Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information Appendix

Engineered Ketoreductase-Catalyzed Stereoselective Reduction of Ethyl 2'-Ketopantothenate and Its Analogues: Chemoenzymatic Synthesis of D-Pantothenic Acid

Pan Hu,¹ Xiaofan Wu,^{2,3} Yajiao Zhang,^{2,3} Minjie Liu,^{2,3} Yuan Tao,^{2,3} Zedu Huang,^{2,3}* and Fener Chen^{1,2,3,4}*

¹Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China E-mail: rfchen@fudan.edu.cn

²Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China E-mail: huangzedu@fudan.edu.cn

³Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China

⁴College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China

*Authors to whom correspondence should be addressed

Table of Contents
Table S1. The details of genes used in this study
Nucleotide and amino acid sequences of SSCRS-4
Nucleotide and amino acid sequences of M3S-5
Figure S1. SDS-PAGE analysis of N-terminal-His ₆ -SSCR and mutants after IMAC purificationS-6
Figure S2. SDS-PAGE analysis of cell-free extracts of recombinant E. coli strains coexpressing M3 and GDHS-6
Table S2. Screening of KREDs for the stereoselective reduction of K-PaOEt (1a) S-7
Figure S3. Selected amino acid residues within 5 Å of the docked substrate K-PaOEt (1a).
Figure S4. Double mutant-catalyzed reduction of K-PaOEt (1a) to (R)-PaOEt ((R)-2a).
Figure S5. Dependence of the activity of SSCR and its mutants on the concentration of K- PaOEt (1a)
Table S3. Genetic construction of recombinant E. coli strains
Figure S6. Reaction condition optimization for the reduction of K-PaOEt (1a) to (<i>R</i>)-PaOEt ((<i>R</i>)-2a)
Table S4. Calculation of E-factor for recombinant strain E. coli (pET28a-M3/pACYCDuet-1-GDH)-catalyzed synthesis of (R)-PaOEt at gram-scaleS-13
Table S5. Primers used for the mutagenesis study
Scheme S1. Synthesis of KPL
Scheme S2. Synthesis of compound 1aS-17
Scheme S3. General procedure for the synthesis of compounds 1
Scheme S4. <i>E. coli</i> (pET28a-M3/pACYCDuet-1-GDH)-catalyzed stereoselective synthesis of 2
Scheme S5. Synthesis of compounds 2c or 2k using (<i>R</i>)-PL
References
¹ H NMR and ¹³ C NMR Spectra
Chiral HPLC Spectra

Name	Accession No.	Source	aa
KdoADH	CDO95209.1	Kluyveromyces dobzhanskii	342
YGL039w	NP_011476	Saccharomyces cerevisiae	348
CgKR2	XP_448118.1	Candida glabrata	311
LtCR	XP_002554048.1	Lachancea thermotolerans	281
YDR541c	AAB64983.1	Saccharomyces cerevisiae	344
BYueD	WP_134982026.1	Bacillus subtilis	243
RasADH	EU485985	Ralstonia sp. DSMZ 6428	250
ChKRED20	AHC30841.1	Chryseobacterium sp. CA49	244
YDL124w	NP_010159.1	Saccharomyces cerevisiae	312
KmCR2	XP_022675166.1	Kluyveromyces marxianus CBS4857	341
PkADH	WP_114811150.1	Paraburkholderia kururiensis	251
KRED-SL-10	WP_131435658.1	Exiguobacterium sp. SL-10	248
KRED-F42	WP_023468191.1	Exiguobacterium sp. MH3	249
SSCR	Q9UUN9.3	Sporobolomyces salmonicolor	343
		AKU4429	
KRED-Bt	WP_103592444.1	Bacillus thuringiensis	253

 Table S1. The details of genes used in this study

Nucleotide sequence of SSCR (synthetic gene, codon optimized for expression in E. coli) ATGGCCAAAATCGATAACGCAGTGCTGCCGGAAGGCTCTTTAGTTCTGGTGACCG GTGCCAATGGTTTTGTGGCCAGCCATGTGGTTGAGCAGCTGCTGGAGCATGGTTAT AAAGTGCGCGGTACCGCCCGCAGTGCCAGCAAACTGGCCAACTTACAGAAACGC TGGGATGCCAAGTATCCGGGTCGCTTCGAAACCGCCGTGGTGGAAGACATGCTGA AACAAGGTGCCTACGATGAGGTGATTAAAGGTGCCGCCGGTGTGGCCCATATCGC AAGCGTGGTGAGCTTTAGTAATAAATACGATGAAGTTGTGACCCCCGCTATCGGTG GCACTTTAAATGCACTGCGCGCAGCAGCAGCAACCCCGAGCGTTAAGCGCTTCGT GCTGACAAGTAGTACCGTGAGCGCCTTAATTCCGAAGCCGAATGTGGAGGGCATC TATCTGGACGAGAAAAGCTGGAATTTAGAGAGCATTGACAAAGCCAAAACTTTAC CGGAGAGCGATCCGCAGAAATCTTTATGGGTGTACGCCGCCAGTAAAACCGAGGC AGAACTGGCCGCATGGAAATTTATGGATGAAAACAAACCGCATTTTACTTTAAACG CCGTGCTGCCGAACTACACCATCGGCACCATTTTCGATCCGGAAACCCAGAGCGG CAGCACAAGCGGTTGGATGATGTCTTTATTCAACGGTGAAGTGAGCCCGGCCTTAG CTTTAATGCCTCCGCAGTACTATGTTAGCGCCGTGGATATTGGTTTACTGCATTTAG GTTGTTTAGTGCTGCCGCAGATTGAACGTCGTCGCGTGTATGGCACAGCCGGCACC TTTGATTGGAATACCGTGCTGGCCACCTTTCGCAAACTGTATCCGAGCAAAACCTT CCCGGCCGATTTTCCGGACCAAGGTCAAGATCTGAGCAAATTCGATACCGCCCCGT CTTTAGAAATTCTGAAGAGCTTAGGCCGTCCGGGCTGGCGCAGCATTGAAGAAAG TATTAAAGATCTGGTTGGTAGCGAAACCGCCTAA

Amino acid sequence of SSCR

MAKIDNAVLPEGSLVLVTGANGFVASHVVEQLLEHGYKVRGTARSASKLANLQKRW DAKYPGRFETAVVEDMLKQGAYDEVIKGAAGVAHIASVVSFSNKYDEVVTPAIGGTL NALRAAAATPSVKRFVLTSSTVSALIPKPNVEGIYLDEKSWNLESIDKAKTLPESDPQK SLWVYAASKTEAELAAWKFMDENKPHFTLNAVLPNYTIGTIFDPETQSGSTSGWMMS LFNGEVSPALALMPPQYYVSAVDIGLLHLGCLVLPQIERRRVYGTAGTFDWNTVLATF RKLYPSKTFPADFPDQGQDLSKFDTAPSLEILKSLGRPGWRSIEESIKDLVGSETA

Amino acid sequence of SSCR with a N-terminal-His6-tag

MGSSHHHHHHSSGLVPRGSHMAKIDNAVLPEGSLVLVTGANGFVASHVVEQLLEHGY KVRGTARSASKLANLQKRWDAKYPGRFETAVVEDMLKQGAYDEVIKGAAGVAHIAS VVSFSNKYDEVVTPAIGGTLNALRAAAATPSVKRFVLTSSTVSALIPKPNVEGIYLDEK SWNLESIDKAKTLPESDPQKSLWVYAASKTEAELAAWKFMDENKPHFTLNAVLPNYT IGTIFDPETQSGSTSGWMMSLFNGEVSPALALMPPQYYVSAVDIGLLHLGCLVLPQIER RRVYGTAGTFDWNTVLATFRKLYPSKTFPADFPDQGQDLSKFDTAPSLEILKSLGRPG WRSIEESIKDLVGSETA

