delta \ 9.22 \ (\text{s},\ 2\text{H}),\ 7.74 \ (\text{t},\ \text{J}=1.7 \ \text{Hz},\ 2\text{H}),\ 7.71 \ (\text{t},\ \text{J}=1.7 \ \text{Hz},\ 2\text{H}),\ 4.75 \ (\text{s},\ 4\text{H}),\ 3.86 \ (\text{s},\ 6\text{H}).\ ^{13}\text{C NMR (151 MHz,\ DMSO)} \\ \delta \ 137.66,\ 124.30,\ 122.83,\ 48.81,\ 36.50. \end{array}$

Fig. S3 The ¹H NMR spectrum of [C₄(MIM)₂][Br]₂ (DMSO)

Fig. S4 The ¹³C NMR spectrum of [C₄(MIM)₂][Br]₂ (DMSO)

 $\label{eq:c4} \begin{array}{l} [C_4(MIM)_2][Br]_2:^1H \ NMR \ (600 \ MHz, \ DMSO) \ \delta \ 9.26 \ (s, \ 2H), \ 7.82 \ (t, \ J = 1.7 \ Hz, \ 2H), \ 7.74 \ (t, \ J = 1.5 \ Hz, \ 2H), \ 4.25 \ (t, \ J = 5.7 \ Hz, \ 4H), \ 3.87 \ (s, \ 6H), \ 1.80 \ (t, \ J = 2.8 \ Hz, \ 4H). \ ^{13}C \ NMR \ (151 \ MHz, \ DMSO) \ \delta \ 137.00, \ 124.13, \ 122.73, \ 48.40, \ 36.30, \ 26.52. \end{array}$

Fig. S5 The ¹H NMR spectrum of [C₆(MIM)₂][Br]₂ (DMSO)

Fig. S6 The ¹³C NMR spectrum of [C₆(MIM)₂][Br]₂ (DMSO)

 $\label{eq:c6} \begin{array}{l} [C_6(MIM)_2][Br]_2:^1H \ NMR \ (600 \ MHz, \ DMSO) \ \delta \ 9.27 \ (s, \ 2H), \ 7.83 \ (t, \ J = 1.6 \ Hz, \ 2H), \ 7.74 \ (t, \ J = 1.6 \ Hz, \ 2H), \ 4.18 \ (t, \ J = 7.2 \ Hz, \ 4H), \ 3.87 \ (s, \ 6H), \ 1.85-1.72 \ (m, \ 4H), \ 1.27 \ (dd, \ J = 8.7, \ 5.5 \ Hz, \ 4H). \ ^{13}C \ NMR \ (151 \ MHz, \ DMSO) \ \delta \ 137.00, \ 124.05, \ 122.74, \ 49.05, \ 36.27, \ 29.57, \ 25.28. \end{array}$

Fig. S7 The ¹H NMR spectrum of [C₈(MIM)₂][Br]₂ (DMSO)

Fig. S8 The ¹³C NMR spectrum of [C₈(MIM)₂][Br]₂ (DMSO)

 $[C_8(MIM)_2][Br]_2$:¹H NMR (600 MHz, DMSO) δ 9.32 (s, 2H), 7.85 (t, J = 1.7 Hz, 2H), 7.76 (t, J = 1.7 Hz, 2H), 4.18 (t, J = 7.2 Hz, 4H), 3.87 (s, 6H), 1.83-1.70 (m, 4H), 1.31-1.16 (m, 8H). ¹³C NMR (151 MHz, DMSO) δ 136.99, 124.04, 122.74, 49.15, 36.26, 29.81, 28.60, 25.83.

Fig. S9 The ¹H NMR spectrum of [C₁₀(MIM)₂][Br]₂ (DMSO)

Fig. S10 The ¹³C NMR spectrum of [C₁₀(MIM)₂][Br]₂ (DMSO)

 $[C_{10}(MIM)_2][Br]_2$:¹H NMR (600 MHz, DMSO) δ 9.16 (s, 2H), 7.78 (d, J = 1.6 Hz, 2H), 7.72 (s, 2H), 4.15 (t, J = 7.2 Hz, 4H), 3.86 (s, 6H), 1.81-1.72 (m, 4H), 1.25 (d, J = 4.0 Hz, 12H). ¹³C NMR (151 MHz, DMSO) δ 136.96, 124.08, 122.74, 49.23, 36.24, 29.88, 29.25, 28.87, 26.00.

Fig. S11 The ¹H NMR spectrum of [C₁₂(MIM)₂][Br]₂ (DMSO)

Fig. S12 The ¹³C NMR spectrum of [C₁₂(MIM)₂][Br]₂ (DMSO)

 $\label{eq:c12} \begin{array}{l} [C_{12}(\text{MIM})]_2[\text{Br}]_2:^1\text{H NMR (600 MHz, DMSO) } \delta \ 9.15 \ (\text{s},\ 2\text{H}),\ 7.78 \ (\text{t},\ \text{J}=1.6 \ \text{Hz}, \\ 2\text{H}),\ 7.71 \ (\text{d},\ \text{J}=1.6 \ \text{Hz},\ 2\text{H}),\ 4.15 \ (\text{t},\ \text{J}=7.2 \ \text{Hz},\ 4\text{H}),\ 3.85 \ (\text{s},\ 6\text{H}),\ 1.77 \ (\text{s},\ 4\text{H}),\ 1.23 \\ (\text{s},\ 16\text{H}).\ ^{13}\text{C NMR (151 MHz,\ DMSO) } \delta \ 136.96,\ 124.08,\ 122.74,\ 49.23,\ 29.88,\ 29.40, \\ 28.90,\ 26.00. \end{array}$

Fig. S13 ESI-MS spectrums of diimidazolium based ILs.

Fig. S14 Representative H&E staining of heart, liver, spleen, lung, and kidney tissues for mice by oral administration after day 7 with the dose of 250 μmol/kg [C₁₀(MIM)₂][Br]₂ or CrEL. The dashed area represents inflammatory infiltration.

Fig. S15 The standard curve of peak area and PTX concentration conversion (5-500 μ M) by

```
UPLC at 227 nm.
```

Tabl	le Sl	The c	omparatio	n of	cationic	logP	between	mono	-imic	lazol	e and	diimid	lazol	e
ILs 1	predic	cted by	/ Marvins	cetcl	h									

Carbon number of	Cationic logP of mono-	Cationic logP of			
cationic alkyl chain	imidazolium based ILs	diimidazolium based ILs			
2	-2.48	-5.85			
4	-1.52	-5.27			

6	0.39	-4.38
8	1.28	-3.49
10	2.17	-2.61
12	3.06	-1.72