Nucleotide sequence of M3

ATGGCCAAAATCGATAACGCAGTGCTGCCGGAAGGCTCTTTAGTTCTGGTGACCG GTGCCAATGGTTTTGTGGCCAGCCATGTGGTTGAGCAGCTGCTGGAGCATGGTTAT AAAGTGCGCGGTACCGCCCGCAGTGCCAGCAAACTGGCCAACTTACAGAAACGC TGGGATGCCAAGTATCCGGGTCGCTTCGAAACCGCCGTGGTGGAAGACATGCTGA AACAAGGTGCCTACGATGAGGTGATTAAAGGTGCCGCCGGTGTGGCCCATATCGC AAGCGTGGTGAGCTTGAGTAATAAATACGATGAAGTTGTGACCCCCGCTATCGGTG GCACTTTAAATGCACTGCGCGCAGCAGCAGCAGCAACCCCGAGCGTTAAGCGCTTCGT GCTGACAAGTAGTACCGTGAGCGCCTTAATTCCGAAGCCGAATGTGGAGGGCATC TATCTGGACGAGAAAAGCTGGAATTTAGAGAGCATTGACAAAGCCAAAACTTTAC CGGAGAGCGATCCGCAGAAAATTTTATGGGTGTACGCCGCCAGTAAAACCGAGGC AGAACTGGCCGCATGGAAATTTATGGATGAAAACAAACCGCATTTTACTTTAAACG CCGTGCTGCCGAACTACACCATCGGCACCATTTTCGATCCGGAAACCCAGAGCGG CAGCACAAGCGGTTGGATGATGTCTTTATTCAACGGTGAAGTGAGCCCGGCCTTAG CTTTAATG**TTG**CCGCAGTACTATGTTAGCGCCGTGGATATTGGTTTACTGCATTTAG GTTGTTTAGTGCTGCCGCAGATTGAACGTCGTCGCGTGTATGGCACAGCCGGCACC TTTGATTGGAATACCGTGCTGGCCACCTTTCGCAAACTGTATCCGAGCAAAACCTT CCCGGCCGATTTTCCGGACCAAGGTCAAGATCTGAGCAAATTCGATACCGCCCCGT CTTTAGAAATTCTGAAGAGCTTAGGCCGTCCGGGCTGGCGCAGCATTGAAGAAAG TATTAAAGATCTGGTTGGTAGCGAAACCGCCTAA

Amino acid sequence of M3

MAKIDNAVLPEGSLVLVTGANGFVASHVVEQLLEHGYKVRGTARSASKLANLQKRW DAKYPGRFETAVVEDMLKQGAYDEVIKGAAGVAHIASVVSLSNKYDEVVTPAIGGTL NALRAAAATPSVKRFVLTSSTVSALIPKPNVEGIYLDEKSWNLESIDKAKTLPESDPQK ILWVYAASKTEAELAAWKFMDENKPHFTLNAVLPNYTIGTIFDPETQSGSTSGWMMS LFNGEVSPALALMLPQYYVSAVDIGLLHLGCLVLPQIERRRVYGTAGTFDWNTVLATF RKLYPSKTFPADFPDQGQDLSKFDTAPSLEILKSLGRPGWRSIEESIKDLVGSETA

Amino acid sequence of M3 with a N-terminal-His₆-tag

MGSSHHHHHHSSGLVPRGSHMAKIDNAVLPEGSLVLVTGANGFVASHVVEQLLEHGY KVRGTARSASKLANLQKRWDAKYPGRFETAVVEDMLKQGAYDEVIKGAAGVAHIAS VVSLSNKYDEVVTPAIGGTLNALRAAAATPSVKRFVLTSSTVSALIPKPNVEGIYLDEK SWNLESIDKAKTLPESDPQKILWVYAASKTEAELAAWKFMDENKPHFTLNAVLPNYT IGTIFDPETQSGSTSGWMMSLFNGEVSPALALMLPQYYVSAVDIGLLHLGCLVLPQIER RRVYGTAGTFDWNTVLATFRKLYPSKTFPADFPDQGQDLSKFDTAPSLEILKSLGRPG WRSIEESIKDLVGSETA

Figure S1. SDS-PAGE analysis of N-terminal-His₆-SSCR and mutants after IMAC purification. Coomassie staining. M: RealBand 3-color Regular Range Protein Marker (Sangon Biotech, China). Lane 1: SSCR. Lane 2: M3. Lane 3: F97L. Lane 4: S173I. Lane 5: P243L. Lane 6: F97L-S173I. Lane 7: F97L-P243L. Lane 8: S173I-P243L.

Figure S2. SDS-PAGE analysis of cell-free extracts of recombinant *E. coli* strains coexpressing M3 and GDH. M: RealBand 3-color Regular Range Protein Marker (Sangon Biotech, China). Lane 1: *E. coli* (pET28a-M3/pACYCDuet-1-GDH). Lane 2: *E. coli* (pETDuet-1-M3-GDH). Lane 3: *E. coli* (pACYCDuet-1-M3-GDH). Lane 4: *E. coli* (pRSFDuet-1-M3-GDH). Lane 5: *E. coli* (pETDuet-1-GDH-M3). Lane 6: *E. coli* (pACYCDuet-1-GDH-M3). Lane 7: *E. coli* (pRSFDuet-1-GDH-M3).

No N	OEt GDH, glucose, f		H H OEt
K-PaOEt	(1a) NaP _i buffer (50 i DMSO (5%, v/v) 30 °C, 200 rpm,	mM, pH 7.0) HO X*) Par 2 h Par	OEt (2a)
Entry	Enzyme	Conv. $(\%)^b$	Ee (%) ^c
1	KdoADH	45	66 (<i>S</i>)
2	YGL039w	8	20 (<i>R</i>)
3	CgKR2	<5	n.d. ^d
4	LtCR	<5	n.d.
5	YDR541c	<5	n.d.
6	BYueD	<5	n.d.
7	RasADH	97	96 (<i>S</i>)
8	ChKRED20	73	62 (<i>S</i>)
9	YDL124w	<5	n.d.
10	KmCR2	89	24 (<i>R</i>)
11	PkADH	7	94 (<i>R</i>)
12	KRED-SL-10	5	86 (<i>R</i>)
13	KRED-F42	<5	n.d.
14	SSCR	>99	>99 (<i>R</i>)
15	KRED-Bt	<5	n.d.

Table S2. Screening of KREDs for the stereoselective reduction of K-PaOEt (1a)^a

^{*a*}Reaction conditions (3 mL): **1a** (50 mM), glucose (100 mM), NADP⁺ (1 mM), DMSO (5%, v/v), 50 g/L cell-free extract (CFE) (wet cell weight) of KREDs, and 75 g/L CFE (wet cell weight) of GDH in NaP_i buffer (100 mM, pH 7.0). Reaction mixtures in the Eppendorf tubes were shaken in a temperature-controlled orbital shaker at 30 °C and 200 rpm for 2 h. ^{*b*}The conversion was determined by ¹H NMR analysis. ^{*c*}The ee was determined by chiral HPLC analysis upon benzoylation of the product, and the absolute configuration of the product was assigned by comparing the optical rotation data to literature data. ^{*d*}n.d.: not determined.

Figure S3. Selected amino acid residues within 5 Å of the docked substrate K-PaOEt (1a).

Figure S4. Double mutant-catalyzed reduction of K-PaOEt (**1a**) to (*R*)-PaOEt ((*R*)-**2a**. Reaction conditions (3 mL): **1a** (50 mM), glucose (100 mM), NADP⁺ (1 mM), DMSO (5%, v/v), 0.17 g/L cell-free extract (CFE) (wet cell weight) of KREDs, and 75 g/L CFE (wet cell weight) of GDH in NaP_i buffer (100 mM, pH 7.0). Reaction mixtures in the Eppendorf tubes were shaken in a temperature-controlled orbital shaker at 30 °C and 200 rpm for 1 h.

Figure S5. Dependence of the activity of SSCR and its mutants on the concentration of K-PaOEt (1a).

Entry	Recombinant E. coli strains	Plasmids
1	<i>E. coli</i> (pET28a-M3/ pACYCDuet-1-GDH)	pET28a-M3 pBR322 M3
2	<i>E. coli</i> (pACYCDuet-1-M3-GDH)	pACYCDuet-1- M3-GDH
3	<i>E. coli</i> (pACYCDuet-1-GDH-M3)	pACYCDuet-1- GDH-M3
4	<i>E. coli</i> (pETDuet-1-M3-GDH)	pETDuet-1- M3-GDH M3 GDH
5	<i>E. coli</i> (pETDuet-1-GDH-M3)	pETDuet-1- GDH-M3
6	<i>E. coli</i> (pRSFDuet-1-M3-GDH)	pRSFDuet-1- M3-GDH
7	<i>E. coli</i> (pRSFDuet-1-GDH-M3)	pRSFDuet-1- GDH-M3

Table S3. Genetic construction of recombinant E. coli strains

Figure S6. Reaction condition optimization for the reduction of K-PaOEt (1a) to (R)-PaOEt ((R)-2a). (A) Glucose concentration. Reaction conditions (5 mL): 1a (100 g/L), glucose (variable amounts), NADP⁺ (0.08 mM), toluene (10%, v/v), wet cells of recombinant E. coli strains (0.1 g, 20 g/L) in NaPi buffer (100 mM, pH 7.0). Reaction mixtures in the round-bottom flasks were stirred in a metal heating block at 30 °C and 1500 rpm for 3 h. (B) NADP⁺ concentration. Reaction conditions (5 mL): 1a (100 g/L), glucose (1.5 equiv.), NADP⁺ (variable amounts), toluene (10%, v/v), wet cells of recombinant E. coli strains (0.1 g, 20 g/L) in NaPi buffer (100 mM, pH 7.0). Reaction mixtures in the round-bottom flasks were stirred in a metal heating block at 30 °C and 1500 rpm for 3 h. (C) pH. Reaction conditions (5 mL): 1a (100 g/L), glucose (1.5 equiv.), NADP⁺ (0.08 mM), toluene (10%, v/v), wet cells of recombinant E. coli strains (0.1 g, 20 g/L) in 100 mM NaP_i buffers of different pHs (6.0-8.0). Reaction mixtures in the round-bottom flasks were stirred in a metal heating block at 30 °C and 1500 rpm for 3 h. (D) Temperature. Reaction conditions (5 mL): 1a (100 g/L), glucose (1.5 equiv.), NADP⁺ (0.08 mM), toluene (10%, v/v), wet cells of recombinant E. coli strains (0.1 g, 20 g/L) in NaP_i buffer (100 mM, pH 7.0). Reaction mixtures in the round-bottom flasks were stirred in a metal heating block at different temperatures (25-40 °C) and 1500 rpm for 3 h.

	Compound	Weight (g)	
Product	(R)-PaOEt	1.3	
	substrate	1.5	
	glucose	1.83	
	<i>E. coli</i> cells (corresponding to dry cell weight)	0.11	
_	salt in 100 mM PBS (pH 7.0) 13.5 mL, 0.162 g		
Input	toluene	1.5 mL, 1.308 g	
	NADP ⁺	0.0009 g	
	silica gel	5	
	DCM	53	
_	H_2O	13.5	
Waste	Including water	75.11	
waste	Excluding water	61.61	
E faatar	Including water	5	7.78
E-factor	Excluding water	4	7.39

Table	S4 .	Calculation	of	E-factor	for	recombinant	strain	<i>E</i> .	coli	(pET28a-
M3/pA	CYC	Duet-1-GDH)	-cat	alyzed syn	thesis	s of (R)-PaOEt	at gram	-scal	e^{a}	

^a100 g/L substrate, 15 mL reaction scale.

Name	Sequence $(5' \rightarrow 3')$
V94A-F	TATCGCAAGCGCGGTGAGCTTTAGTAATAAAT
V94A-R	TAAAGCTCACCGCGCTTGCGATATGGGCCACAC
V95A-F	CGCAAGCGTG GCG AGCTTTAGTAATAAATACG
V95A-R	TACTAAAGCTCGCCACGCTTGCGATATGGGCC
F97A-F	CGTGGTGAGC GCT AGTAATAAATACGATGAAGT
F97A-R	ATTTATTACTAGCGCTCACCACGCTTGCGATAT
T134A-F	GACAAGTAGTGCCGTGAGCGCCTTAATTCCGAAG
T134A-R	AGGCGCTCACGGCACTACTTGTCAGCACGAAGC
V135A-F	AAGTAGTACCGCGAGCGCCTTAATTCCGAAGCC
V135A-R	TTAAGGCGCTCGCGGTACTACTTGTCAGCACG
S173A-F	TCCGCAGAAAGCTTTATGGGTGTACGCCGCCAG
S173A-R	ACACCCATAAAGCTTTCTGCGGATCGCTCTCCG
L174A-F	GCAGAAATCTGCATGGGTGTACGCCGCCAGT
L174A-R	CGTACACCCA TGC AGATTTCTGCGGATCGCTCT
S180A-F	GTACGCCGCCGCTAAAACCGAGGCAGAACTGGC
S180A-R	CCTCGGTTTTAGCGGCGGCGTACACCCATAAAG
P206A-F	CGCCGTGCTGGCGAACTACACCATCGGCACC
P206A-R	TGGTGTAGTT CGC CAGCACGGCGTTTAAAGT
N207A-MP -F	CGTGCTGCCGGCCTACACCATCGGCACCATT
N207A-MP-R	TGGTCCGGAAAATCGGCCGGGAAGGT
Y208A-F	GCTGCCGAACGCCACCATCGGCACCATTTCG
Y208A-R	TGCCGATGGT GGC GTTCGGCAGCACGGCGTT
T209A-F	GCTGCCGAACGCCACCATCGGCACCATTTCG
T209A-R	TGGTGCCGAT GGC GTAGTTCGGCAGCACGGCGT
T223A-F	GAGCGGCAGCGCAAGCGGTTGGATGATGTCTTT
T223A-R	TCCAACCGCT TGC GCTGCCGCTCTGGGTTTCCG
W226A-F	CACAAGCGGTGCGATGATGTCTTTATTCAACGG
W226A-R	AAGACATCATCGCACCGCTTGTGCTGCCGCTCT
M242A-F	CTTAGCTTTAGCGCCTCCGCAGTACTATGTTAG
M242A-R	ACTGCGGAGGCGCTAAAGCTAAGGCCGGGCTC
P243A-F	AGCTTTAATGGCTCCGCAGTACTATGTTAGCGC
P243A-R	AGTACTGCGGAGCCATTAAAGCTAAGGCCGGGC
Q245A-F	AATGCCTCCGGCGTACTATGTTAGCGCCGTGG
Q245A-R	TAACATAGTACGCCGGAGGCATTAAAGCTAAGG
Y246A-F	GCCTCCGCAG GCC TATGTTAGCGCCGTGGATAT
Y246A-R	CGCTAACATAGGCCTGCGGAGGCATTAAAGCT
F97X-F	CGTGGTGAGC NNK AGTAATAAATACGATGAAGT
F97X-R	ATTTATTACTMNNGCTCACCACGCTTGCGATAT
S173X-F	TCCGCAGAAANNKTTATGGGTGTACGCCGCCAG
S173X-R	ACACCCATAA MNN TTTCTGCGGATCGCTCTCCG
M242X-F	CTTAGCTTTANNKCCTCCGCAGTACTATGTTAG

Table S5. Primers used for the mutagenesis study

M242X-R	ACTGCGGAGGMNNTAAAGCTAAGGCCGGGCTC
P243X-MP-F	AGCTTTAATGNNKCCGCAGTACTATGTTAGCGC
P243X-MP-R	AGGCGGTTTCGCTACCAACCAGATC
V135C-F	AAGTAGTACCTGTAGCGCCTTAATTCCGAAGCC
V135C-R	TTAAGGCGCTACAGGTACTACTTGTCAGCACG
V135D-F	AAGTAGTACCGATAGCGCCTTAATTCCGAAGCC
V135D-R	TTAAGGCGCTATCGGTACTACTTGTCAGCACG
V135E-F	AAGTAGTACCGAGAGCGCCTTAATTCCGAAGCC
V135E-R	TTAAGGCGCTCTCGGTACTACTTGTCAGCACG
V135F-F	AAGTAGTACCTTTAGCGCCTTAATTCCGAAGCC
V135F-R	TTAAGGCGCTAAAGGTACTACTTGTCAGCACG
V135G-F	AAGTAGTACCGGGGAGCGCCTTAATTCCGAAGCC
V135G-R	TTAAGGCGCTCCCGGTACTACTTGTCAGCACG
V135H-F	AAGTAGTACCCATAGCGCCTTAATTCCGAAGCC
V135H-R	TTAAGGCGCTATGGGTACTACTTGTCAGCACG
V135I-F	AAGTAGTACCATTAGCGCCTTAATTCCGAAGCC
V135I-R	TTAAGGCGCTAATGGTACTACTTGTCAGCACG
V135K-F	AAGTAGTACCAAGAGCGCCTTAATTCCGAAGCC
V135K-R	TTAAGGCGCTCTTGGTACTACTTGTCAGCACG
V135L-F	AAGTAGTACCCTGAGCGCCTTAATTCCGAAGCC
V135L-R	TTAAGGCGCTCAGGGTACTACTTGTCAGCACG
V135M-F	AAGTAGTACCATGAGCGCCTTAATTCCGAAGCC
V135M-R	TTAAGGCGCTCATGGTACTACTTGTCAGCACG
V135N-F	AAGTAGTACCAACAGCGCCTTAATTCCGAAGCC
V135N-R	TTAAGGCGCTGTTGGTACTACTTGTCAGCACG
V135P-F	AAGTAGTACCCCGAGCGCCTTAATTCCGAAGCC
V135P-R	TTAAGGCGCTCGGGGGTACTACTTGTCAGCACG
V135Q-F	AAGTAGTACCCAGAGCGCCTTAATTCCGAAGCC
V135Q-R	TTAAGGCGCTCTGGGTACTACTTGTCAGCACG
V135R-F	AAGTAGTACCAGGAGCGCCTTAATTCCGAAGCC
V135R-R	TTAAGGCGCTCCTGGTACTACTTGTCAGCACG
V135S-F	AAGTAGTACCTCGAAGCGCCTTAATTCCGAAGCC
V135S-R	TTAAGGCGCTCGAGGTACTACTTGTCAGCACG
V135T-F	AAGTAGTACCACGAGCGCCTTAATTCCGAAGCC
V135T-R	TTAAGGCGCTCGTGGTACTACTTGTCAGCACG
V135W-F	AAGTAGTACCTGGAGCGCCTTAATTCCGAAGCC
V135W-R	TTAAGGCGCTCCAGGTACTACTTGTCAGCACG
V135Y-F	AAGTAGTACCTATAGCGCCTTAATTCCGAAGCC
V135Y-R	TTAAGGCGCTATAGGTACTACTTGTCAGCACG
P243R-F97M-F	CGTGGTGAGCATGAGTAATAAATACGATGAAGT
P243R-F97M-R	ATTTATTACTCATGCTCACCACGCTTGCGATAT
P243R-F97L-F	CGTGGTGAGC TTG AGTAATAAATACGATGAAGT
P243R-F97L-R	ATTTATTACTCAAGCTCACCACGCTTGCGATAT
P243R-S173I-F	TCCGCAGAAAATTTTATGGGTGTACGCCGCCAG

P243R-S173I-R	ACACCCATAAAATTTTCTGCGGATCGCTCTCCG
F1	TTTAACTTTAAGAAGGAGATATACCATGGCAACTGAAC
FI	AGAAAGCCATTG
D 1	CTGCAGGCGCGCCGAGCTCGAATTCTCACTGCCACTTT
KI	ATCACCGTCT
E2	TTAAGTATAAGAAGGAGATATACATATGGCCAAAATCGA
F2	TAACGCAGTGC
D)	CAGCGGTTTCTTTACCAGACTCGAGTTAGGCGGTTTCG
K2	CTACCAACCAG
F2	TTTAACTTTAATAAGGAGATATACCATGGCAACTGAACA
r5	GAAAGCCATTGT
D 3	CTGCAGGCGCGCCGAGCTCGAATTCTCACTGCCACTTT
KJ	ATCACCGTCTTTAT
F/	TTAAGTATAAGAAGGAGATATACATATGGCAACTGAAC
1.4	AGAAAGCCATTG
R4	CAGCGGTTTCTTTACCAGACTCGAGTCACTGCCACTTT
N 1	ATCACCGTCTT
F5	TTTAACTTTAAGAAGGAGATATACCATGGCCAAAATCG
15	ATAACGCAGTGC
R5	CTGCAGGCGCGCCGAGCTCGAATTCTTAGGCGGTTTCG
K)	CTACCAACCAG
F6	TTTAACTTTAATAAGGAGATATACCATGGCCAAAATCGA
10	TAACGCAGTGC
R6	CTGCAGGCGCGCCGAGCTCGAATTCTTAGGCGGTTTCG
	CTACCAACCAG

This is a modified literature procedure.^[1] To a mixture of 30% methanolic NaOMe (74 g, 0.41 mol, 1.2 equiv.) and diethyl oxalate (50 g, 0.34 mol, 1.0 equiv.) was added isobutyraldehyde (27.1 g, 0.38 mol, 1.1 equiv.) at 0 °C, and then the mixture was stirred for 1 h at the same temperature. Then 37% HCHO solution (28.1 g, 0.35 mol, 1.02 equiv.) was added, and the mixture was stirred for another hour at 0°C. 40% NaOH solution (51 g, 0.51 mol, 1.5 equiv.) was added at 0 °C. After stirring for 1 h, conc. HCl (75 mL) was added and the stirring continued for another hour. Upon adjusting the pH to 3 with 40% NaOH solution, NaCl formed was formed and filtered off, and the filtrate was evaporated to remove MeOH. The residual aqueous solution was extracted with EtOAc. The combined organic layer is dried with Na₂SO₄ and evaporated to give the crude product, which was washed with MTBE to afford KPL as white solid in 83% yield. The characterization data of thus synthesized KPL matched well with that reported in literature.

Scheme S2. Synthesis of compound 1a.

A mixture of NaOEt (4.7 g, 69 mmol, 1.06 equiv.), β -alanine ethyl ester hydrochloride (10.6 g, 69 mmol, 1.06 equiv.), and KPL (8.4 g, 65 mmol) in anhydrous EtOH (190 mL) was stirred overnight at room temperature. Ethanol was removed, and the mixture was dissolved in water, extracted with EtOAc. The organic layer was washed with brine, dried with Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography (PE/EA = 5:1) to afford **1a** as colorless oil (10 g, 40 mmol, 62%).

Ethyl 3-(4-hydroxy-3,3-dimethyl-2-oxobutanamido)propanoate

Rf = 0.6 (PE/EA = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.76 (s, 2H), 3.57 (q, *J* = 6.3 Hz, 2H), 2.59 (t, *J* = 6.3 Hz, 2H), 1.28 (t, *J* = 7.5 Hz, 3H), 1.27 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 202.3, 172.0, 161.0, 68.9, 61.0, 48.9, 34.7, 33.6, 21.4, 14.2. HRMS (ESI, m/z) calcd for C₁₁H₁₉NO₅Na [M + Na]⁺ 268.1155, found 268.1156.

Scheme S3. General procedure for the synthesis of compounds 1.

A mixture of NaOMe (1.1 equiv.), amino methyl ester hydrochloride (1.05 equiv.), and KPL (20 mmol, 1.0 equiv.) in anhydrous MeOH (40 mL) was stirred overnight at room temperature. Methanol was removed, and the mixture was dissolved in water, extracted with EtOAc. The organic layer was washed with brine, dried with Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography to afford **1**.

Methyl (4-hydroxy-3,3-dimethyl-2-oxobutanoyl) glycinate

Compound **1b** was prepared and purified in 73% yield (3.2 g, 14.7 mmol) as yellow solid via column chromatography (5/1 PE/EA), starting from 20 mmol of KPL. Rf = 0.5 (PE/EA = 1:1). m.p. = 45.0-47.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (s, 1H), 4.09 (d, *J* = 5.7 Hz, 2H), 3.80 (s, 3H), 3.79 (s, 2H), 1.31 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 201.8, 169.4, 161.0, 69.0, 52.7, 48.9, 40.9, 21.4. HRMS (ESI, m/z) calcd for C₉H₁₅NO₅Na [M + Na]⁺ 240.0842, found 240.0842.

Methyl (4-hydroxy-3,3-dimethyl-2-oxobutanoyl)-L-alaninate

Compound **1c** was prepared and purified in 65% yield (3 g, 12.99 mmol) as colorless oil via column chromatography (4/1 PE/EA), starting from 20 mmol of KPL. Rf = 0.5 (PE/EA = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.0 Hz, 1H), 4.51-4.43 (m, 1H), 3.75-3.65 (m, 5H), 1.40 (d, *J* = 7.3 Hz, 3H), 1.21 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 202.2, 172.5, 160.8, 68.9, 52.7, 48.9, 47.9, 21.4, 21.3, 17.7. HRMS (ESI, m/z) calcd for C₁₀H₁₇NO₅ [M + H]⁺ 232.1179, found 232.1177.

Compound **1d** was prepared and purified in 58% yield (3 g, 11.58 mmol) as colorless oil via column chromatography (5/1 PE/EA), starting from 20 mmol of KPL. Rf = 0.6 (PE/EA = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 9.2 Hz, 1H), 4.45 (dd, *J* = 9.0, 5.0 Hz, 1H), 3.74 (s, 3H), 3.73 (s, 2H), 2.20 (td, *J* = 6.9, 5.0 Hz, 1H), 1.26 (s, 6H), 0.93 (d, *J* = 6.8 Hz, 3H), 0.90 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.2, 171.4, 160.9, 68.9, 57.1, 52.4, 48.9, 31.2, 21.4, 21.3, 19.0, 17.7. HRMS (ESI, m/z) calcd for C₁₂H₂₁NO₅ [M + H]⁺ 260.1492, found 260.1487.

Methyl (4-hydroxy-3,3-dimethyl-2-oxobutanoyl)-L-leucinate

Compound **1e** was prepared and purified in 73% yield (4.0 g, 14.7 mmol) as colorless oil via column chromatography (5/1 PE/EA), starting from 20 mmol of KPL. Rf = 0.7 (PE/EA = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.14 (d, *J* = 8.6 Hz, 1H), 4.56-4.47 (m, 1H), 3.69 (s, 3H), 3.68 (s, 2H), 3.10 (s, 1H), 1.66-1.60 (m, 1H), 1.59-1.53 (m, 2H), 1.22 (s, 6H), 0.88 (d, *J* = 6.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 202.1, 172.4, 160.7, 69.0, 52.6, 50.7, 48.9, 41.2, 24.9, 22.7, 21.8, 21.43, 21.36. HRMS (ESI, m/z) calcd for C₁₃H₂₃NO₅ [M + H]⁺ 274.1649, found 274.1645.

Methyl (4-hydroxy-3,3-dimethyl-2-oxobutanoyl)-L-isoleucinate

Compound **1f** was prepared and purified in 71% yield (5 g, 18.32 mmol) as colorless oil via column chromatography (5/1 PE/EA), starting from 25.7 mmol of KPL. Rf = 0.7 (PE/EA = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 9.0 Hz, 1H), 4.46 (dd, *J* = 8.9, 4.9 Hz, 1H), 3.69 (s, 3H), 3.68 (s, 2H) 1.89 (ddt, *J* = 9.4, 7.0, 4.8 Hz, 1H), 1.41-1.34 (m, 1H), 1.22 (s, 6H), 1.18-1.11 (m, 1H), 0.89-0.84 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 202.1, 171.4, 160.7, 69.0,

56.4, 52.3, 48.9, 37.8, 25.1, 21.4, 21.3, 15.5, 11.5. HRMS (ESI, m/z) calcd for $C_{13}H_{23}NO_5$ [M + H]⁺ 274.1649, found 274.1649.

Methyl (S)-2-(4-hydroxy-3,3-dimethyl-2-oxobutanamido)-3,3-dimethylbutanoate

Compound **1g** was prepared and purified in 55% yield (3.0 g, 11.0 mmol) as colorless oil via column chromatography (5/1 PE/EA), starting from 20 mmol of KPL. Rf = 0.7 (PE/EA = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 9.8 Hz, 1H), 4.32 (d, *J* = 9.7 Hz, 1H), 3.69 (s, 3H), 3.68 (s, 2H), 1.23 (s, 6H), 0.93 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 202.0, 170.9, 160.4, 69.0, 60.2, 52.1, 48.9, 35.1, 26.5, 21.4. HRMS (ESI, m/z) calcd for C₁₃H₂₃NO₅ [M + H]⁺ 274.1649, found 274.1643.

Methyl (4-hydroxy-3,3-dimethyl-2-oxobutanoyl)-L-phenylalaninate

Compound **1h** was prepared and purified in 62% yield (2.5 g, 8.14 mmol) as yellow oil via column chromatography (5/1 PE/EA), starting from 13 mmol of KPL. Rf = 0.4 (PE/EA = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.3 Hz, 1H), 7.32-7.25 (m, 3H), 7.13 (dd, *J* = 8.0, 1.6 Hz, 2H), 4.84 (dd, *J* = 14.0, 6.9 Hz, 1H), 3.75 (s, 3H), 3.72 (s, 2H), 3.21 (dd, *J* = 13.9, 5.6 Hz, 1H), 3.10 (dd, *J* = 13.9, 6.9 Hz, 1H), 1.25 (s, 3H), 1.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.8, 171.0, 160.4, 135.4, 129.2, 128.7, 127.4, 69.0, 53.1, 52.6, 48.9, 37.9, 21.34, 21.31. HRMS (ESI, m/z) calcd for C₁₆H₂₁NO₅ [M + H]⁺ 308.1492, found 308.1497.

Methyl (4-hydroxy-3,3-dimethyl-2-oxobutanoyl)-L-tyrosinate

Compound **1i** was prepared and purified in 59% yield (3.8 g, 11.76 mmol) as colorless oil via column chromatography (2/1 PE/EA), starting from 20 mmol of KPL. Rf = 0.4 (PE/EA = 1:1).

¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 8.4 Hz, 1H), 6.88 (d, *J* = 8.5 Hz, 2H), 6.66 (d, *J* = 8.5 Hz, 2H), 4.70 (dd, *J* = 14.0, 6.8 Hz, 1H), 3.68 (s, 3H), 3.65 (s, 2H), 3.05 (dd, *J* = 14.1, 5.5 Hz, 1H), 2.94 (dd, *J* = 14.0, 6.8 Hz, 1H), 1.17 (s, 3H), 1.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.7, 171.3, 160.6, 155.4, 130.4, 126.7, 115.7, 68.9, 53.3, 52.7, 48.8, 37.0, 21.4, 21.3. HRMS (ESI, m/z) calcd for C₁₆H₂₁NO₆ [M + H]⁺ 324.1442, found 324.1444.

Dimethyl (4-hydroxy-3,3-dimethyl-2-oxobutanoyl)-L-aspartate

Compound **1j** was prepared and purified in 56% yield (3.2 g, 11.07 mmol) as yellow oil via column chromatography (5/1 PE/EA), starting from 20 mmol of KPL. Rf = 0.5 (PE/EA = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.4 Hz, 1H), 4.85 (dt, *J* = 9.2, 4.8 Hz, 1H), 3.80 (s, 3H), 3.79 (s, 5H), 3.72 (s, 3H), 3.08 (dd, *J* = 17.2, 5.0 Hz, 1H), 2.89 (dd, *J* = 17.2, 4.6 Hz, 1H), 1.30 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 201.8, 171.0, 170.2, 160.7, 69.1, 53.1, 52.3, 48.9, 48.4, 35.8, 21.4, 21.3. HRMS (ESI, m/z) calcd for C₁₂H₁₉NO₇ [M + H]⁺ 290.1234, found 290.1231.

Methyl (4-hydroxy-3,3-dimethyl-2-oxobutanoyl)-D-alaninate

Compound **1k** was prepared and purified in 64% yield (2.5 g, 10.82 mmol) as colorless oil via column chromatography (4/1 PE/EA), starting from 17 mmol of KPL. Rf = 0.5 (PE/EA = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.8 Hz, 1H), 4.57-4.44 (m, 1H), 3.73 (s, 3H), 3.72 (s, 2H), 1.43 (d, *J* = 7.2 Hz, 3H), 1.24 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 202.1, 172.5, 160.7, 68.9, 52.7, 48.9, 48.0, 21.4, 21.3, 17.7. HRMS (ESI, m/z) calcd for C₁₀H₁₇NO₅Na [M + Na]⁺ 254.0999, found 254.0997.

Scheme S4. E. coli (pET28a-M3/pACYCDuet-1-GDH)-catalyzed stereoselective synthesis of 2.

A mixture of **1** (10 mM), glucose (20 mM), NADP⁺ (0.2 mM), toluene (5 mL, 10%, v/v) and wet cells of *E. coli* (pET28a-M3/pACYCDuet-1-GDH) (2.5 g) in NaP_i buffer (45 mL, 100 mM, pH 7.0) was in a round-bottom flask and stirred in a metal heating block at 30 °C and 600 rpm for 12 h. Silica was added and the resulting mixture was stirred for 20 min, and then filtered. DCM (5 x 20 mL) was employed for extraction, and the combined organic layer was dried with Na₂SO₄, and concentrated *in vacuo*. The crude product was purified by preparative TLC (1/2 PE/EA) to afford product **2**.

Methyl (R)-(2,4-dihydroxy-3,3-dimethylbutanoyl)glycinate

Compound **2b** was prepared in 50% yield (81 mg, 0.37 mmol) as colorless oil, starting from 0.74 mmol of **1b**, and purified by preparative TLC (1/2 PE/EA) with phosphomolybdic acid staining. Rf = 0.5 (PE/EA = 1:2). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (s, 1H), 4.51 (d, *J* = 5.1 Hz, 1H), 4.10 (s, 1H), 4.07 (d, *J* = 6.1 Hz, 2H), 3.76 (s, 3H), 3.52 (s, 2H), 2.40 (s, 1H), 1.03 (s, 3H), 0.95 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 170.6, 77.4, 71.0, 52.5, 40.7, 39.3, 21.1, 20.5. HRMS (ESI, m/z) calcd for C₉H₁₇NO₅ [M + H]⁺ 220.1179, found 220.1178. [α]_D²⁰ = +44.33 (c = 0.6, EtOH). HPLC Chiracel AD-H, 250 mm × 4.6 mm column, 60/40/ hexane/isopropanol, flow rate of 1.0 mL/min, 254 nm UV lamp, 30 °C, t₁ = 5.2 min (major), t₂ = 8.1 min; >99% ee (determined upon benzoylation).

Methyl ((R)-2,4-dihydroxy-3,3-dimethylbutanoyl)-L-alaninate

Compound **2c** was prepared in 50% yield (130 mg, 0.56 mmol) as colorless oil, starting from 1.13 mmol of **1c**, and purified by preparative TLC (1/2 PE/EA) with phosphomolybdic acid staining. Rf = 0.5 (PE/EA = 1:2). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 7.8 Hz, 1H), 4.62-4.55 (m, 1H), 4.26 (s, 1H), 4.05 (s, 1H), 3.76 (s, 3H), 3.52 (s, 2H), 1.45 (d, *J* = 7.3 Hz, 3H),

1.05 (s, 3H), 0.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 172.9, 77.8, 71.2, 52.5, 47.6, 39.4, 21.1, 20.7, 17.9. HRMS (ESI, m/z) calcd for C₁₀H₁₉NO₅ [M + H]⁺ 234.1336, found 234.1338. [α]_D²⁰ = +22.55 (c = 1.1, EtOH). HPLC Chiracel AD-H, 250 mm × 4.6 mm column, 60/40/ hexane/isopropanol, flow rate of 1.0 mL/min, 254 nm UV lamp, 30 °C, t₁ = 5.4 min (major), t₂ = 6.9 min; >99% de (determined upon benzoylation).

Methyl ((R)-2,4-dihydroxy-3,3-dimethylbutanoyl)-L-valinate

Compound **2d** was prepared in 71% yield (100 mg, 0.38 mmol) as colorless oil, starting from 0.53 mmol of **1d**, and purified by preparative TLC (1/2 PE/EA) with phosphomolybdic acid staining. Rf = 0.6 (PE/EA = 1:2). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 8.9 Hz, 1H), 4.75 (s, 1H), 4.41 (dd, *J* = 8.8, 5.0 Hz, 1H), 4.01 (s, 1H), 3.67 (s, 3H), 3.42 (s, 2H), 2.19-2.11 (m, 1H), 0.94 (s, 3H), 0.90 (s, 3H), 0.88 (s, 3H), 0.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 172.2, 77.5, 71.0, 56.9, 52.2, 39.4, 30.8, 20.9, 20.6, 19.1, 17.7. HRMS (ESI, m/z) calcd for C₁₂H₂₃NO₅ [M + H]⁺ 262.1649, found 260.1647. [α]_D²⁰ = +16.63 (c = 0.4, EtOH). HPLC Chiracel AD-H, 250 mm ×4.6 mm column, 60/40/ hexane/isopropanol, flow rate of 1.0 mL/min, 254 nm UV lamp, 30 °C, t₁ = 5.2 min (major), t₂ = 14.9 min; >99% de (determined upon benzoylation).

Methyl ((R)-2,4-dihydroxy-3,3-dimethylbutanoyl)-L-leucinate

Compound **2e** was prepared in 82% yield (290 mg, 1.05 mmol) as colorless oil, starting from 1.28 mmol of **1e**, and purified by preparative TLC (1/2 PE/EA) with phosphomolybdic acid staining. Rf = 0.7 (PE/EA = 1:2). ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, *J* = 8.3 Hz, 1H), 4.62-4.55 (m, 1H), 4.05 (s, 1H), 3.74 (s, 3H), 3.50 (s, 2H), 1.71-1.58 (m, 3H), 1.03 (s, 3H), 0.96 (s, 3H), 0.94 (d, *J* = 5.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 77.7, 71.1, 52.4, 50.4, 41.0, 39.4, 24.9, 22.8, 21.7, 21.0, 20.7. HRMS (ESI, m/z) calcd for C₁₃H₂₅NO₅ [M + H]⁺ 276.1805, found 276.1808. [α]_D²⁰ = +12.13 (c = 2.4, EtOH). HPLC Chiracel AD-H, 250 mm × 4.6 mm column, 60/40/ hexane/isopropanol, flow rate of 1.0 mL/min, 254 nm UV lamp, 30 °C, t₁ = 4.9 min (major), t₂ = 7.1 min; >99% de (determined upon benzoylation).

Methyl ((R)-2,4-dihydroxy-3,3-dimethylbutanoyl)-L-isoleucinate

Compound **2f** was prepared in 71% yield (100 mg, 0.36 mmol) as colorless oil, starting from 0.51 mmol of **1f**, and purified by preparative TLC (1/2 PE/EA) with phosphomolybdic acid staining. Rf = 0.7 (PE/EA = 1:2). ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 8.6 Hz, 1H), 4.45 (dd, *J* = 8.6, 4.9 Hz, 1H), 4.00 (s, 1H), 3.67 (s, 3H), 3.42 (s, 2H), 1.88 (ddt, *J* = 9.4, 7.0, 4.7 Hz, 1H), 1.42-1.33 (m, 1H), 1.20-1.10 (m, 1H), 0.94 (s, 3H), 0.89-0.81 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 172.2, 77.4, 71.0, 56.2, 52.2, 39.3, 37.4, 25.1, 20.8, 20.6, 15.6, 11.5. HRMS (ESI, m/z) calcd for C₁₃H₂₅NO₅ [M + H]⁺ 276.1805, found 276.1805. [α]_D²⁰ = +31.88 (c = 0.6, EtOH). HPLC Chiracel AD-H, 250 mm × 4.6 mm column, 60/40/ hexane/isopropanol, flow rate of 1.0 mL/min, 254 nm UV lamp, 30 °C, t₁ = 5.0 min (major), t₂ = 8.9. min; >99% de (determined upon benzoylation).

Methyl (S)-2-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)-3,3-dimethylbutanoate

Compound **2g** was prepared in 62% yield (90 mg, 0.33 mmol) as colorless oil, starting from 0.53 mmol of **1g**, and purified by preparative TLC (1/2 PE/EA) with phosphomolybdic acid staining. Rf = 0.7 (PE/EA = 1:2). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.9 Hz, 1H), 4.28 (d, *J* = 9.0 Hz, 1H), 4.00 (s, 1H), 3.66 (s, 3H), 3.41 (s, 2H), 0.93 (s, 12H), 0.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 171.7, 77.4, 71.1, 60.0, 51.8, 39.4, 34.3, 26.6, 20.8, 20.4. HRMS (ESI, m/z) calcd for C₁₃H₂₅NO₅ [M + H]⁺ 276.1805, found 276.1799. [α]_D²⁰ = +58.75 (c = 0.4, EtOH). HPLC Chiracel AD-H, 250 mm × 4.6 mm column, 60/40/ hexane/isopropanol, flow rate of 1.0 mL/min, 254 nm UV lamp, 30 °C, t₁ = 5.4 min (major), t₂ = 14.9 min; >99% de (determined upon benzoylation).

Methyl ((R)-2,4-dihydroxy-3,3-dimethylbutanoyl)-L-phenylalaninate

Compound **2h** was prepared in 75% yield (240 mg, 0.78 mmol) as yellow oil, starting from 1.03 mmol of **1h**, and purified by preparative TLC (1/2 PE/EA) with phosphomolybdic acid

staining. Rf = 0.5 (PE/EA = 1:2). ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.17 (m, 3H), 7.14 (d, J = 7.1 Hz, 1H), 7.07 (d, J = 7.1 Hz, 2H), 4.75 (q, J = 7.5 Hz, 1H), 3.90 (s, 1H), 3.62 (s, 3H), 3.32 (q, J = 11.1 Hz, 2H), 3.12-2.95 (m, 2H), 0.86 (s, 3H), 0.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 172.0, 135.8, 129.1, 128.7, 127.2, 77.3, 70.9, 52.9, 52.4, 39.2, 37.7, 20.8, 20.6. HRMS (ESI, m/z) calcd for C₁₆H₂₃NO₅ [M + H]⁺ 310.1649, found 310.1650. [α]_D²⁰ = +44.25 (c = 0.8, EtOH). HPLC Chiracel AD-H, 250 mm × 4.6 mm column, 60/40/ hexane/isopropanol, flow rate of 1.0 mL/min, 254 nm UV lamp, 30 °C, t₁ = 6.6 min (major), t₂ = 10.9 min; >99% de (determined upon benzoylation).

Methyl ((R)-2,4-dihydroxy-3,3-dimethylbutanoyl)-L-tyrosinate

Compound **2i** was prepared in 75% yield (240 mg, 0.74 mmol) as colorless oil, starting from 0.98 mmol of **1i**, and purified by preparative TLC (1/2 PE/EA) with phosphomolybdic acid staining. Rf = 0.4 (PE/EA = 1:2). ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, *J* = 8.3 Hz, 1H), 6.98 (d, *J* = 8.1 Hz, 2H), 6.71 (d, *J* = 8.2 Hz, 2H), 4.86 – 4.78 (m, 1H), 4.27 (d, *J* = 4.0 Hz, 1H), 3.94 (d, *J* = 4.7 Hz, 1H), 3.75 (s, 3H), 3.43 (s, 2H), 3.14 (dd, *J* = 14.1, 5.1 Hz, 1H), 2.95 (dd, *J* = 14.2, 7.8 Hz, 1H), 0.95 (s, 3H), 0.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 172.2, 155.3, 130.3, 127.3, 115.7, 77.5, 70.9, 52.9, 52.6, 39.3, 36.9, 21.0, 20.6. HRMS (ESI, m/z) calcd for C₁₆H₂₃NO₆ [M + H]⁺ 326.1598, found 326.1594. [α]_D²⁰ = +53.50 (c = 0.6, EtOH). HPLC Chiracel AD-H, 250 mm ×4.6 mm column, 60/40/ hexane/isopropanol, flow rate of 1.0 mL/min, 254 nm UV lamp, 30 °C, t₁ = 10.2 min (major), t₂ = 15.4 min; >99% de (determined upon benzoylation).

Dimethyl ((R)-2,4-dihydroxy-3,3-dimethylbutanoyl)-L-aspartate

Compound **2j** was prepared in 51% yield (80 mg, 0.27 mmol) as yellow oil, starting from 0.53 mmol of **1j**, and purified by preparative TLC (1/2 PE/EA) with phosphomolybdic acid staining. Rf = 0.5 (PE/EA = 1:2). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.6 Hz, 1H), 4.90 (dt, *J* = 9.2, 4.8 Hz, 1H), 4.29 (s, 1H), 4.07 (s, 1H), 3.77 (s, 3H), 3.71 (s, 3H), 3.52 (s, 2H), 3.06 (dd, *J* = 17.1, 5.1 Hz, 1H), 2.87 (dd, *J* = 17.1, 4.6 Hz, 1H), 1.04 (s, 3H), 0.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 171.6, 171.1, 77.8, 71.1, 52.9, 52.2, 48.1, 39.3, 35.9, 21.0, 20.7. HRMS (ESI, m/z) calcd for C₁₂H₂₁NO₇ [M + H]⁺ 292.1391, found 292.1390. [α]_D²⁰ = +40.67 (c = 0.6, EtOH). HPLC Chiracel AD-H, 250 mm × 4.6 mm column, 60/40/ hexane/isopropanol, flow

rate of 1.0 mL/min, 254 nm UV lamp, 30 °C, $t_1 = 8.1$ min (major), $t_2 = 13.0$ min; >99% de (determined upon benzoylation).

Methyl ((R)-2,4-dihydroxy-3,3-dimethylbutanoyl)-D-alaninate

Compound **2k** was prepared in 61% yield (210 mg, 0.90 mmol) as colorless oil, starting from 1.48 mmol of **1k**, and purified by preparative TLC (1/2 PE/EA) with phosphomolybdic acid staining. Rf = 0.5 (PE/EA = 1:2). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 4.2 Hz, 1H), 4.54-4.47 (m, 1H), 3.98 (s, 1H), 3.69 (s, 3H), 3.42 (s, 2H), 1.36 (d, *J* = 7.3 Hz, 3H), 0.92 (s, 3H), 0.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 173.4, 76.7, 70.8, 52.6, 47.7, 39.3, 21.0, 20.2, 18.1. HRMS (ESI, m/z) calcd for C₁₀H₁₉NO₅Na [M + Na]⁺ 256.1155, found 256.1164. [α]_D²⁰ = +63.00 (c = 1.6, EtOH). HPLC Chiracel AD-H, 250 mm × 4.6 mm column, 60/40/ hexane/isopropanol, flow rate of 1.0 mL/min, 254 nm UV lamp, 30 °C, t₁ = 4.5 min (major), t₂ = 6.0 min; >99% de (determined upon benzoylation).

Scheme S5. Synthesis of compounds 2c or 2k using (*R*)-PL.

A mixture of NaOMe (1.1 equiv.), L-alanine methyl ester hydrochloride or D-alanine methyl ester hydrochloride (1.05 equiv.), and (R)-PL (1.0 equiv.) in anhydrous MeOH was stirred overnight at room temperature. Methanol was removed, and the mixture was dissolved in water, extracted with EtOAc. The organic layer was washed with brine, dried with Na₂SO₄, and concentrated *in vacuo* to give the crude product. A portion of the crude product was purified by preparative TLC to afford **2c** or **2k** for characterization and derivatization purposes.

Methyl ((R)-2,4-dihydroxy-3,3-dimethylbutanoyl)-L-alaninate

¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 7.6 Hz, 1H), 4.58-4.51 (m, 1H), 4.03 (d, *J* = 4.8 Hz, 1H), 3.97 (s, 1H), 3.74 (s, 3H), 3.53-3.44 (m, 2H), 1.43 (d, *J* = 7.3 Hz, 3H), 1.01 (s, 3H), 0.94 (s, 3H). [α]_D²⁰ = +22.91 (c = 2.3, EtOH).

Methyl ((R)-2,4-dihydroxy-3,3-dimethylbutanoyl)-D-alaninate

¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.7 Hz, 1H), 4.53-4.46 (m, 1H), 3.98 (s, 1H), 3.68 (s, 3H), 3.41 (s, 2H), 1.36 (d, *J* = 7.3 Hz, 3H), 0.90 (s, 3H), 0.85 (s, 3H). [α]_D²⁰ = +58.37 (c = 1.6, EtOH).

References

[1] A. Gruessner, H. Hata, T. Morishita, S. Akutsu and M. Kawamura, *Synthesis*, 1991, **4**, 289-291.

¹H-NMR and ¹³C-NMR Spectra

The ¹H NMR (400 MHz, CDCl₃) spectrum of 1a

The ¹³C NMR (100 MHz, CDCl₃) spectrum of **1b**

280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

The ¹³C NMR (100 MHz, CDCl₃) spectrum of **1c**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

The ¹³C NMR (100 MHz, CDCl₃) spectrum of 1d

280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

The ¹³C NMR (100 MHz, CDCl₃) spectrum of **1e**

The ¹³C NMR (100 MHz, CDCl₃) spectrum of 1f

The ¹H NMR (400 MHz, CDCl₃) spectrum of 1g

The ¹³C NMR (100 MHz, CDCl₃) spectrum of **1g**

The ¹³C NMR (100 MHz, CDCl₃) spectrum of **1h**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

The ¹H NMR (400 MHz, CDCl₃) spectrum of 1i

The ¹³C NMR (100 MHz, CDCl₃) spectrum of **1**j

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

The ¹H NMR (400 MHz, CDCl₃) spectrum of 1k

The ¹³C NMR (100 MHz, CDCl₃) spectrum of **1k**

210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm) -10

The ¹H NMR (400 MHz, CDCl₃) spectrum of **2b**

The ¹³C NMR (100 MHz, CDCl₃) spectrum of **2b**

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

The ¹H NMR (400 MHz, CDCl₃) spectrum of 2c

The ¹³C NMR (100 MHz, CDCl₃) spectrum of **2c**

The ¹H NMR (400 MHz, CDCl₃) spectrum of 2d

The ¹³C NMR (100 MHz, CDCl₃) spectrum of 2d

The ¹H NMR (400 MHz, CDCl₃) spectrum of 2e

The ¹³C NMR (100 MHz, CDCl₃) spectrum of **2e**

The ¹H NMR (400 MHz, CDCl₃) spectrum of 2g

The ¹³C NMR (100 MHz, CDCl₃) spectrum of **2h**

173.42 172.00	135.83 129.14 127.24 127.24	77.31	70.88	52.87 52.40	39.26 37.72	20.76 20.56
57	ノイン	1	1	\searrow	57	\sim

The ¹H NMR (400 MHz, CDCl₃) spectrum of 2i

The ¹³C NMR (100 MHz, CDCl₃) spectrum of 2j

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

The ¹³C NMR (100 MHz, CDCl₃) spectrum of **2k**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

The ¹³C NMR (100 MHz, CDCl₃) spectrum of **D-PaA**

The top spectrum is the chiral HPLC analysis of the benzoylated authentic standard 2a, synthesized through NaBH₄-mediated reduction of 1a and benzoylation. The bottom spectrum is the chiral HPLC analysis of the benzoylated 2a, synthesized through *E. coli* (pET28a-M3/pACYCDuet-1-GDH)-catalyzed reduction of 1a and benzoylation.

The top spectrum is the chiral HPLC analysis of the benzoylated authentic standard **2b**, synthesized through NaBH₄-mediated reduction of **1b** and benzoylation. The bottom spectrum is the chiral HPLC analysis of the benzoylated **2b**, synthesized through *E. coli* (pET28a-M3/pACYCDuet-1-GDH)-catalyzed reduction of **1b** and benzoylation.

Ketrime[mm]	width[min]	Area	neight[mAu]	Area
5.449	0.2178	36012. 5000	2533.8787	83.62
6.912	0.2631	7052.3975	407.1066	16.38

The top spectrum is the chiral HPLC analysis of the benzoylated authentic standard 2c, synthesized through NaBH₄-mediated reduction of 1c and benzoylation. The middle spectrum is the chiral HPLC analysis of the benzoylated authentic standard 2c, synthesized through the condensation between (*R*)-pantolactone with L-alanine methyl ester, followed by benzoylation. The bottom spectrum is the chiral HPLC analysis of the benzoylated 2c, synthesized through $E. \ coli$ (pET28a-M3/pACYCDuet-1-GDH)-catalyzed reduction of 1c and benzoylation.

The top spectrum is the chiral HPLC analysis of the benzoylated authentic standard **2d**, synthesized through NaBH₄-mediated reduction of **1d** and benzoylation. The bottom spectrum is the chiral HPLC analysis of the benzoylated **2d**, synthesized through *E. coli* (pET28a-M3/pACYCDuet-1-GDH)-catalyzed reduction of **1d** and benzoylation.

The top spectrum is the chiral HPLC analysis of the benzoylated authentic standard 2e, synthesized through NaBH₄-mediated reduction of 1e and benzoylation. The bottom spectrum is the chiral HPLC analysis of the benzoylated 2e, synthesized through *E. coli* (pET28a-M3/pACYCDuet-1-GDH)-catalyzed reduction of 1e and benzoylation.

The top spectrum is the chiral HPLC analysis of the benzoylated authentic standard 2f, synthesized through NaBH₄-mediated reduction of 1f and benzoylation. The bottom spectrum is the chiral HPLC analysis of the benzoylated 2f, synthesized through *E. coli* (pET28a-M3/pACYCDuet-1-GDH)-catalyzed reduction of 1f and benzoylation.

The top spectrum is the chiral HPLC analysis of the benzoylated authentic standard 2g, synthesized through NaBH₄-mediated reduction of 1g and benzoylation. The bottom spectrum is the chiral HPLC analysis of the benzoylated 2g, synthesized through *E. coli* (pET28a-M3/pACYCDuet-1-GDH)-catalyzed reduction of 1g and benzoylation.

The top spectrum is the chiral HPLC analysis of the benzoylated authentic standard 2h, synthesized through NaBH₄-mediated reduction of 1h and benzoylation. The bottom spectrum is the chiral HPLC analysis of the benzoylated 2h, synthesized through *E. coli* (pET28a-M3/pACYCDuet-1-GDH)-catalyzed reduction of 1h and benzoylation.

The top spectrum is the chiral HPLC analysis of the benzoylated authentic standard 2i, synthesized through NaBH₄-mediated reduction of 1i and benzoylation. The bottom spectrum is the chiral HPLC analysis of the benzoylated 2i, synthesized through *E. coli* (pET28a-M3/pACYCDuet-1-GDH)-catalyzed reduction of 1i and benzoylation.

The top spectrum is the chiral HPLC analysis of the benzoylated authentic standard 2j, synthesized through NaBH₄-mediated reduction of 1j and benzoylation. The bottom spectrum is the chiral HPLC analysis of the benzoylated 2j, synthesized through *E. coli* (pET28a-M3/pACYCDuet-1-GDH)-catalyzed reduction of 1j and benzoylation.

The top spectrum is the chiral HPLC analysis of the benzoylated authentic standard 2k, synthesized through NaBH₄-mediated reduction of 1k and benzoylation. The middle spectrum is the chiral HPLC analysis of the benzoylated authentic standard 2k, synthesized through the condensation between (*R*)-pantolactone with D-alanine methyl ester, followed by benzoylation. The bottom spectrum is the chiral HPLC analysis of the benzoylated 2k, synthesized through E. *coli* (pET28a-M3/pACYCDuet-1-GDH)-catalyzed reduction of 1k and benzoylation.